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ABSTRACT. We show that the functional equation

s("52) = Ve

is stable in the classical sense on arbitr@yalgebraically open convex sets, but the Hyers
method does not work.

For the convenience of the reader, we have included an extensive list of references where
stability theorems for functional equations were obtained using the direct method of Hyers.
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1. INTRODUCTION

The basic problem of the stability of functional equations asks whether an 'approximate
solution’ of the Cauchy functional equatigiiz + y) = g(x) + ¢g(y) ‘can be approximated’
by a solution of this equation. This problem was formulated (and also solved) in Gy. Pdlya
and G. Sze@'s book [60] (Teil I, Aufgabe 99) for functions defined on the set of positive
integers, it was reformulated in a more general form by S. Ulam in 1940[(skeel[85], [87]). In
1941, D. H. Hyers[[40] gave the following solution to this problelihnX and Y are Banach
spaces¢ is a nonnegative real number and a functign: X — Y fulfills the inequality
| f(z+y)— f(x)— f(y)]| <e(x,y € X), then there exists a unique solutign X — Y of the
Cauchy equation for whicfif(z) — g(x)|| < e (z € X). Stability problems of this type were
investigated by several authors during the last decades, most of them used the idea of Hyers,
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2 ZOLTAN KAISER AND ZSOLT PALES

which will be described below. For surveys on these developments see, e.g., the papers by Forti
[16], Ger [30], Székelyhidi[85] and the boadk [43].

Let X andY be non-empty sets and lete be binary operations o andY’, respectively.
The Cauchy equation concerning these general structures is the functional equation

(1.1) glx*xy) =g(x)ogly)  (z,y€X),

whereg : X — Y is considered as an unknown function.

Assuming, in addition, that” is a metric space with metri¢, we can speak about approxi-
mate solutions of (1]1): A functiofi : X — Y is called are-approximate solution ofZ.7) if it
satisfies the following so-called stability inequality

(1.2) d(f(zxy), fx)o fly) <e  (z,y€X)

for somes > 0.

The Cauchy equation (1.1) is said to s&ble in the sense of Hyers and Ulainfor all
positive §, there exists > 0 such that, for an arbitrary solutiofi of (1.7), there exists a
solutiong of (1.1)) satisfyingd(f(z),g(x)) < dforallxz € X.

The most general results concerning this stability problem were obtained in the context of
square-symmetric groupoids, i.e., when the operaticarsd< satisfy the algebraic identities

(xxy)*x(rxy)=(xxx)*(y*y) and  (uov)o(uov)=(uou)o(vou)

forall z,y in X andu,vinY. (Cf. [78], [15], |59], [58], [2].)

Let us denoter x = by 0. (z) (x € X), andu ¢ u by o,(u) (u € Y) (i.e.,o. ando,, stand for
the squaring in the corresponding structures). The square-symmetry of the opefatiuhs
simply means that, ando, are endomorphisms. Substituting= y into (1.1) and[(1.R), we
get the following single-variable functional equation and functional inequality:

(1.3) goouz)=0.0g(x)  (reX),
and
(1.4) d(foouz), 050 f(z)) <e (x € X).

Assuming that a functiorf : X — Y satisfies[(1]2), we see that it also satisfjes|(1.4). In
order to construct the solutionof (1.1) which is close tg, the idea of the Hyers method is to
consider one of the following two iterations:

(15) g1 = fa gn+1 = 069 gn © 0;1 (n € N)a

(1.6) g=1F  gnpp=0, 0gnoo. (neN)

(assuming that, ando, is invertible, respectively) and then to show that for all solutigros
(I.4), one of these sequences of functions converges to a limit fungti@hich is a solution of
(1.3) and of|[(1.]t), moreoved f(z), g(x)) < ce for somec € R.

Results concerning stability of various functional equations in several variables using these
kinds of iterations can be found in a huge number of recent works (see the extensive list of
references at the end of the paper).

