

Journal of Inequalities in Pure and Applied Mathematics

http://jipam.vu.edu.au/

Volume 6, Issue 4, Article 105, 2005

ON THE DETERMINANTAL INEQUALITIES

SHILIN ZHAN

DEPARTMENT OF MATHEMATICS HANSHAN TEACHER'S COLLEGE CHAOZHOU, GUANGDONG, CHINA, 521041 shilinzhan@163.com

Received 24 August, 2005; accepted 13 September, 2005 Communicated by B. Yang

ABSTRACT. In this paper, we discuss the determinantal inequalities over arbitrary complex matrices, and give some sufficient conditions for

$$d[A+B]^t \ge d[A]^t + d[B]^t$$

where $t \in \mathbb{R}$ and $t \ge \frac{2}{n}$. If B is nonsingular and $\operatorname{Re} \lambda(B^{-1}A) \ge 0$, the sufficient and necessary condition is given for the above equality at $t = \frac{2}{n}$. The famous Minkowski inequality and many recent results about determinantal inequalities are extended.

Key words and phrases: Minkowski inequality, Determinantal inequality, Positive definite matrix, Eigenvalue.

2000 Mathematics Subject Classification. 15A15, 15A57.

1. PRELIMINARIES

We use conventional notions and notations, as in [2]. Let $A \in M_n(C)$, d[A] stands for the modulus of det(A) (or |A|), where det(A) is the determinant of A. $\sigma(A)$ is the spectrum of A, namely the set of eigenvalues of matrix A. A matrix $X \in M_n(C)$ is called complex (semi-) positive definite if $\operatorname{Re}(x^*Ax) > 0$ ($\operatorname{Re}(x^*Ax) \ge 0$) for all nonzero $x \in C^n$ or if $\frac{1}{2}(X + X^*)$ is a complex (semi-)positive definite matrix (see [4, 7, 8, 2]). Throughout this paper, we denote $C = B^{-1}A$ for $A, B \in M_n(C)$ and B is invertible.

The famous Minkowski inequality states:

If $A, B \in M_n(R)$ are real positive definite symmetric matrices, then

(1.1)
$$|A+B|^{\frac{1}{n}} \ge |A|^{\frac{1}{n}} + |B|^{\frac{1}{n}}.$$

It is a very interesting work to generalize the Minkowski inequality. Obviously, (1.1) holds if $A, B \in M_n(C)$ are positive definite Hermitian matrices. Recently, (1.1) has been generalized for $A, B \in M_n(C)$ positive definite matrices (see [8], [9], [10], [3]).

ISSN (electronic): 1443-5756

^{© 2005} Victoria University. All rights reserved.

Research supported by the NSF of Guangdong Province (04300023) and NSF of Education Commission of Guangdong Province (Z03095). 247-05

In this paper, we discuss determinantal inequalities over arbitrary complex matrices, and give some sufficient conditions for

(1.2)
$$d[A+B]^t \ge d[A]^t + d[B]^t,$$

where $t \in \mathbf{R}$.

If B is nonsingular and $\operatorname{Re} \lambda(B^{-1}A) \geq 0$, a sufficient and necessary condition has been given for equality as $t = \frac{2}{n}$ in (1.2). The famous Minkowski inequality and many results about determinantal inequalities are extended.

For $c \in C$, $\operatorname{Re}(c)$ denotes the real part of c and |c| denotes the modulus of c. Let t > 0 be fixed, we have

Lemma 1.1. If $A, B \in M_n(C)$ and B is invertible, $\sigma(C) = \{\lambda_1, \lambda_2, \dots, \lambda_n\}$, then inequality (1.2) is true if and only if

(1.3)
$$\prod_{i=1}^{n} |\lambda_i + 1|^t \ge \prod_{i=1}^{n} |\lambda_i|^t + 1,$$

with equality holding in (1.2) if and only if it holds in (1.3).

