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1. Motivation

Given a triangleABC and three arbitrary points on the sidesAB,AC,BC, the
Erdös-Debrunner inequality [1] states that

(1.1) F0 ≥ min(F1, F2, F3),

whereF0 is the area of the middle formed triangleDEF andF1, F2, F3 are the areas
of the surrounding triangles (see Figure1).

Figure 1: Triangle4ABC
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Thep-th power-mean is defined forp on the extended real line by

Mp(x1, x2, . . . , xn) =



min(x1, . . . , xn), if p = −∞,

(∑n
i=1 x

p
i

n

) 1
p
, if p 6= 0,

M0 = n
√∏n

i=1 xi, if p = 0,

max(x1, . . . , xn), if p = ∞.

It is known (see [2, Chapter 3]) thatMp is a nondecreasing function ofp. Thus,
it is natural to ask whether (1.1) can be improved to:

(1.2) F0 ≥Mp(F1, F2, F3).

The author of [4] investigated the maximum value ofp, denoted here bypmax,
for which (1.2) is true, showing that−1 ≤ pmax ≤ −( ln 3

ln 2
− 1) (and disproving a

previously published claim).
Sincepmax < 0, by settingx = BD

AE
AC
BC

, y = EC
FB

AB
AC

, z = AF
DC

BC
AB

, andq = −p, it
is shown in [4] that (1.2) is equivalent to

(1.3) f(x, y, z) := g(x, y)q + g(y, z)q + g(z, x)q ≥ 3,

whereg(x, y) := 1
x
+y−1, qmin, the analogue ofpmax, satisfiesln 3

ln 2
−1 ≤ qmin ≤ 1,

and the variables are such thatg(x, y) ≥ 0, g(y, z) ≥ 0, g(z, x) ≥ 0 andx, y, z > 0.
Let us introduce the natural domain off , sayD, to be the set of all triples

(x, y, z) ∈ R3 with x, y, z > 0 andg(x, y) ≥ 0, g(y, z) ≥ 0 andg(z, x) ≥ 0. Since
f(x, y, z) ≥ 0, the functionf has an infimum onD. Let us denote this infimum by
m.
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To complete the analysis begun in [4], the author proposed the following two
conjectures.

Conjecture 1.1. For anyq ≥ q0 = ln 3
ln 2

− 1, if f(x, y, z) = m, thenxyz = 1.

Conjecture 1.2. If q ≥ q0, thenm = 3.

In this paper we prove (Theorem2.1) that for everyq > 0, the functionf has
a minimumm, and if this infimum is attained for(x, y, z) ∈ D, thenxyz = 1.
Moreover, we show (Theorem3.1) that for everyq > 0 we havem = min{3, 2q+1}.
Our results are more general than Conjectures1.1 and1.2 above, and imply them.
After the initial submission of our paper, we learned that the initial conjectures of
Janous were also proved by Mascioni [5]. However, our methods are different and
Mascioni’s Theorem can be obtained from our Theorem3.10for q = q0. In other
words, we extend the Erdös-Debrunner inequality to the rangep < 0, andp = −q0 =

− ln(3/2)
ln(2)

is just a particular value ofp for whichCp = 1 in Theorem3.10. This range
can be extended forp > 0 only in the trivial way, i.e.,F0 ≥ 0 · Mp(F1, F2, F3),
sinceF0 = 0 andMp(F1, F2, F3) 6= 0 if, for instance, the pointF coincides with
the pointB and the pointE coincides with the pointC. As shown next, because the
minimum off is attained at the same point for everyp > −q0, we cannot have an
inequality of the typeF0 ≥ C 3

√
F1F2F3 with C > 0 either. So, our Theorem3.10

is, in a sense, just as far as one can go along these lines in generalizing the Erdös-
Debrunner inequality. Of course, one may try to show that there is a constantcp > 0
such that

F0 ≤ cpMp(F1, F2, F3), p ≥ 0,

however, that is beyond the scope of this paper.
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2. Proof of Conjecture 1.1

We are going to prove the following more general theorem from which Conjecture
1.1follows.