In this note we present an example of a stable Cauchy-type functional equation with square-
symmetric operations, where for all solutiofisf (1.4), the limit function of the corresponding
Hyers-sequences either does not exist or is a solution of the single variable functional equation
(1.3) but it does not solvé¢ (1.1) and it is not close to the original funcfion

J. Inequal. Pure and Appl. Math6(1) Art. 14, 2005 http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

AN EXAMPLE 3

2. RESULTS

Let X denote a vector space over the field of rational numbers throughout this paper. In what
follows, we deal with the stability of the two-variable functional equation

(2.1) g<x;y) =v9(x)gly)  (v,y € H),

whereH is a midpoint-convex set ok, i.e.,x—;y € Hforallz,y € H. Afunctionf : H —
[0, o[ is called are-approximate solution of (2.1) if it satisfies the functional inequality

T + 4
2.2) () - VI@iw| <s @yeh).
Observe that, with the notations
r+y

THY = and zoy:= Yy,

the operations and¢ are square-symmetric (ovéf and|[0, oo[), furthermore,[(Z2]1) and (2.2)
are particular cases of (1.1) and (1.2), respectively.

With the substitutiony = x one obtains the following single variable functional equation and
functional inequality from[(2]1) andl (2.2):

(2.3) g(x) =+/g(x)  (ze€H),
and
(2.4) |f(@) =/ f(z)|<e  (z€H),

respectively.
In this setting, for the iteratiof (1.6), we get

gula) = (f@)*  (weX,neN),

which is not convergent for those elements X wheref(z) > 1, otherwise
0 if f(z) <1,
1 if f(x)=1.

Clearly, g is a solution of[(2.8). Assume thaf has at least two elements afidk ¢ < 1. Let
xo € H be fixed. Definef, : H — [0, 00| by

fl(:ic):{l if © = x,

1+« if x # xo,

g(x) = lim g,(x) =

n—oo

andf, : H — [0, 00 by
£
(2:5) fal) = {1—5 :fi;«éiz

It is not so difficult to prove, thaf; and f, satisfy inequality[(2]2). It is clear, that the cor-
responding iteratior] (1.6) referring t§ is not convergent whem # xz,. The iteration[(1.6)

referring to f, converges to
1 if v = xg,
g(x) = { "

0 if x # xo,

which is a solution of[(Z13), but as we see later, does not necessarily solve (2.1). It is obvious
that there does not existrac R, for whichd( f»(z), g(z)) < ce for an arbitrarye. Moreover, if
e = 0, thend(f2(x), g(z)) = 1, whenz # x,.
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Similarly, for the iteration[(1]5), we get
gn(z) = (f(2))= "  (z€ X, neN),

. fo i f@) =0
g(x) = lim g,(x) = {1 i F(x) £0,

which is a solution of[(2]3). Assume that has at least two element$,< ¢ < 1 and define
fs: H—|[0,00[ by

2.9 f%ﬂZ{% L

so we have

€ if x # x,

wherex, € H is fixed. It is obvious, thaf (2] 2) holds for the functigf but the Hyers iteration

now converges to
(2) 0 if © = x,
xr) = .
g 1 if x # xq,

which solves|[(2]3) but does not necessarily sdlve (2.1). Again as before, there does not exist a
c € R, forwhichd(fs;(x), g(z)) < ce for an arbitrarye, because it is approximately zero, then
d(fs(x), g(x)) is approximatelyl whenz # x.

In what follows, we prove the stability of the functional equatidns|(2.3) (2.1). It can be
immediately seen that the solutions of (2.3) are functions with values 0 and 1, that is, charac-
teristic functions of a certain subset Bf. The next result shows that ffis a solution of[(2.]4)
then it is close to a certain characteristic function as well. Thus, the functional eqdiation (2.3) is
stable in the Hyers-Ulam sense.

Theorem 2.1. Let H be a nonempty set and Igt: H — [0, co[ be a solution of the functional

inequality(2.4)with 0 < ¢ < ¢y := 4/25. Then, for allz € H,
25¢2 5
r —— < — 1< 2e.
6 ° ; Sf@-1s2

Proof. Define the subsetd andB of H by

either  f(z) <

A::{xeﬂz—%gf(m)—lgk}, B::{xGH:f(x)§2fg2}.

