Journal of Inequalities in Pure and Applied Mathematics

http://jipam.vu.edu.au/
Volume 6, Issue 4, Article 105, 2005

ON THE DETERMINANTAL INEQUALITIES

SHILIN ZHAN
Department of Mathematics
Hanshan Teacher’s College
Chaozhou, Guangdong, China, 521041
shilinzhan@163.com

Received 24 August, 2005; accepted 13 September, 2005
Communicated by B. Yang

Abstract. In this paper, we discuss the determinantal inequalities over arbitrary complex matrices, and give some sufficient conditions for

$$
d[A+B]^{t} \geq d[A]^{t}+d[B]^{t},
$$

where $t \in \mathrm{R}$ and $t \geq \frac{2}{n}$. If B is nonsingular and $\operatorname{Re} \lambda\left(B^{-1} A\right) \geq 0$, the sufficient and necessary condition is given for the above equality at $t=\frac{2}{n}$. The famous Minkowski inequality and many recent results about determinantal inequalities are extended.

Key words and phrases: Minkowski inequality, Determinantal inequality, Positive definite matrix, Eigenvalue.
2000 Mathematics Subject Classification. 15A15, 15A57.

1. Preliminaries

We use conventional notions and notations, as in [2]. Let $A \in M_{n}(C), d[A]$ stands for the modulus of $\operatorname{det}(A)$ (or $|A|$), where $\operatorname{det}(A)$ is the determinant of $A . \sigma(A)$ is the spectrum of A, namely the set of eigenvalues of matrix A. A matrix $X \in M_{n}(C)$ is called complex (semi-) positive definite if $\operatorname{Re}\left(x^{*} A x\right)>0\left(\operatorname{Re}\left(x^{*} A x\right) \geq 0\right)$ for all nonzero $x \in C^{n}$ or if $\frac{1}{2}\left(X+X^{*}\right)$ is a complex (semi-)positive definite matrix (see [4, 7, 8, 2]). Throughout this paper, we denote $C=B^{-1} A$ for $A, B \in M_{n}(C)$ and B is invertible.

The famous Minkowski inequality states:
If $A, B \in M_{n}(R)$ are real positive definite symmetric matrices, then

$$
\begin{equation*}
|A+B|^{\frac{1}{n}} \geq|A|^{\frac{1}{n}}+|B|^{\frac{1}{n}} . \tag{1.1}
\end{equation*}
$$

It is a very interesting work to generalize the Minkowski inequality. Obviously, (1.1) holds if $A, B \in M_{n}(C)$ are positive definite Hermitian matrices. Recently, (1.1) has been generalized for $A, B \in M_{n}(C)$ positive definite matrices (see [8], [9], [10], [3]).

[^0]In this paper, we discuss determinantal inequalities over arbitrary complex matrices, and give some sufficient conditions for

$$
\begin{equation*}
d[A+B]^{t} \geq d[A]^{t}+d[B]^{t}, \tag{1.2}
\end{equation*}
$$

where $t \in \mathrm{R}$.
If B is nonsingular and $\operatorname{Re} \lambda\left(B^{-1} A\right) \geq 0$, a sufficient and necessary condition has been given for equality as $t=\frac{2}{n}$ in 1.2 . The famous Minkowski inequality and many results about determinantal inequalities are extended.

For $c \in C, \operatorname{Re}(c)$ denotes the real part of c and $|c|$ denotes the modulus of c. Let $t>0$ be fixed, we have

Lemma 1.1. If $A, B \in M_{n}(C)$ and B is invertible, $\sigma(C)=\left\{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right\}$, then inequality (1.2) is true if and only if

$$
\begin{equation*}
\prod_{i=1}^{n}\left|\lambda_{i}+1\right|^{t} \geq \prod_{i=1}^{n}\left|\lambda_{i}\right|^{t}+1 \tag{1.3}
\end{equation*}
$$

with equality holding in (1.2) if and only if it holds in (1.3).
Proof. Since $d[A+B]^{t}=d[B]^{t} d[C+I]^{t}$ and $d[A]^{t}+d[B]^{t}=d[B]^{t}\left(1+d[C]^{t}\right)$, formula (1.2) is equivalent to