Theorem 2.1. For everyq > 0, the functionf defined by (1.3) has a minimumm
and iff(x, y, z) = m for some(x, y, z) ∈ D thenxyz = 1.

Proof. Sincef(1, 1, 1) = 3 andf(2, 1/2, 1) = 2q+1 we see that

0 ≤ m ≤ min{3, 2q+1}.

Sinceg(x, y) > y− 1, we see that ify > 1 + 3
1
q =: a thenf(x, y, z) > 3. Similarly,

f(x, y, z) > 3 if x or z is greater thana. On the other hand, ifx < 1
a

theng(x, y) >
1/x− 1 > a− 1 = 31/q, which implies thatf(x, y, z) > 3, again. Clearly, ify or z
are less than1/a we also havef(x, y, z) > 3. Hence, we can introduce the compact
domain

C :=

{
(x, y, z)

∣∣∣1
a
≤ x, y, z ≤ a, g(x, y) ≥ 0, g(y, z) ≥ 0 andg(z, x) ≥ 0

}
,

which has the property that

(2.1) m = inf{f(x, y, z)|(x, y, z) ∈ C}.

Since any continuous function defined on a compact set attains its infimum, we
infer thatm is a minimum forf . Moreover, every point at whichf takes the value
m must be inC.

Let us assume now that we have such a point(x, y, z) as in the statement of
Theorem2.1: f(x, y, z) = m. We will consider first the case in which(x, y, z) is in
the interior ofC.
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By the first derivative test (sometimes called Fermat’s principle) for local ex-
trema, this point must be a critical point. So,∂f(x,y,z)

∂x
= 0, which is equivalent

to

x2 =
g(x, y)q−1

g(z, x)q−1
.

Hence the system

(2.2) ∇f(x, y, z) = (0, 0, 0)

is equivalent to

(2.3) x2 =
g(x, y)q−1

g(z, x)q−1
; y2 =

g(y, z)q−1

g(x, y)q−1
; z2 =

g(z, x)q−1

g(y, z)q−1
.

Multiplying the equalities in (2.3) givesxyz = 1, and this proves the theorem
when the infimum occurs at an interior point ofC.

Now let us assume that the minimum off is attained at a point(x, y, z) on the
boundary ofC. Clearly the boundary ofC is

{(x, y, z) ∈ C|{x, y, z} ∩ {a, 1/a} 6= ∅ or g(x, y)g(y, z)g(z, x) = 0}.

We distinguish several cases.
Case1: First, if x = a, since1/z > 0, we have

f(x, y, z) ≥
(

1

z
+ x− 1

)q

> (a− 1)q = 3 ≥ m.

Thus, we cannot havef(x, y, z) = m in this situation. Similarly, we exclude the
possibility thaty or z is equal toa.
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Case2: If x = 1/a, becausey > 0, it follows that

f(x, y, z) ≥
(

1

x
+ y − 1

)q

> (a− 1)q = 3 ≥ m.

Again, this implies thatf(x, y, z) = m is not possible. Likewise, we can exclude
the cases in whichy, or z is 1/a.
Case3: Let us consider now the case in whichg(x, y) = 0, that isy = x−1

x
(observe

that we needx > 1). Therefore,f(x, y, z) = f(x, x−1
x
, z) becomes the following

function of two variables

k(x, z) =

(
x

x− 1
+ z − 1

)q

+

(
1

z
+ x− 1

)q

=

(
z +

1

x− 1

)q

+

(
1

z
+ x− 1

)q

.