Proof. Since $d[A + B]^t = d[B]^t d[C + I]^t$ and $d[A]^t + d[B]^t = d[B]^t (1 + d[C]^t)$, formula (1.2) is equivalent to

(1.4)
$$d[C+I]^t \ge 1 + d[C]^t.$$

Notice $\sigma(C+I) = \{\lambda_k + 1 : k = 1, 2, ..., n\},\$

$$d[C+I]^t = \prod_{i=1}^n |\lambda_i + 1|^t$$
 and $d[C]^t = \prod_{i=1}^n |\lambda_i|^t$,

we obtain that formula (1.4) is equivalent to (1.3). Similarly, it is easy to see that the case of equality is true. Thus the lemma is proved. \Box

Lemma 1.2 (see [6]). If $x_t, y_t \ge 0$ (t = 1, 2, ..., n), then

$$\prod_{t=1}^{n} (x_t + y_t)^{\frac{1}{n}} \ge \prod_{t=1}^{n} x_t^{\frac{1}{n}} + \prod_{t=1}^{n} y_t^{\frac{1}{n}},$$

with equality if and only if there is linear dependence between $(x_1, x_2, ..., x_n)$ and $(y_1, y_2, ..., y_n)$ or $x_t + y_t = 0$ for a certain number t.

Lemma 1.3 (Jensen's inequality). If a_1, a_2, \ldots, a_m are positive numbers, then

$$\left(\sum_{i=1}^{n} a_i^s\right)^{\frac{1}{s}} \le \left(\sum_{i=1}^{n} a_i^r\right)^{\frac{1}{r}} \quad for \quad 0 < r \le s, \ n \ge 2.$$

Lemma 1.4. If P_1, P_2, \ldots, P_m are positive numbers and $T \geq \frac{1}{m}$, then

(1.5)
$$\prod_{k=1}^{m} (P_k + 1)^T \ge \prod_{k=1}^{m} P_k^T + 1,$$

with equality if and only if P_k (k = 1, 2, ..., n) is constant as $T = \frac{1}{m}$.

Proof. By Lemma 1.2, we have

$$\prod_{k=1}^{m} (P_k + 1)^T = \left[\prod_{k=1}^{m} (P_k + 1)^{\frac{1}{m}}\right]^{mT} \ge \left[\prod_{k=1}^{m} (P_k^T)^{\frac{1}{mT}} + 1\right]^{mT}$$

On noting that $0 < \frac{1}{mT} \le 1$, by Lemma 1.3, we obtain

$$\left[\prod_{k=1}^{m} \left(P_{k}^{T}\right)^{\frac{1}{mT}} + 1\right]^{mT} \ge \prod_{k=1}^{m} P_{k}^{T} + 1,$$

and inequality (1.5) is demonstrated. By Lemma 1.2, it is easy to see that equality holds if and only if P_k (k = 1, 2, ..., n) is constant as $T = \frac{1}{m}$.

Remark 1.5. Apparently, Lemma 1.3 is tenable for $a_i \ge 0$ (i = 1, 2, ..., n), and Lemma 1.4 is tenable for $P_i \ge 0$ (i = 1, 2, ..., n).

2. MAIN RESULTS

Theorem 2.1. Let $A, B \in M_n(C)$. If B is nonsingular and $\operatorname{Re} \lambda_k \ge 0$ (k = 1, 2, ..., n), where $\sigma(C) = \{\lambda_1, \lambda_2, ..., \lambda_n\}$, then for $t \ge \frac{2}{n}$

(2.1)
$$d[A+B]^t \ge d[A]^t + d[B]^t$$

Proof. By Lemma 1.1, we need to prove inequality (1.3). Note that $\operatorname{Re} \lambda_k \ge 0$ (k = 1, 2, ..., n) and $|\lambda_k + 1|^2 \ge 1 + |\lambda_k|^2$,

$$\prod_{k=1}^{n} |\lambda_k + 1|^t = \left(\prod_{k=1}^{n} |\lambda_k + 1|^2\right)^{\frac{t}{2}} \ge \prod_{k=1}^{n} \left(|\lambda_k|^2 + 1\right)^{\frac{t}{2}}.$$

Applying Lemma 1.4, we can show that

$$\prod_{k=1}^{n} (|\lambda_k|^2 + 1)^{\frac{t}{2}} \ge \prod_{k=1}^{n} |\lambda_k|^t + 1 \quad \text{for } t \ge \frac{2}{n},$$

with equality if and only if $|\lambda_k|^2$ (k = 1, 2, ..., n) is constant as $t = \frac{2}{n}$. The above two inequalities imply formula (1.3).