$$
\begin{equation*}
d[C+I]^{t} \geq 1+d[C]^{t} \tag{1.4}
\end{equation*}
$$

Notice $\sigma(C+I)=\left\{\lambda_{k}+1: k=1,2, \ldots, n\right\}$,

$$
d[C+I]^{t}=\prod_{i=1}^{n}\left|\lambda_{i}+1\right|^{t} \quad \text { and } \quad d[C]^{t}=\prod_{i=1}^{n}\left|\lambda_{i}\right|^{t}
$$

we obtain that formula (1.4) is equivalent to (1.3). Similarly, it is easy to see that the case of equality is true. Thus the lemma is proved.
Lemma 1.2 (see [6]). If $x_{t}, y_{t} \geq 0(t=1,2, \ldots, n)$, then

$$
\prod_{t=1}^{n}\left(x_{t}+y_{t}\right)^{\frac{1}{n}} \geq \prod_{t=1}^{n} x_{t}^{\frac{1}{n}}+\prod_{t=1}^{n} y_{t}^{\frac{1}{n}}
$$

with equality if and only if there is linear dependence between $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ and $\left(y_{1}, y_{2}, \ldots, y_{n}\right)$ or $x_{t}+y_{t}=0$ for a certain number t.

Lemma 1.3 (Jensen's inequality). If $a_{1}, a_{2}, \ldots, a_{m}$ are positive numbers, then

$$
\left(\sum_{i=1}^{n} a_{i}^{s}\right)^{\frac{1}{s}} \leq\left(\sum_{i=1}^{n} a_{i}^{r}\right)^{\frac{1}{r}} \quad \text { for } \quad 0<r \leq s, n \geq 2
$$

Lemma 1.4. If $P_{1}, P_{2}, \ldots, P_{m}$ are positive numbers and $T \geq \frac{1}{m}$, then

$$
\begin{equation*}
\prod_{k=1}^{m}\left(P_{k}+1\right)^{T} \geq \prod_{k=1}^{m} P_{k}^{T}+1 \tag{1.5}
\end{equation*}
$$

with equality if and only if $P_{k}(k=1,2, \ldots, n)$ is constant as $T=\frac{1}{m}$.
Proof. By Lemma 1.2, we have

$$
\prod_{k=1}^{m}\left(P_{k}+1\right)^{T}=\left[\prod_{k=1}^{m}\left(P_{k}+1\right)^{\frac{1}{m}}\right]^{m T} \geq\left[\prod_{k=1}^{m}\left(P_{k}^{T}\right)^{\frac{1}{m T}}+1\right]^{m T}
$$

On noting that $0<\frac{1}{m T} \leq 1$, by Lemma 1.3, we obtain

$$
\left[\prod_{k=1}^{m}\left(P_{k}^{T}\right)^{\frac{1}{m T}}+1\right]^{m T} \geq \prod_{k=1}^{m} P_{k}^{T}+1
$$

and inequality (1.5) is demonstrated. By Lemma 1.2 , it is easy to see that equality holds if and only if $P_{k}(k=1,2, \ldots, n)$ is constant as $T=\frac{1}{m}$.
Remark 1.5. Apparently, Lemma 1.3 is tenable for $a_{i} \geq 0(i=1,2, \ldots, n)$, and Lemma 1.4 is tenable for $P_{i} \geq 0(i=1,2, \ldots, n)$.

2. Main Results

Theorem 2.1. Let $A, B \in M_{n}(C)$. If B is nonsingular and $\operatorname{Re} \lambda_{k} \geq 0(k=1,2, \ldots, n)$, where $\sigma(C)=\left\{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right\}$, then for $t \geq \frac{2}{n}$

$$
\begin{equation*}
d[A+B]^{t} \geq d[A]^{t}+d[B]^{t} \tag{2.1}
\end{equation*}
$$

Proof. By Lemma 1.1, we need to prove inequality (1.3). Note that $\operatorname{Re} \lambda_{k} \geq 0(k=1,2, \ldots, n)$ and $\left|\lambda_{k}+1\right|^{2} \geq 1+\left|\lambda_{k}\right|^{2}$,

$$
\prod_{k=1}^{n}\left|\lambda_{k}+1\right|^{t}=\left(\prod_{k=1}^{n}\left|\lambda_{k}+1\right|^{2}\right)^{\frac{t}{2}} \geq \prod_{k=1}^{n}\left(\left|\lambda_{k}\right|^{2}+1\right)^{\frac{t}{2}}
$$

Applying Lemma 1.4, we can show that

$$
\prod_{k=1}^{n}\left(\left|\lambda_{k}\right|^{2}+1\right)^{\frac{t}{2}} \geq \prod_{k=1}^{n}\left|\lambda_{k}\right|^{t}+1 \quad \text { for } t \geq \frac{2}{n}
$$

with equality if and only if $\left|\lambda_{k}\right|^{2}(k=1,2, \ldots, n)$ is constant as $t=\frac{2}{n}$. The above two inequalities imply formula (1.3).