Hence, using the arithmetic-geometric inequality, we obtain(
z +

1

x− 1

)q

+

(
1

z
+ x− 1

)q

≥ 2

√(
1

x− 1
+ z

)q (
1

z
+ x− 1

)q

(2.4)

= 2

√[
2 + z(x− 1) +

1

z(x− 1)

]q
≥ 2q+1,

where we have usedX+1/X ≥ 2 (forX > 0). We observe that ifm = 2q+1 (this is
equivalent toq ≤ q0), sincef(x, y, z) = m, we must have equality in (2.4), which,
in particular, implies thatz = 1

x−1
, that is,xyz = 1. If m < 2q+1, then (2.4) shows

that we cannot havef(x, y, z) = m. Either way, the conjecture is also true in this
situation. The other cases are treated in a similar way.
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3. Results Implying Conjecture1.2

We are going to prove a result slightly more general than Conjecture1.2:

Theorem 3.1. Assume the notations of Section2. Then, for everyq > 0 we have
m = min{3, 2q+1}.

In [4], Theorem3.1 was shown to be true forln 3
ln 2

− 1 ≤ q ≤ 1. So we are
going to assume without loss of generality thatq < 1 throughout. Based on what
we have shown in Section2, we can letz = 1

xy
and study the minimum of the

functionh(x, y) = f(x, y, 1
xy

) on the trace of the domainC in the space of the first
two variables:

H =

{
(x, y)| x, y ∈ [1/a, a] and

x+ 1

x
≥ y ≥ |x− 1|

x

}
.

Before we continue with the analysis of the critical points inside the domainH
we want to expedite the boundary analysis. We defineA := 1/x + y − 1, B :=
1/y + 1/(xy)− 1 andC := xy + x− 1. It is a simple matter to show

(3.1) ABC + AB + AC +BC = 4.

If (x, y) is on the boundary ofH, then eithery = x+1
x

, or y = |x−1|
x

. The first
possibility is equivalent toB = 0, and the second is equivalent toA = 0 (if x > 1),
orC = 0 (if x < 1). Now, if C = 0 thenAB = 4. Hence

f(x, y, z) ≥ Aq +Bq + Cq = Aq +Bq ≥ 2
√

(AB)q = 21+q.

Similar arguments can be used for the casesA = 0 orB = 0. Hence, sinceh(1, 2) =
2q+1 we obtain the following result.
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Lemma 3.2. The minimum ofh on the boundary ofH, say∂H, is

(3.2) min{h(x, y)|(x, y) ∈ ∂H} = 2q+1.

Next, we analyze critical points insideH. By Fermat’s principle, these critical
points will satisfy∂h

∂x
= 0, ∂h

∂y
= 0, that is,

− 1

x2
qAq−1 − 1

x2y
qBq−1 + (y + 1)qCq−1 = 0,

and

qAq−1 − x+ 1

xy2
qBq−1 + xqCq−1 = 0.

We remove the common factorq in both of these equations to obtain

− 1

x2
Aq−1 − 1

x2y
Bq−1 + (y + 1)Cq−1 = 0,(3.3)

Aq−1 − x+ 1

xy2
Bq−1 + xCq−1 = 0.(3.4)

Solving forAq−1 in (3.4) and substituting in (3.3) we get

−x+ 1

x3y2
Bq−1 +

1

x
Cq−1 − 1

x2y
Bq−1 + (y + 1)Cq−1 = 0

or
xy + x+ 1

x
Cq−1 =

x+ 1 + xy

x3y2
Bq−1.

Sincexy + x+ 1 > 0, x > 0, by simplifying the previous equation we obtain

(3.5) Cq−1 =
Bq−1

x2y2
.
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Moreover, replacing (3.5) in (3.4), say, we get

Aq−1 − x+ 1

xy2
Bq−1 + x

Bq−1

x2y2
= 0,

which implies

(3.6)
Aq−1

x2
=
Bq−1

x2y2
.

Therefore, if we put (3.5) and (3.6) together, we obtain

(3.7)
Aq−1

x2
=
Bq−1

x2y2
= Cq−1.

The equalityA
q−1

x2 = Cq−1 is equivalent to

x
2

1−q

(
1

x
+ y − 1

)
= xy + x− 1.