When t = 1, we have

Corollary 2.2. Let $A, B \in M_n(C)$ $(n \ge 2)$. If B is invertible and $\operatorname{Re} \lambda_k \ge 0$ (k = 1, 2, ..., n), where $\sigma(C) = \{\lambda_1, \lambda_2, ..., \lambda_n\}$, then

(2.2)
$$d[A+B] \ge d[A] + d[B].$$

Corollary 2.3. Let A be an n-by-n complex positive definite matrix, and B be an n-by-n positive definite Hermitian matrix $(n \ge 2)$. Then for $t \ge \frac{2}{n}$

(2.3)
$$d[A+B]^t \ge d[A]^t + [\det(B)]^t.$$

Proof. Observing $C = B^{-1}A$ is similar to $B^{-\frac{1}{2}}AB^{-\frac{1}{2}}$ and $\operatorname{Re}\lambda(B^{-\frac{1}{2}}AB^{-\frac{1}{2}}) > 0$, where $\lambda(B^{-\frac{1}{2}}AB^{-\frac{1}{2}})$ is an arbitrary eigenvalue of $B^{-\frac{1}{2}}AB^{-\frac{1}{2}}$. Therefore, $\operatorname{Re}\lambda_k \geq 0$ and $\sigma(C) = \{\lambda_1, \lambda_2, \ldots, \lambda_n\}$. Hence, Theorem 2.1 yields Corollary 2.3.

When $t = \frac{2}{n}$, inequality (2.3) gives Theorem 4 of [3]. When t = 1, inequality (2.3) gives Theorem 1 of [3]. To merit attention, Theorem 2 in [8] proves that if A is real positive definite and B is real positive definite symmetric, then (2.3) holds for $t = \frac{1}{n}$. It is untenable for example: $A = \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}, B = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$. Corollary 2.7 and Corollary 2.8 in this paper have been given correction. **Theorem 2.4.** Let $A, B \in M_n(C)$. If B is nonsingular, and $\operatorname{Re} \lambda_k \ge 0$ (k = 1, 2, ..., n), where $\sigma(C) = \{\lambda_1, \lambda_2, ..., \lambda_n\}$, then n eigenvalues of C are pure imaginary complex numbers with the same modulus if and only if

(2.4)
$$d[A+B]^{\frac{2}{n}} = d[A]^{\frac{2}{n}} + d[B]^{\frac{2}{n}},$$

Proof. If n eigenvalues of C are $\pm id$ $(i = \sqrt{-1}, d > o, d \in R)$, then

$$\prod_{i=1}^{n} |\lambda_i + 1|^{\frac{2}{n}} = \prod_{i=1}^{n} (1+d^2)^{\frac{1}{n}} = 1 + d^2 = \prod_{i=1}^{n} |\lambda_i|^{\frac{2}{n}} + 1.$$

Hence equality (2.4) holds by Lemma 1.1.