When $t=1$, we have
Corollary 2.2. Let $A, B \in M_{n}(C)(n \geq 2)$. If B is invertible and $\operatorname{Re} \lambda_{k} \geq 0(k=1,2, \ldots, n)$, where $\sigma(C)=\left\{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right\}$, then

$$
\begin{equation*}
d[A+B] \geq d[A]+d[B] \tag{2.2}
\end{equation*}
$$

Corollary 2.3. Let A be an n-by-n complex positive definite matrix, and B be an n-by-n positive definite Hermitian matrix $(n \geq 2)$. Then for $t \geq \frac{2}{n}$

$$
\begin{equation*}
d[A+B]^{t} \geq d[A]^{t}+[\operatorname{det}(B)]^{t} \tag{2.3}
\end{equation*}
$$

Proof. Observing $C=B^{-1} A$ is similar to $B^{-\frac{1}{2}} A B^{-\frac{1}{2}}$ and $\operatorname{Re} \lambda\left(B^{-\frac{1}{2}} A B^{-\frac{1}{2}}\right)>0$, where $\lambda\left(B^{-\frac{1}{2}} A B^{-\frac{1}{2}}\right)$ is an arbitrary eigenvalue of $B^{-\frac{1}{2}} A B^{-\frac{1}{2}}$. Therefore, Re $\lambda_{k} \geq 0$ and $\sigma(C)=$ $\left\{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right\}$. Hence, Theorem 2.1 yields Corollary 2.3 .

When $t=\frac{2}{n}$, inequality (2.3) gives Theorem 4 of [3]. When $t=1$, inequality (2.3) gives Theorem 1 of [3]. To merit attention, Theorem 2 in [8] proves that if A is real positive definite and B is real positive definite symmetric, then 2.3 holds for $t=\frac{1}{n}$. It is untenable for example: $A=\left(\begin{array}{ll}1 & 1 \\ -1 & 1\end{array}\right), B=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$. Corollary 2.7 and Corollary 2.8 in this paper have been given correction.

Theorem 2.4. Let $A, B \in M_{n}(C)$. If B is nonsingular, and $\operatorname{Re} \lambda_{k} \geq 0(k=1,2, \ldots, n)$, where $\sigma(C)=\left\{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right\}$, then n eigenvalues of C are pure imaginary complex numbers with the same modulus if and only if

$$
\begin{equation*}
d[A+B]^{\frac{2}{n}}=d[A]^{\frac{2}{n}}+d[B]^{\frac{2}{n}}, \tag{2.4}
\end{equation*}
$$

Proof. If n eigenvalues of C are $\pm i d(i=\sqrt{-1}, d>o, d \in R)$, then

$$
\prod_{i=1}^{n}\left|\lambda_{i}+1\right|^{\frac{2}{n}}=\prod_{i=1}^{n}\left(1+d^{2}\right)^{\frac{1}{n}}=1+d^{2}=\prod_{i=1}^{n}\left|\lambda_{i}\right|^{\frac{2}{n}}+1
$$

Hence equality (2.4) holds by Lemma 1.1 .
Conversely, suppose (2.4) holds, then

$$
\prod_{i=1}^{n}\left|\lambda_{i}+1\right|^{\frac{2}{n}}=\prod_{i=1}^{n}\left|\lambda_{i}\right|^{\frac{2}{n}}+1
$$

So

$$
\prod_{i=1}^{n}\left(1+2 \operatorname{Re} \lambda_{i}+\left|\lambda_{i}\right|^{2}\right)^{\frac{1}{n}}=\prod_{i=1}^{n}\left(\left|\lambda_{i}\right|^{2}\right)^{\frac{1}{n}}+1
$$