If we introduce the new variables = 1+q
1−q > 1, the last equality can be written as

yx(1− xs) = (xs + 1)(1− x).
Similarly, the equalityA

q−1

x2 = Bq−1

x2y2
can be manipulated in the same way to obtain

1

x
+ y − 1 = y

2
1−q

(
1

y
+

1

xy
− 1

)
, or

1

x
(1− ys) = (1− y)(1 + ys).

So, the two equations in (3.7) give the critical points (inside the domainH), which
can be classified in the the following way:
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• (C1): (1,1);

• (C2): {(x, 1) : x 6= 1 satisfiesx(1− xs) = (xs + 1)(1− x)};

• (C3): {(1, y) : y 6= 1 satisfies(1− ys) = (1− y)(1 + ys)};

• (C4):
{

(x, y) : y = (xs+1)(x−1)
x(xs−1)

andx = ys−1
(y−1)(ys+1)

, x 6= 1, y 6= 1
}
.

Let

φ(t) =


(ts+1)(t−1)
t(ts−1)

if 1 6= t > 0,

2
s

if t = 1,

which is continuous for allt > 0. Since it is going to be useful later, we note thatφ
satisfies

(3.8) φ

(
1

t

)
= tφ(t), for all t > 0.

Thus(C2) is the set of all(x, 1) (x 6= 1) with φ(x) = 1; (C3) is the set of all(1, y)
(y 6= 1) with φ(1/y) = 1; and(C4) is the set of all(x, y) (x 6= 1, y 6= 1) with

(3.9)

y = φ(x)

x = 1
φ(1/y)

.

Remark1. Due to (3.8), the class(C3) is in fact the set of all points(1, y), where
y = 1/x and(x, 1) is in (C2).
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To determine the nature of the critical points, we compute the second partial
derivatives, and analyze the Hessian ofh at these critical points. Using relations
(3.7) we obtain:

∂2h

∂x2
= q(q − 1)

(
1

x4
Aq−2 +

1

x4y2
Bq−2 + (y + 1)2Cq−2

)
+ q

(
2

x3
Aq−1 +

2

x3y
Bq−1

)
=

2q(1 + y)Cq−1

x
− q(1− q)Cq−1

(
1

x2A
+

1

x2B
+

(y + 1)2

C

)
=
qCq−1

x

(
2(1 + y)− (1− q)

(A+B)C + x2(y + 1)2AB

xABC

)
=

q(q + 1)

x2ABC2−q

(
ABC(C + 1)− 4

s

)
,

(3.10)

using the fact thatx(y + 1) = C + 1.
Similarly, we get

∂2h

∂y2
= q(q − 1)

(
Aq−2 +

(x+ 1)2

x2y4
Bq−2 + x2Cq−2

)
+ q

2(x+ 1)

xy3
Bq−1

=
2qx(1 + x)Cq−1

y
− q(1− q)Cq−1

(
x2

A
+

(x+ 1)2

y2B
+
x2

C

)
=
qCq−1

y

(
2x(1 + x)− (1− q)

x2y2(A+ C)B + (x+ 1)2AC

yABC

)
=
q(q + 1)x2

ABC2−q

(
ABC(B + 1)− 4

s

)
,

(3.11)

usingxy(B + 1) = x+ 1.
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Further, the mixed second derivative is

∂2h

∂x∂y
= q(q − 1)

(
− 1

x2
Aq−2 +

x+ 1

x3y3
Bq−2 + x(y + 1)Cq−2

)
+ q

(
1

x2y2
Bq−1 + Cq−1

)
= 2qCq−1 − q(1− q)Cq−1

(
− 1

A
+
x+ 1

xyB
+
x(y + 1)

C

)
= qCq−1

(
1 + q − (1− q)

AC(B + 1) + AB −BC

ABC

)
=
q(q + 1)

ABC2−q

(
ABC − 2

s
(2−BC)

