YOUNG'S INEQUALITY IN COMPACT OPERATORS - THE CASE OF EQUALITY

RENYING ZENG
Department of Mathematics, Saskatchewan Institute of Applied Science and Technology Moose Jaw, Saskatchewan
CANADA S6H 4R4
zeng@siast.sk.ca

Received 24 August, 2005; accepted 22 September, 2005
Communicated by F. Zhang

AbSTRACT. If a and b are compact operators acting on a complex separable Hilbert space, and if $p, q \in(1, \infty)$ satisfy $\frac{1}{p}+\frac{1}{q}=1$, then there exists a partial isometry u such that the initial space of u is $\left(\operatorname{ker}\left(\left|a b^{*}\right|\right)\right)^{\perp}$ and

$$
u\left|a b^{*}\right| u^{*} \leq \frac{1}{p}|a|^{p}+\frac{1}{q}|b|^{q} .
$$

Furthermore, if $\left|a b^{*}\right|$ is injective, then the operator u in the inequality above can be taken as a unitary. In this paper, we discuss the case of equality of this Young's inequality, and obtain a characterization for compact normal operators.

Key words and phrases: Young's Inequality, compact normal operator, Hilbert space.
2000 Mathematics Subject Classification. 47A63, 15A60.

1. Introduction

Operator and matrix versions of classical inequalities are of considerable interest, and there is an extensive body of literature treating this subject; see, for example, [1] - [4], [6] - [11]. In one direction, many of the operator inequalities to have come under study are inequalities between the norms of operators. However, a second line of research is concerned with inequalities arising from the partial order on Hermitian operators acting on a Hilbert space. It is in this latter direction that this paper aims.

A fundamental inequality between positive real numbers is the arithmetic-geometric mean inequality, which is of interest herein, as is its generalisation in the form of Young's inequality.

For the positive real numbers a, b, the arithmetic-geometric mean inequality says that

$$
\sqrt{a b} \leq \frac{1}{2}(a+b)
$$

ISSN (electronic): 1443-5756
(C) 2005 Victoria University. All rights reserved.

248-05

Replacing a, b by their squares, this could be written in the form

$$
a b \leq \frac{1}{2}\left(a^{2}+b^{2}\right) .
$$

R. Bhatia and F. Kittaneh [3] extended the arithmetic-geometric mean inequality to positive (semi-definite) matrices a, b in the following manner: for any $n \times n$ positive matrices a, b, there is an $n \times n$ unitary matrix u such that

$$
u\left|a b^{*}\right| u^{*} \leq \frac{1}{2}\left(a^{2}+b^{2}\right)
$$

(The modulus $|y|$ is defined by

$$
|y|=\left(y^{*} y\right)^{\frac{1}{2}}
$$

for any $n \times n$ complex matrix y.) We note that the product $a b$ of two positive matrices a and b is not necessarily positive.

Young's inequality is a generalisation of the arithmetic-geometric mean inequality: for any positive real numbers a, b, and any $p, q \in(1, \infty)$ with $\frac{1}{p}+\frac{1}{q}=1$,

$$
a b \leq \frac{1}{p} a^{p}+\frac{1}{q} b^{q} .
$$

T. Ando [2] showed Young's inequality admits a matrix-valued version analogous to the BhatiaKittaneh theorem: if $p, q \in(1, \infty)$ satisfy $\frac{1}{p}+\frac{1}{q}=1$, then for any pair a, b of $n \times n$ complex matrices, there is a unitary matrix u such that

$$
u\left|a b^{*}\right| u^{*} \leq \frac{1}{p}|a|^{p}+\frac{1}{q}|b|^{q} .
$$

Although finite-rank operators are norm-dense in the set of all compact operators acting on a fixed Hilbert space, the Ando-Bhatia-Kittaneh inequalities, like most matrix inequalities, do not immediately carry over to compact operators via the usual approximation methods, and consequently only a few of the fundamental matrix inequalities are known to hold in compact operators.
J. Erlijman, D. R. Farenick, and the author [4] developed a technique through which the Ando-Bhatia-Kittaneh results extend to compact operators, and established the following version of Young's inequality.

Theorem 1.1. If a and b are compact operators acting on a complex separable Hilbert space, and if $p, q \in(1, \infty)$ satisfy $\frac{1}{p}+\frac{1}{q}=1$, then there is a partial isometry u such that the initial space of u is $(\operatorname{ker}(|a b *|))^{\perp}$ and

$$
u\left|a b^{*}\right| u^{*} \leq \frac{1}{p}|a|^{p}+\frac{1}{q}|b|^{q} .
$$

Furthermore, if $\left|a b^{*}\right|$ is injective, then the operator u in the inequality above can be taken to be a unitary.

Theorem 1.1 is made in a special case as a corollary below.
Corollary 1.2. If a and b are positive compact operators with trivial kernels, and if $t \in[0,1]$, then there is a unitary u such that

$$
u\left|a^{t} b^{1-t}\right| u^{*} \leq t a+(1-t) b .
$$

The proof of the following Theorem 1.3 is very straightforward.