Obviously, $\operatorname{Re} \lambda_{k}=0(k=1,2, \ldots, n)$, otherwise

$$
\prod_{i=1}^{n}\left(1+2 \operatorname{Re} \lambda_{i}+\left|\lambda_{i}\right|^{2}\right)^{\frac{1}{n}}>\prod_{i=1}^{n}\left(1+\left|\lambda_{i}\right|^{2}\right)^{\frac{1}{n}} \geq \prod_{i=1}^{n}\left(\left|\lambda_{i}\right|^{2}\right)^{\frac{1}{n}}+1
$$

with illogicality. Therefore

$$
\prod_{i=1}^{n}\left[1+\left(\operatorname{Im} \lambda_{i}\right)^{2}\right]^{\frac{1}{n}}=\prod_{i=1}^{n}\left[\left(\operatorname{Im} \lambda_{i}\right)^{2}\right]^{\frac{1}{n}}+1
$$

By Lemma 1.2 we obtain $\left(\operatorname{Im} \lambda_{k}\right)^{2}=d^{2}$ and $\lambda_{k}= \pm i d(k=1,2, \ldots, n)$. This completes the proof.

Corollary 2.5. If $A, B \in M_{n}(C)$ with B is nonsingular and $C=B^{-1} A$ is skew-Hermitian, then formula (2.4) holds if and only if $A=i d B U E U^{*}$, where $i^{2}=-1, d>0, U$ is a unitary matrix, $E=\operatorname{diag}\left(e_{1}, e_{2}, \ldots, e_{n}\right)$ with $e_{i}= \pm 1, i=1,2, \ldots, n$.

Proof. Since C is skew-Hermitian and its real parts of n eigenvalues are zero, then Theorem 2.4 implies that (2.4) holds if and only if

$$
C=B^{-1} A=U \operatorname{diag}(\pm i d, \pm i d, \ldots, \pm i d) U^{*}
$$

where $\sigma(C)=\{ \pm i d, \pm i d, \ldots, \pm i d\}, d>0$ and U is unitary. Hence $A=i d B U E U^{*}$, where $i^{2}=-1, d>0, U$ is a unitary matrix, $E=\operatorname{diag}\left(e_{1}, e_{2}, \ldots, e_{n}\right)$ and $e_{i}= \pm 1, i=1,2, \ldots, n$.

Theorem 2.6. Suppose $A, B \in M_{n}(C)$ with B nonsingular and $\operatorname{Re} \lambda_{k} \geq 0(k=1,2, \ldots, n)$, where $\sigma(C)=\left\{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right\}$. If the number of the real eigenvalues of C is r, and the nonreal eigenvalues of C are pair wise conjugate, then inequality $\sqrt[1.2)]{ }$ holds for $t \geq \frac{2}{n+r}$.
Proof. By Lemma 1.1, we need to prove 1.3 for $t \geq \frac{2}{n+r}$. Without loss of generality, suppose $\lambda_{j} \geq 0(j=1,2, \ldots, r)$ are the real eigenvalues of C and $\lambda_{k}, \overline{\lambda_{k}}(k=r+1, r+2, \ldots, r+s)$
are s pairs of non-real eigenvalues of C, where $n=r+2 s$. Then the right-hand side of (1.3) becomes

$$
\begin{equation*}
\prod_{i=1}^{r} \lambda_{i}^{t} \prod_{j=r+1}^{r+s}\left(\left|\lambda_{j}\right|^{2}\right)^{t}+1 \tag{2.5}
\end{equation*}
$$

and the left-hand side of (1.3) is

$$
\begin{equation*}
\prod_{i=1}^{r}\left(\lambda_{i}+1\right)^{t} \prod_{j=r+1}^{r+s}\left(\left|1+\lambda_{j}\right|^{2}\right)^{t} \tag{2.6}
\end{equation*}
$$

Given $\operatorname{Re} \lambda_{k} \geq 0(k=1,2, \ldots, r+s)$, so $\left|1+\lambda_{j}\right|^{2} \geq 1+\left|\lambda_{j}\right|^{2}$, then

$$
\begin{equation*}
\prod_{i=1}^{r}\left(1+\lambda_{i}\right)^{t} \prod_{j=r+1}^{r+s}\left(\left|1+\lambda_{j}\right|^{2}\right)^{t} \geq \prod_{i=1}^{r}\left(1+\lambda_{i}\right)^{t} \prod_{j=r+1}^{r+s}\left(1+\left|\lambda_{j}\right|^{2}\right)^{t} . \tag{2.7}
\end{equation*}
$$