)
,

(3.12)

using the identitiesxy(B + 1) = x+ 1, andx(y + 1) = C + 1.
The discriminant (determinant of the Hessian)

D :=
∂2h

∂x2
· ∂

2h

∂y2
−

(
∂2h

∂x∂y

)2

can be calculated using (3.10), (3.11) and (3.12) to obtain

D =
q2(q + 1)2

A2B2C4−2q

(
A2B2C2 ((B + 1)(C + 1)− 1)

− 4

s
ABC (B + C + 2− (2−BC)) +

4

s2

(
4− (2−BC)2

) )
=

q2(q + 1)2

A2B2C4−2q

(
A2B2C2(BC +B + C)

− 4

s
ABC(BC +B + C) +

4

s2
(4BC −B2C2)

)
.
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Now, by (3.1) we have

4BC −B2C2 = BC(4−BC)

= BC(ABC + AB + AC)

= ABC(BC +B + C)

and so we have the factorABC(BC + B + C) in all the terms above. This implies
that the discriminant ofh (at the critical points, that is, assuming relations (3.7)) can
be simplified to

(3.13) D =
q2(q + 1)2

ABC3−2q
(BC +B + C)

(
ABC +

4

s2
− 4

s

)
.

Our next lemma classifies the critical point(1, 1).

Lemma 3.3. For q ≥ 1/3, the point(1, 1) is a local minimum. Forq < 1/3 the
critical point (1, 1) is not a point of local minimum.

Proof. If q = 1/3, h(1, 1) = 3, so, sinceh(x, y) = f(x, y, 1
xy

) ≥ 3 by inequality
(1.3), we establish that(1, 1) is a local minimum point ofh. Assumeq 6= 1/3. For
x = 1 andy = 1 the formulae established above become

∂2h

∂x2
(1, 1) =

∂2h

∂y2
(1, 1) = 2q(3q − 1) > 0,

∂2h

∂x∂y
(1, 1) = q(3q − 1) > 0

and
D = 3q2(3q − 1)2.

Hence, the Hessian is positive definite and so we have a local minimum at this point
(cf. [3, Theorem 2.9.7, p. 74]). For the second part, observe thatD(1, 1) > 0, but
∂2h
∂x2 (1, 1) < 0 if q < 1/3, and so(1, 1) is not a local minimum ifq < 1/3.
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Theorem 3.4. If q 6= 1/3, there exists only one solutionx0 of φ(x) = 1, 0 < x 6= 1,
such that

(a) x0 ∈
(

1
2
, s

2(s−1)

)
if q > 1/3 (s > 2);

(b) x0 ∈
[
2

1
s−1 − s

s
s−1−s
2(s−1)

, 2
1

s−1 − 1
2(s−1)

)
if q < 1/3 (1 < s < 2).

Furthermore, there is only one solutiony0 = 1/x0 to φ(1/y) = 1, 0 < y 6= 1. If
q = 1/3 (s = 2), there are no positive solutions forφ(x) = 1, 0 < x 6= 1, or
φ(1/y) = 1, 0 < y 6= 1.

Proof. First, assumeq = 1/3. Thens = 2. It is straightforward to show that(x, 1)
is in (C2) impliesx = 1. However,x = 1 is not allowed. Similarly,(1, y) is in (C3)
impliesy = 0, or 1, which are not allowed. Thus, ifq = 1/3, there are no positive
solutions forφ(x) = 1, 0 < x 6= 1, orφ(1/y) = 1, 0 < y 6= 1.

Now we shall assume throughout thatq 6= 1/3. Let us observe that the equation
φ(x) = 1 can be written equivalently asψ(x) = 0 (x 6= 1), where

ψ(t) := ts − 2t+ 1, t ≥ 0.

