CORRIGENDUM OF THE PAPER ENTITLED: NOTE ON AN OPEN PROBLEM

LAZHAR BOUGOFFA

Department of Mathematics Faculty Science Al-Imam muhammad Ibn Saud Islamic University P.O.Box 84880, Riyadh 11681, Saudi Arabia EMail: bougoffa@hotmail.com

Received:	22 July, 2007
Accepted:	04 December, 2007
Communicated by:	P.S. Bullen
2000 AMS Sub. Class.:	26D15.
Key words:	Corrigendum.
Abstract:	This paper is a corrigendum on a paper published in an earlier volume of JIPAM, ŚNote on an open problemŠ, published in JIPAM, Vol. 8, No. 2. (2007), Article 58. http://jipam.vu.edu.au/article.php?sid=871.
Acknowledgements:	I would like to express deep gratitude to Tibor Pogany and Quôc Anh Ngô for their comments and the successful completion of this note.

Corrigendum Lazhar Bougoffa vol. 8, iss. 4, art. 121, 2007



journal of inequalities in pure and applied mathematics

issn: 1443-5756

The conditions

$$\int_x^b f(t)dt \le \int_x^b (t-a)dt \quad \left(\text{resp. } \int_x^b f(t)dt \ge \int_x^b (t-a)dt\right), \qquad \forall x \in [a,b],$$

given in Lemma 1.1, Theorem 2.1 and Theorem 2.3 [1] are not sufficient to prove the following results

$$f(x) \le x - a$$
 (resp. $f(x) \ge x - a$)

And clearly, the mistake appears in line 5 of the proof of Lemma 1.1 [1].

It is easy to give counter examples for the above lemma. If we choose, $f(x) = \frac{1}{3}$, a = 0 and b = 1, then the first part of the assumptions of Lemma 1.1 gives $x \le \frac{1}{3}$ and also, since $f(x) \le x - a$, we have $\frac{1}{3} \le x$. This is a contradiction.

In fact, the following conditions $f'(x) \ge 1$ (resp. $f'(x) \ge 1$), $\forall x \in (a, b)$ should be added in the first (resp. second) part of the assumptions of Lemma 1.1, Theorem 2.1 and Theorem 2.3. Therefore, Lemma 1.1 becomes:

Lemma 1. Let f(x) be a nonnegative function, continuous on [a, b] and differentiable on (a, b). If $\int_x^b f(t)dt \le \int_x^b (t-a)dt$, $\forall x \in [a, b]$, and $f'(x) \ge 1$, $\forall x \in (a, b)$, then, (1) $f(x) \le x - a$. If $\int_x^b f(t)dt \ge \int_x^b (t-a)dt$, $\forall x \in [a, b]$, and $f'(x) \le 1$, $\forall x \in (a, b)$, then

 $f(x) \ge x - a.$

Proof. In order to prove (1), set

$$G(x) = \left(\int_x^b [f(t) - (t - a)]dt\right) (x - a - f(x)), \qquad \forall x \in [a, b],$$

Lazhar Bougoffa vol. 8, iss. 4, art. 121, 2007			
		_	
Title Page			
Contents			
44	••		
•	►		
Page 2 of 4			
Go Back			
Full Screen			
Close			
ournal of inequalities pure and applied nathematics ssn: 1443-5756			

we have

$$G'(x) = (x - a - f(x))^{2} + \left(\int_{x}^{b} [f(t) - (t - a)]dt\right) (1 - f'(x)).$$

If $\int_x^b f(t)dt \leq \int_x^b (t-a)dt$, and $f'(x) \geq 1$, then $G'(x) \geq 0$, G(x) increases and $G(x) \leq 0$, since G(b) = 0, that is, $x - a - f(x) \geq 0$, so that $f(x) \leq x - a$. Similarly, if $\int_x^b f(t)dt \geq \int_x^b (t-a)dt$ and $f'(x) \leq 1$, we obtain $G'(x) \geq 0$, and $G(x) \leq 0$, that is, $f(x) \geq x - a$.

Remark 1. In the second part of Example 2.1, the function $f(t) = t - \frac{\pi}{2} + \cos t$ should be replaced by $f(t) = t - \frac{\pi}{2} - \sin t$.

Corrigendum Lazhar Bougoffa

journal of inequalities in pure and applied mathematics

issn: 1443-5756

References

 L. BOUGOFFA, Note on an open problem, J. Inequal. Pure & Appl. Math., 8(2) (2007), Art. 58. [ONLINE http://jipam.vu.edu.au/article.php? sid=871].

journal of inequalities in pure and applied mathematics

issn: 1443-5756