The proof of the theorem is equivalent to showing tHhand B form a partition ofH.
Letz € H be arbitrary. Inequality (2]4) is equivalent to the quadratic inequalities

2
(2.7) —e < (VW) - Vi) <e.
Sincee < ¢y = 4/25, we have the estimate
I—v1—4e 4e S

2e 2e
2.8 = < = < Ze.
(28) 2 2(14+v1—4e) ~ 14+/1T—459 1+,/9/25 4

From [2.7), using (2]8), we obtain that either

1—4e 25¢?
o< st = (Vi)' < (L) < 22

i.e.,xz € B, or

1+\/1—4g < /T < 1+\/1+45
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consequently, in view of the estimafe (2.8) and

\/1+45—1_ 4e

(2.9) 5 ST ELD <e,
we have
1_%<1_1—M_€:(1+M)2
4 — 2 2
< f(x)
2
< <H— 21+4€> —1+—V1+246_1+a§1+2a,

which means that € A.
Thus we have showed thdtu B = H. On the other hand, sinee< ¢, = 4/25, it easily
follows thatA N B = . O

In order to investigate the stability of the two-variable functional equafior} (2.1), we need
the notion of an ideal of midpoint-convex sets. We say that a set H is anideal in the
midpoint-convex sefl with respect to the midpoint operatian

Tty

(2.10) reHandyel = el

Trivially, ) and H are always ideals ift/. However, in general, there could exist further ideals
in H. For instance, if{ is the closed unitintervall = [0, 1] C R then the set®, 1], [0, 1[, and

10, 1] are also ideals fof. As we shall see below, il enjoys a certain openness property then
it can have only trivial ideals.

We say that a sl is Q-algebraically opernif, for each pointp € H and vectow € X, there
exists a positive numbersuch thap + tv € H for all ¢t € [0, 7] N Q. Itis obvious, that every
open set (of a topological linear space)Jsalgebraically open, but the reversed statement is
not true in general.

Lemma 2.2. Let H C X be aQ-algebraically open midpoint-convex set. Th&nhas only
trivial ideals, i.e., the only ideals it/ are the set$ and H.

Proof. Assume thaf C H is a nonempty ideal with respect to the midpoint operation, and let
y € I be fixed. It easily follows by induction thdt-1z + Ly € I forallz € H.
Now letz € H be arbitrary. Sincél is Q-algebraically open, for large € N, we have that

1
L= - H.
Tn =T+ 5o 1($ y) €
Then
2" —1 1
on T, + 2—ny =,
which, in view of the ideal property df, yields thatz € I. Therefore H C I follows. O

Our next result concerns the stability of the functional equafion (2.1).

Theorem 2.3.Let H C X be aQ-algebraically open midpoint-convex set and fet H —
[0, oo be a solution of the functional inequalif@.Z) with 0 < ¢ < ¢ := 4/25. Then, either

f(z) < 2?5

—%gf(x)—1325 (z € H).

(x € H)
or

J. Inequal. Pure and Appl. Math6(1) Art. 14, 2005 http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

6 ZOLTAN KAISER AND ZSOLT PALES

Proof. Define the setsl and B as in the proof of Theorefn 2.1. Then, by Theofen 2.1, these
sets form a partition off. In order to complete the proof, we have to show that one of the sets
A or B is empty. To do that, we prove that is an ideal inH with respect to the midpoint
operation.

Letz € H andy € B. It suffices to prove thaf% ¢ A, because then we ha\fgﬂ €
H \ A= B. From inequality[(2]2) it follows that

() < e+ WIRVITW)

2
2522
Sa—l—\/\/l—i—Zq/l—g

5
<eot+1/VIF 250%

_ 4 VB 16 9 %

25 5 25 4 - 4
In view of Lemmd 2.R, we have thdt is a trivial ideal, i.e., eithe’3 = H or B = () which
means thatd = H, and the statement of the theorem follows from this. O

The functionsy = 0 andg = 1 are trivially the solutions of the functional equatign (2.1).
Choosings = 0 in Theoren] 2.3, we immediately get that the reversed statement is also true,
i.e., we have the following result:

Corollary 2.4. Let X be a real linear space{ C X be aQ-algebraically open midpoint-
convex set. Then a functign H — [0, co[ is a solution of the functional equatid@.]) if and
only if eitherg =0 or g = 1.

Now Theorenj 2]3 can be interpreted as the stability theorern df (2.1) since it states that if
f solves the stability inequality (4.2), then it is close to one of the solutions of the functional
equation[(2.1). Thus] (3.1) is stable in the Hyers-Ulam sense.

On the other hand, Corollafy 2.4 shows that if we consider equdtioh (2.1) oQealge-
braically open midpoint-convex set, then the limits of the corresponding Hyers-sequences re-
ferring to the functionsf, and f; defined in [(2.p) and (2.6) are not solutions [of [2.1), so the
stability of this functional equation cannot be proved via the Hyers-method.
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