Conversely, suppose (2.4) holds, then

$$\prod_{i=1}^{n} |\lambda_i + 1|^{\frac{2}{n}} = \prod_{i=1}^{n} |\lambda_i|^{\frac{2}{n}} + 1.$$

So

$$\prod_{i=1}^{n} (1 + 2 \operatorname{Re} \lambda_i + |\lambda_i|^2)^{\frac{1}{n}} = \prod_{i=1}^{n} (|\lambda_i|^2)^{\frac{1}{n}} + 1.$$

Obviously, $\operatorname{Re} \lambda_k = 0$ $(k = 1, 2, \dots, n)$, otherwise

$$\prod_{i=1}^{n} \left(1 + 2\operatorname{Re}\lambda_{i} + |\lambda_{i}|^{2}\right)^{\frac{1}{n}} > \prod_{i=1}^{n} \left(1 + |\lambda_{i}|^{2}\right)^{\frac{1}{n}} \ge \prod_{i=1}^{n} \left(|\lambda_{i}|^{2}\right)^{\frac{1}{n}} + 1,$$

with illogicality. Therefore

$$\prod_{i=1}^{n} \left[1 + (\operatorname{Im} \lambda_i)^2 \right]^{\frac{1}{n}} = \prod_{i=1}^{n} \left[(\operatorname{Im} \lambda_i)^2 \right]^{\frac{1}{n}} + 1.$$

By Lemma 1.2 we obtain $(\text{Im}\lambda_k)^2 = d^2$ and $\lambda_k = \pm id$ (k = 1, 2, ..., n). This completes the proof.

Corollary 2.5. If $A, B \in M_n(C)$ with B is nonsingular and $C = B^{-1}A$ is skew–Hermitian, then formula (2.4) holds if and only if $A = idBUEU^*$, where $i^2 = -1$, d > 0, U is a unitary matrix, $E = \text{diag}(e_1, e_2, \dots, e_n)$ with $e_i = \pm 1$, $i = 1, 2, \dots, n$.

Proof. Since C is skew–Hermitian and its real parts of n eigenvalues are zero, then Theorem 2.4 implies that (2.4) holds if and only if

$$C = B^{-1}A = U \operatorname{diag}(\pm id, \pm id, \dots, \pm id)U^*,$$

where $\sigma(C) = \{\pm id, \pm id, \dots, \pm id\}, d > 0$ and U is unitary. Hence $A = idBUEU^*$, where $i^2 = -1, d > 0, U$ is a unitary matrix, $E = \text{diag}(e_1, e_2, \dots, e_n)$ and $e_i = \pm 1, i = 1, 2, \dots, n$.

Theorem 2.6. Suppose $A, B \in M_n(C)$ with B nonsingular and $\operatorname{Re}\lambda_k \ge 0$ (k = 1, 2, ..., n), where $\sigma(C) = \{\lambda_1, \lambda_2, ..., \lambda_n\}$. If the number of the real eigenvalues of C is r, and the non-real eigenvalues of C are pair wise conjugate, then inequality (1.2) holds for $t \ge \frac{2}{n+r}$.

Proof. By Lemma 1.1, we need to prove (1.3) for $t \ge \frac{2}{n+r}$. Without loss of generality, suppose $\lambda_j \ge 0$ (j = 1, 2, ..., r) are the real eigenvalues of C and λ_k , $\overline{\lambda_k}$ (k = r + 1, r + 2, ..., r + s)

are s pairs of non-real eigenvalues of C, where n = r + 2s. Then the right-hand side of (1.3) becomes

(2.5)
$$\prod_{i=1}^{r} \lambda_{i}^{t} \prod_{j=r+1}^{r+s} \left(|\lambda_{j}|^{2} \right)^{t} + 1$$

and the left-hand side of (1.3) is

(2.6)
$$\prod_{i=1}^{r} (\lambda_i + 1)^t \prod_{j=r+1}^{r+s} \left(|1 + \lambda_j|^2 \right)^t.$$

Given Re $\lambda_k \ge 0$ (k = 1, 2, ..., r + s), so $|1 + \lambda_i|^2 \ge 1 + |\lambda_i|^2$, then

(2.7)
$$\prod_{i=1}^{r} (1+\lambda_i)^t \prod_{j=r+1}^{r+s} \left(|1+\lambda_j|^2 \right)^t \ge \prod_{i=1}^{r} (1+\lambda_i)^t \prod_{j=r+1}^{r+s} \left(1+|\lambda_j|^2 \right)^t.$$

By Lemma 1.2 and (2.7), we obtain that

$$\prod_{i=1}^{r} (\lambda_i + 1)^t \prod_{j=r+1}^{r+s} \left(|1 + \lambda_j|^2 \right)^t \ge \prod_{i=1}^{r} \lambda_i^t \prod_{j=r+1}^{r+s} \left(|\lambda_j|^2 \right)^t + 1, \text{ for } t \ge \frac{1}{r+s} = \frac{2}{n+r}.$$

This completes the proof.