By Lemma 1.2 and (2.7), we obtain that

$$
\prod_{i=1}^{r}\left(\lambda_{i}+1\right)^{t} \prod_{j=r+1}^{r+s}\left(\left|1+\lambda_{j}\right|^{2}\right)^{t} \geq \prod_{i=1}^{r} \lambda_{i}^{t} \prod_{j=r+1}^{r+s}\left(\left|\lambda_{j}\right|^{2}\right)^{t}+1, \text { for } t \geq \frac{1}{r+s}=\frac{2}{n+r}
$$

This completes the proof.
In the following, we present some generalizations of the Minkowski inequality. By Theorem 2.6, it is easy to show:

Corollary 2.7. Let $A, B \in M_{n}(C)$. If B is nonsingular and n eigenvalues of C are positive numbers, then for $t \geq \frac{1}{n}$

$$
\begin{equation*}
d[A+B]^{\frac{1}{n}} \geq d[A]^{\frac{1}{n}}+d[B]^{\frac{1}{n}} \tag{2.8}
\end{equation*}
$$

If A is an n-by- n complex positive definite matrix and B is an n-by- n positive definite Hermitian matrix, with n eigenvalues of C being real numbers, then $\sigma(C)=\sigma\left(B^{\frac{1}{2}} C B^{-\frac{1}{2}}\right)$, and $B^{\frac{1}{2}} C B^{-\frac{1}{2}}=B^{-\frac{1}{2}} A B^{-\frac{1}{2}}$ is positive definite, so any eigenvalue of C has a positive real part. Thus n eigenvalues of C are positive numbers. By Corollary 2.7 we have

Corollary 2.8. Suppose $A, B \in M_{n}(C)$, where A is a complex positive definite matrix and B is a positive definite Hermitian matrix. If n eigenvalues of C are real numbers, then inequality (2.8) holds for $t \geq \frac{1}{n}$.

Corollary 2.9 (Minkowski inequality). Suppose $A, B \in M_{n}(C)$ are positive definite Hermitian matrices, then inequality (1.1) holds.
Proof. Note that $C=B^{-1} A$ is similar to a real diagonal matrix, and its eigenvalues are real numbers, using Corollary 2.8 and letting $t=1$, the proof is completed.

Corollary 2.10. Suppose $A, B \in M_{n}(C)$, where A is a complex positive definite matrix and B is a positive definite Hermitian matrix. If the non-real eigenvalues of C are m pairs conjugate complex numbers, then inequality (1.2) holds for $t \geq \frac{1}{n-m}$.
Proof. Obviously $\operatorname{Re} \lambda_{k} \geq 0(k=1,2, \ldots, n)$, where $\sigma(C)=\left\{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right\}$. Applying Theorem 2.6 completes the proof.

Let $A=H+K \in M_{n}(C)$, where $H=\frac{1}{2}\left(A+A^{*}\right)$, and $K=\frac{1}{2}\left(A-A^{*}\right)$, then we have

Theorem 2.11. Let $A=H+K$ be an n-by- n complex positive definite matrix, then for $t \geq \frac{2}{n}$

$$
\begin{equation*}
d[A]^{t} \geq d[H]^{t}+d[K]^{t}, \tag{2.9}
\end{equation*}
$$

with equality if and only if $K=i d H Q^{*} E Q$ as $t=\frac{2}{n}$, where $i^{2}=-1, d>0, Q$ is a unitary matrix, $E=\operatorname{diag}\left(e_{1}, e_{2}, \ldots, e_{n}\right)$ with $e_{i}= \pm 1, i=1,2, \ldots, n$.
Proof. Since $H^{-\frac{1}{2}} K H^{-\frac{1}{2}}$ is a skew-Hermitian matrix and is similar to $H^{-1} K, \operatorname{Re} \lambda\left(H^{-1} K\right)=$ $\operatorname{Re} \lambda\left(H^{-\frac{1}{2}} K H^{-\frac{1}{2}}\right)=0$. By Theorem 2.1 and Corollary 2.5, we get the desired result.