We first assume thatq > 1/3, which is equivalent tos > 2. The derivative ofψ is
ψ′s−1 − 2 which has only one critical pointt0 = (2/s)

1
s−1 . Sinces > 2, we obtain

thatt0 < 1. We haveψ(0) = 1, ψ(1) = 0 and then automatically

ψ(t0) = (2/s)
s

s−1 − 2(2/s)
s

s−1 + 1 = 1− (s− 1)(2/s)
s

s−1 < 0.

The second derivative ofψ is: ψ′′s−2. This shows thatψ is a convex function and
so its graph lies above any of its tangent lines and below any secant line passing
through its graph, as in Figure2.
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Figure 2: The graph ofψ

We conclude thatx0 is between the intersection of the tangent line at(0, 1)
with the x-axis and the intersection between the secant line connecting(0, 1) and
(t0, ψ(t0)) with thex-axis.

Sinceψ′(0) = −2, the equation of the tangent line isy − 1 = −2x and so its
intersection with thex-axis is(1/2, 0). The equation of the secant line through(0, 1)

and(t0, ψ(t0)) is y − 1 = 1−ψ(t0)
−t0 x, or y = 1 − (s−1)2

s
x. This gives the intersection

with thex-axis: ( s
2(s−1)

, 0). Therefore the first part of our theorem is proved. The
last claim is shown similarly.

Remark2. As q approaches1 from below,s becomes large and the interval around
x0 (part(a) in Theorem3.4) is very small.
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Theorem 3.5. The critical points in(C2) and(C3) are not points of local minimum
for h.

Proof. We show that the Hessian ofh is not positive semi-definite by showing that
the discriminantD is less than zero.

We will treat only the critical points of type(C2), since the case(C3) is similar.
We getA = A(x0, 1) = 1/x0,B = B(x0, 1) = 1/x0 andC = C(x0, 1) = 2x0 − 1.

The conditionD < 0 is the same as

2x0 − 1

x2
0

+
4

s2
− 4

s
< 0,

which is equivalent to

s2(2x0 − 1)− 4x2
0(s− 1) = (s− 2x0)(2(s− 1)x0 − s) < 0

or

(3.14)

x0 ∈
(
−∞, s

2

)
∪

(
s

2(s−1)
,∞

)
, if q ≤ 1/3 (1 < s ≤ 2) and

x0 ∈
(
−∞, s

2(s−1)

)
∪

(
s
2
,∞

)
if q > 1/3 (s > 2).

By Theorem3.4parts (a) and (b), and the inequality2
1

s−1 − s
s

s−1−s
2(s−1)

> s
2(s−1)

that
can be easily checked, we see thatD < 0, which completes the proof.

Next, we definethetwo functions

(3.15) γ1(t) :=
(t− 1)(1 + ts)

ts − 1
and γ2(t) :=

(
ts+1 − ts

ts − t

) 1
s

, t > 0, t 6= 1.

http://jipam.vu.edu.au
mailto:
mailto:
http://jipam.vu.edu.au


Erdös-Debrunner Inequality
C.L. Frenzen, E. J. Ionascu

and P. Stănică
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Figure 3: The graphs ofγ1, γ2

These functions are extended by continuity att = 0 andt = 1. We sketch the graphs
of these two functions fors = 6 in Figure3.

The following two lemmas will be crucial for our final argument.

Lemma 3.6. For everys > 1, the functionγ1 is convex and the functionγ2 is con-
cave.

Proof. Forγ1, one can readily check that

γ′′1 (t) =
2sts−2

(ts − 1)3
β1(t)
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where
β1(t) = (s− 1)(ts+1 − 1)− (s+ 1)(ts − t).

Next we observe that
β′1(t) = (s+ 1)β2(t),

where
β2(t) = (s− 1)ts − sts−1 + 1

and observe that
β′s−1

2 − ts−2 = s(s− 1)ts−2(t− 1).