In the following, we present some generalizations of the Minkowski inequality. By Theorem 2.6, it is easy to show:

Corollary 2.7. Let $A, B \in M_n(C)$. If B is nonsingular and n eigenvalues of C are positive numbers, then for $t \geq \frac{1}{n}$

(2.8)
$$d[A+B]^{\frac{1}{n}} \ge d[A]^{\frac{1}{n}} + d[B]^{\frac{1}{n}}.$$

If A is an n-by-n complex positive definite matrix and B is an n-by-n positive definite Hermitian matrix, with n eigenvalues of C being real numbers, then $\sigma(C) = \sigma(B^{\frac{1}{2}}CB^{-\frac{1}{2}})$, and $B^{\frac{1}{2}}CB^{-\frac{1}{2}} = B^{-\frac{1}{2}}AB^{-\frac{1}{2}}$ is positive definite, so any eigenvalue of C has a positive real part. Thus n eigenvalues of C are positive numbers. By Corollary 2.7 we have

Corollary 2.8. Suppose $A, B \in M_n(C)$, where A is a complex positive definite matrix and B is a positive definite Hermitian matrix. If n eigenvalues of C are real numbers, then inequality (2.8) holds for $t \geq \frac{1}{n}$.

Corollary 2.9 (Minkowski inequality). Suppose $A, B \in M_n(C)$ are positive definite Hermitian matrices, then inequality (1.1) holds.

Proof. Note that $C = B^{-1}A$ is similar to a real diagonal matrix, and its eigenvalues are real numbers, using Corollary 2.8 and letting t = 1, the proof is completed.

Corollary 2.10. Suppose $A, B \in M_n(C)$, where A is a complex positive definite matrix and B is a positive definite Hermitian matrix. If the non-real eigenvalues of C are m pairs conjugate complex numbers, then inequality (1.2) holds for $t \geq \frac{1}{n-m}$.

Proof. Obviously $\operatorname{Re} \lambda_k \geq 0$ (k = 1, 2, ..., n), where $\sigma(C) = \{\lambda_1, \lambda_2, ..., \lambda_n\}$. Applying Theorem 2.6 completes the proof. \square

Let $A = H + K \in M_n(C)$, where $H = \frac{1}{2}(A + A^*)$, and $K = \frac{1}{2}(A - A^*)$, then we have

Theorem 2.11. Let A = H + K be an *n*-by-*n* complex positive definite matrix, then for $t \ge \frac{2}{n}$

(2.9)
$$d[A]^t \ge d[H]^t + d[K]^t,$$

with equality if and only if $K = idHQ^*EQ$ as $t = \frac{2}{n}$, where $i^2 = -1$, d > 0, Q is a unitary matrix, $E = \text{diag}(e_1, e_2, \ldots, e_n)$ with $e_i = \pm 1$, $i = 1, 2, \ldots, n$.

Proof. Since $H^{-\frac{1}{2}}KH^{-\frac{1}{2}}$ is a skew-Hermitian matrix and is similar to $H^{-1}K$, $\operatorname{Re} \lambda(H^{-1}K) = \operatorname{Re} \lambda(H^{-\frac{1}{2}}KH^{-\frac{1}{2}}) = 0$. By Theorem 2.1 and Corollary 2.5, we get the desired result. \Box

Let t = 1, we have the following interesting result.

Corollary 2.12. If A = H + K is an *n*-by-*n* complex positive definite matrix $(n \ge 2)$, then (2.10) $d[A] \ge d[H] + d[K].$

Corollary 2.13 (Ostrowski-Taussky Inequality). If A = H + K is an n-by-n positive definite matrix $(n \ge 2)$, then det $H \le d[A]$ with equality if and only if A is Hermitian.