Let $t=1$, we have the following interesting result.
Corollary 2.12. If $A=H+K$ is an n-by- n complex positive definite matrix $(n \geq 2)$, then

$$
\begin{equation*}
d[A] \geq d[H]+d[K] \tag{2.10}
\end{equation*}
$$

Corollary 2.13 (Ostrowski-Taussky Inequality). If $A=H+K$ is an n-by-n positive definite matrix $(n \geq 2)$, then $\operatorname{det} H \leq d[A]$ with equality if and only if A is Hermitian.
Theorem 2.14. Let A, B be two n-by-n complex positive definite matrices, and n eigenvalues of B be real numbers. Suppose A, B are simultaneously upper triangularizable, namely, there exists a nonsingular matrix P, such that $P^{-1} A P$ and $P^{-1} B P$ are upper triangular matrices, then inequality (1.2) holds for any $t \geq \frac{2}{n}$.
Proof. If $P^{-1} A P$ and $P^{-1} B P$ are upper triangular matrices, then

$$
P^{-1} B^{-1} A P=\left(P^{-1} B P\right)^{-1}\left(P^{-1} A P\right)
$$

is an upper triangular matrix, with the product of the eigenvalues of B^{-1} and A on its diagonal. We denote the eigenvalue of X by $\lambda(X)$. Notice that positive definiteness of A and B^{-1}, $\operatorname{Re} \lambda(A)$ and $\lambda\left(B^{-1}\right)$ are positive numbers by hypothesis, it is easy to see that $\operatorname{Re} \lambda\left(B^{-1} A\right) \geq 0$. By Theorem 2.1, we get the desired result.

Corollary 2.15. Let A, B be two n-by-n complex positive definite matrices, and all the eigenvalues of B be real numbers. If $r([A, B]) \leq 1$, then inequality 1.2$)$ holds for $t \geq \frac{2}{n}$, where $[A, B]=A B-B A, r([A, B])$ is the rank of $[A, B]$.
Proof. It is easy to see that B^{-1} is a complex positive definite matrix and n eigenvalues of B^{-1} are real numbers. By the hypothesis and $r\left[B^{-1}, A\right]=r[A, B]$, we have $r\left(\left[B^{-1}, A\right]\right) \leq 1$. By the Laffey-Choi Theorem (see [5], [1]), there exists a non-singular matrix P, such that $P^{-1} A P$ and $P^{-1} B P$ are upper triangular matrices. The result holds by Theorem 2.14 .
Corollary 2.16. Let A, B be two n-by-n complex positive definite matrices $(n \geq 2)$. Suppose $A B=B A$ and n eigenvalues of B are real numbers, then inequality (1.2) holds for $t \geq \frac{2}{n}$.
Proof. Follows from Corollary 2.15 and the fact that $r([A, B])=0$.

References

[1] M.P. CHOI, C. LOURIE and H. RADJAVI, On commutators and invariant subspaces, Lin. and Multilin. Alg., 9(4) (1981), 329-340.
[2] R.A. HORN AND C.R. JOHNSON, Matrix Analysis, Cambridge University Press, 1985.
[3] NENG JIN, Inequalities on the determinant of complex positive definite matrix, Mathematics in Practice and Theory, 30(4) (2000), 501-507.
[4] C.R. JOHNSON, Positive definite matrices, Amer. Math. Monthly, 77 (1970), 259-264.
[5] T.J. LAFFEY, Simultaneous triangularization of matrices-low rank cases and the nondcrogetory case, Lin. and Multilin. Alg., 6(4) (1978), 269-305.
[6] M. MARCUS And H. MINC, A Survery of Matrix Theorem and Matrix Inequalities, Allyn and Bacon, Inc., Boston, 1964.
[7] BO-XUN TU, The theorem of metapositive definite matrix, Acta. Math. Sinica, 33(4) (1990), 462471.
[8] BO-XUN TU, The theorem of metapositive definite matrix, Acta. Math. Sinica, 34(1) (1991), 91102.
[9] CHAO-WEI YUAN AND ZHAO-YONG YOU, How many kinds of Minkowski inequality are generalized, Journal of Engineering Mathematics, 13(1) (1996), 15-21.
[10] HUI-PENG YUAN, Minkowski inequality of complex positive definite matrix, Journal of Mathematical Research and Exposition, 21(3) (2001), 464-468.

[^0]: ISSN (electronic): 1443-5756
 (C) 2005 Victoria University. All rights reserved.

 Research supported by the NSF of Guangdong Province (04300023) and NSF of Education Commission of Guangdong Province (Z03095). 247-05