The sign ofβ′2 is then easily determined, showing thatβ2 has a point of global mini-
mum att = 1. Henceβ2(t) ≥ β2(1) = 0. This implies thatβ1 is strictly increasing.
Sinceβ1(1) = 0 we see that the sign ofβ1 is the same as the sign of(ts − 1)3. This
means thatγ′′1 (t) > 0 for all t > 0. At t = 1 the limit is s2−1

3s
> 0 also.

In order to deal withγ2, we rewrite it as

γ2(t) =

(
tr(t− 1)

tr − 1

) 1
r+1

= θ(t)
1

r+1 ,

wherer := s− 1 > 0. Since

γ′′2 (t) =
1

(r + 1)θ(t)
2r+1
r+1

(
θ(t)θ′′(t)− r

r + 1
θ′2

)
,

we have to show that

δ(t) := θ(t)θ′′(t)− r

r + 1
θ′2 < 0

for all t > 0.
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The first and second derivatives ofθ are given by

θ′(t) =
t2r − (r + 1)tr + rtr−1

(tr − 1)2
,

and

θ′′(t) =
r[(r − 1)t2r−1 − (r + 1)t2r−2 + (r + 1)tr−1 − (r − 1)tr−2]

(tr − 1)3
.

These two expressions substituted intoδ(t) yield

δ(t) = − rt2r−2

(r + 1)
δ1(t),

where the sign ofδ is determined by

δ1(t) := t2r+2 − (tr+2 + tr)(r + 1)2 + tr+1(2r2 + 4r) + 1.

However,δ1(1) = 0 andδ′r−1
1 δ2(t), where

δ2(t) = 2tr+2 − ((r + 2)t2 + r)(r + 1) + (2r2 + 4r)t.

Again, observe thatδ2(1) = 0 andδ′2(t) = 2(r+ 2)δ3(t), whereδ3(t) = tr+1 − (r+
1)t + r. Finally, δ3(1) = 0 andδ′r3 − 1). Now δ3 has only a single critical point at
t = 1 which is a global minimum. Thusδ3(t) ≥ δ3(1) = 0. This shows thatδ2 is
strictly increasing on(0,∞) and is zero att = 1. Therefore,δ1(t) has a minimum
at t = 1 implying thatδ1(t) ≥ 0 with its only zero att = 1. Henceδ(t) < 0 for all
t 6= 1. This, andlimt→1 δ(t) = − (r+1)(r+2)

12r2
show thatγ2 is a concave function and

completes the proof.

We shall need the following well-known result which may be formulated with
weaker hypotheses. For convenience, we include it here.
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Lemma 3.7. The graphs of two functionsf and g twice differentiable on[a, b], f
convex (f ′′ > 0) and g concave (g′′ < 0) cannot have more than two points of
intersection.

Proof. Suppose by way of contradiction that they have at least three points of in-
tersection. We thus assume(x1, f(x1)) = (x1, g(x1)), (x2, f(x2)) = (x2, g(x2)),
(x3, f(x3) = (x3, g(x3)), with a ≤ x1 < x2 < x3 ≤ b are such points. Next, we
look at the expression

E =
f(x2)− f(x1)

x2 − x1

− f(x3)− f(x2)

x3 − x2

=
g(x2)− g(x1)

x2 − x1

− g(x3)− g(x2)

x3 − x2

.

By the Mean Value Theorem applied twice tof andf ′ the expressionE is equal to

E = f ′(c1)− f ′(c2) = f ′′(c)(c1 − c2) < 0, c1 ∈ (x1, x2), c2 ∈ (x2, x3), c ∈ (c1, c2)

and applied tog andg′ gives

E = g′(ξ1)− g′(ξ2) = g′′(ξ)(ξ1 − ξ2) > 0, ξ1 ∈ (x1, x2), ξ2 ∈ (x2, x3), ξ ∈ (ξ1, ξ2)

which is a contradiction.

Let us observe that ifx0 is a solution of the equationφ(x0) = 1 then(1/x0, x0)
is a solution of the system (3.9).