Theorem 2.14. Let A, B be two n-by-n complex positive definite matrices, and n eigenvalues of B be real numbers. Suppose A, B are simultaneously upper triangularizable, namely, there exists a nonsingular matrix P, such that $P^{-1}AP$ and $P^{-1}BP$ are upper triangular matrices, then inequality (1.2) holds for any $t \ge \frac{2}{n}$.

Proof. If $P^{-1}AP$ and $P^{-1}BP$ are upper triangular matrices, then

$$P^{-1}B^{-1}AP = (P^{-1}BP)^{-1}(P^{-1}AP)$$

is an upper triangular matrix, with the product of the eigenvalues of B^{-1} and A on its diagonal. We denote the eigenvalue of X by $\lambda(X)$. Notice that positive definiteness of A and B^{-1} , $\operatorname{Re}\lambda(A)$ and $\lambda(B^{-1})$ are positive numbers by hypothesis, it is easy to see that $\operatorname{Re}\lambda(B^{-1}A) \ge 0$. By Theorem 2.1, we get the desired result. \Box

Corollary 2.15. Let A, B be two n-by-n complex positive definite matrices, and all the eigenvalues of B be real numbers. If $r([A, B]) \leq 1$, then inequality (1.2) holds for $t \geq \frac{2}{n}$, where [A, B] = AB - BA, r([A, B]) is the rank of [A, B].

Proof. It is easy to see that B^{-1} is a complex positive definite matrix and n eigenvalues of B^{-1} are real numbers. By the hypothesis and $r[B^{-1}, A] = r[A, B]$, we have $r([B^{-1}, A]) \leq 1$. By the Laffey-Choi Theorem (see [5], [1]), there exists a non-singular matrix P, such that $P^{-1}AP$ and $P^{-1}BP$ are upper triangular matrices. The result holds by Theorem 2.14.

Corollary 2.16. Let A, B be two n-by-n complex positive definite matrices $(n \ge 2)$. Suppose AB = BA and n eigenvalues of B are real numbers, then inequality (1.2) holds for $t \ge \frac{2}{n}$.

Proof. Follows from Corollary 2.15 and the fact that r([A, B]) = 0.

REFERENCES

- [1] M.P. CHOI, C. LOURIE AND H. RADJAVI, On commutators and invariant subspaces, *Lin. and Multilin. Alg.*, **9**(4) (1981), 329–340.
- [2] R.A. HORN AND C.R. JOHNSON, Matrix Analysis, Cambridge University Press, 1985.
- [3] NENG JIN, Inequalities on the determinant of complex positive definite matrix, *Mathematics in Practice and Theory*, **30**(4) (2000), 501–507.
- [4] C.R. JOHNSON, Positive definite matrices, Amer. Math. Monthly, 77 (1970), 259–264.
- [5] T.J. LAFFEY, Simultaneous triangularization of matrices-low rank cases and the nondcrogetory case, *Lin. and Multilin. Alg.*, **6**(4) (1978), 269–305.

- [6] M. MARCUS AND H. MINC, A Survey of Matrix Theorem and Matrix Inequalities, Allyn and Bacon, Inc., Boston, 1964.
- [7] BO-XUN TU, The theorem of metapositive definite matrix, *Acta. Math. Sinica*, **33**(4) (1990), 462–471.
- [8] BO-XUN TU, The theorem of metapositive definite matrix, *Acta. Math. Sinica*, **34**(1) (1991), 91–102.
- [9] CHAO-WEI YUAN AND ZHAO-YONG YOU, How many kinds of Minkowski inequality are generalized, *Journal of Engineering Mathematics*, **13**(1) (1996), 15–21.
- [10] HUI-PENG YUAN, Minkowski inequality of complex positive definite matrix, *Journal of Mathematical Research and Exposition*, **21**(3) (2001), 464–468.