Theorem 3.8. If q 6= 1/3, then the only critical points ofh are(1, 1), (x0, 1), (1, 1
x0

),
( 1
x0
, x0), wherex0 is as in Theorem3.4. If q = 1/3, (1, 1) is the only critical point.

Proof. Start withq = 1/3. Then Lemma3.3and Theorem3.4 imply the claim that
(1, 1) is the only critical point.
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vol. 8, iss. 3, art. 68, 2007

Title Page

Contents

JJ II

J I

Page 23 of 26

Go Back

Full Screen

Close

Next, forq 6= 1/3, we consider the following system in the variablesx andy:

(3.16)


1

x
=

(y − 1)(1 + ys)

ys − 1

1

x
=

(
ys+1 − ys

ys − y

) 1
s

.

In what follows next we show that every solution of (C4) is a solution of (3.16).
Indeed, if(x, y) is in (C4), then it satisfies

x =
(xs + 1)(x− 1)

y(xs − 1)
, x =

ys − 1

(y − 1)(1 + ys)
.

This implies that
(xs + 1)(x− 1)

y(xs − 1)
=

ys − 1

(y − 1)(1 + ys)
,

or

(xs + 1)x(y − 1)(1 + ys)− (xs + 1)(y − 1)(1 + ys) = y(xs − 1)(ys − 1).

Now, usex(y − 1)(ys + 1) = ys − 1 to simplify the first term of the previous
equality and derive

(xs + 1)(ys − 1)− (xs + 1)(y − 1)(1 + ys)− y(xs − 1)(ys − 1) = 0.

Finally, we solve forxs to obtain

xs(ys− 1− ys+1− y+ 1 + ys− ys+1 + y) = y+ ys+1− 1− ys + y− ys+1− ys + 1,

which is equivalent to
xs(2ys − 2ys+1) = 2y − 2ys.
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So, if y 6= 1 this impliesxs = ys−y
ys+1−ys which implies that1

x
=

(
ys+1−ys

ys−y

)1/s

.

We observe that(1, 1/x0), (1/x0, x0) are solutions of (3.16). By Lemmas3.6
and3.7, these two points are the only solutions of this system, which proves our
theorem.

Using Lemma3.6and Theorem3.8we infer the next result.

Theorem 3.9.The point in(1/x0, x0) in (C4) is not a minimum point.

Proof. Since at this point,A = 2x0 − 1, B = 1/x0, C = 1/x0 we see thatABC =
2x0−1
x2
0

and the discriminantD takes the same form as in Theorem3.5. Hence the
proof here follows in the same way as in Theorem3.5.

Putting together Lemmas3.2, 3.3, and Theorems3.5, 3.8, and3.9, we infer the
truth of Theorem3.1.

In terms of our original problem, we have obtained the following theorem.

Theorem 3.10. Given the pointsD,E, F on the sides of a triangleABC, and
F0, F1, F2, F3 the areas as in Figure1, then

F0 ≥ CpMp(F1, F2, F3),

whereCp = min
(
1, 2

(
3
2

)1/p
)

, for all p < 0.

Proof. We know from [4] that

F0

F1

=
1

z
+ x− 1 = g(z, x),

F0

F2

=
1

x
+ y − 1 = g(x, y),

F0

F3

=
1

y
+ z − 1 = g(y, z).
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We showed thatf(x, y, z) = g(x, y)q + g(y, z)q + g(z, x)q) has the minimumm =
min(3, 2q+1). Hence

F q
0 (F−q

1 + F−q
2 + F−q

3 ) ≥ min(3, 2q+1).

This is equivalent to

max(3−1, 2−q−1)(F−q
1 + F−q

2 + F−q
3 ) ≥ F−q

0 .

Raising this to power1
p
< 0 (p = −q), we get

min(3−1/p, 21−1/p)(F p
1 + F p

2 + F p
3 )

1
p ≤ F0.

This givesCp = min
(
1, 2

(
3
2

)1/p
)

.
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