Theorem 1.3. If A is a commutative C^{*}-algebra with multiplicative identity, and if $p, q \in$ $(1, \infty)$ satisfy $\frac{1}{p}+\frac{1}{q}=1$, then

$$
\left|a b^{*}\right| \leq \frac{1}{p}|a|^{p}+\frac{1}{q}|b|^{q}
$$

for all $a, b \in A$. Furthermore, if the equality holds, then

$$
|b|=|a|^{p-1} .
$$

2. An Example

We give an example here for convenience.
We illustrate that, in general, we do not have

$$
\left|a b^{*}\right| \leq \frac{1}{p}|a|^{p}+\frac{1}{q}|b|^{q} .
$$

But, for this example, there exists a unitary u such that

$$
u\left|a b^{*}\right| u^{*} \leq \frac{1}{2}\left(|a|^{p}+|b|^{q}\right) .
$$

Example 2.1. If $a=\left(\begin{array}{ll}2 & 0 \\ 0 & 1\end{array}\right)$ and $b=\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right)$, then a and b are (semi-definite) positive and

$$
\frac{1}{2}\left(a^{2}+b^{2}\right)=\left(\begin{array}{cc}
3 & 1 \\
1 & \frac{1}{2}
\end{array}\right)
$$

and

$$
\left|a b^{*}\right|=|a b|=\left(\begin{array}{cc}
\frac{\sqrt{10}}{2} & \frac{\sqrt{10}}{2} \\
\frac{\sqrt{10}}{2} & \frac{\sqrt{10}}{2}
\end{array}\right) \text {. }
$$

However,

$$
c=\frac{1}{2}\left(a^{2}+b^{2}\right)-|a b|=\left(\begin{array}{cc}
3-\frac{\sqrt{10}}{2} & 1-\frac{\sqrt{10}}{2} \\
1-\frac{\sqrt{10}}{2} & 3-\frac{\sqrt{10}}{2}
\end{array}\right)
$$

is not a (semi-definite) positive matrix, i.e., $c=\frac{1}{2}\left(a^{2}+b^{2}\right)-|a b| \geq 0$ does not hold. (In fact, the determinant of c satisfies that $\operatorname{det}(c)<0$). So, we do not have

$$
|a b| \leq \frac{1}{2}\left(a^{2}+b^{2}\right)
$$

But the spectrum of $|a b|$ is

$$
\sigma(|a b|)=\{\sqrt{10}, 0\}
$$

the spectrum of $\frac{1}{2}\left(a^{2}+b^{2}\right)$ is

$$
\sigma\left(\frac{1}{2}\left(a^{2}+b^{2}\right)\right)=\left\{\frac{7}{2}, 1\right\} .
$$

Therefore, there exists a unitary matrix u such that

$$
u|a b| u^{*} \leq \frac{1}{2}\left(a^{2}+b^{2}\right)
$$

We compute the unitary matrix u as follows.

Taking unitary matrices

$$
v=\frac{1}{\sqrt{5}}\left(\begin{array}{cc}
-2 & 1 \\
-1 & -2
\end{array}\right)
$$

and

$$
w=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)
$$

we then have

$$
v\left(\frac{1}{2}\left(a^{2}+b^{2}\right)\right) v^{*}=\left(\begin{array}{cc}
\frac{7}{2} & 0 \\
0 & 1
\end{array}\right)
$$

and

$$
w|a b| w^{*}=\left(\begin{array}{cc}
\sqrt{10} & 0 \\
0 & 0
\end{array}\right)
$$

Therefore

$$
w|a b| w^{*} \leq v\left(\frac{1}{2}\left(a^{2}+b^{2}\right)\right) v^{*}
$$

By taking a unitary matrix

$$
u=v^{*} w=\frac{1}{\sqrt{10}}\left(\begin{array}{cc}
-3 & -1 \\
-1 & 3
\end{array}\right)
$$

we get

$$
u|a b| u^{*} \leq \frac{1}{2}\left(a^{2}+b^{2}\right)
$$

3. The Case Of Equality In Commuting Normal Operators

In this section, we discuss the cases of equality in Young's inequality.
Assume that H denotes a complex, separable Hilbert space of finite or infinite dimension. The inner product of vectors $\xi, \eta \in H$ is denoted by $\langle\xi, \eta\rangle$, and the norm of $\xi \in H$ is denoted by $\|\xi\|$.

If $x: H \rightarrow H$ is a linear transformation, then x is called an operator (on H) if x is also continuous with respect to the norm-topology on H. The complex algebra of all operators on H is denoted by $B(H)$, which is a C^{*}-algebra. We use x^{*} to denote the adjoint of $x \in B(H)$.

An operator x on H is said to be Hermitian if $x^{*}=x$. A Hermitian operator x is positive if $\sigma(x) \subseteq \mathbb{R}_{0}^{+}$, where $\sigma(x)$ is the spectrum of x, and \mathbb{R}_{0}^{+}is the set of non-negative numbers. Equivalently, $x \in B(H)$ is positive if and only if $\langle x \xi, \xi\rangle \geq 0$ for all $\xi \in H$. If $a, b \in B(H)$ are Hermitian, then $a \leq b$ shall henceforth denote that $b-a$ is positive.
Lemma 3.1. If $a, b \in B(H)$ are normal and commuting, where $B(H)$ is the complex algebra of all continuous linear operators on H, then

$$
|a||b|=|b||a|,
$$

and $|a||b|$ is positive.
Proof. We obviously have

$$
a^{*} b^{*}=b^{*} a^{*}
$$

And by the Fuglede theorem [5] we get

$$
a^{*} b=b a^{*}, \quad a b^{*}=b^{*} a .
$$

On the other hand, if $c, d \in B(H)$ with c, d positive and commuting, then

$$
c^{1 / 2} d^{1 / 2} \cdot c^{1 / 2} d^{1 / 2}=c^{1 / 2} c^{1 / 2} \cdot d^{1 / 2} d^{1 / 2}=c d
$$

Hence

$$
(c d)^{1 / 2}=c^{1 / 2} d^{1 / 2}
$$

Therefore

$$
\begin{aligned}
|a||b| & =\left(a^{*} a\right)^{1 / 2}\left(b^{*} b\right)^{1 / 2} \\
& =\left(a^{*} a b^{*} b\right)^{1 / 2} \\
& =\left(b^{*} b\right)^{1 / 2}\left(a^{*} a\right)^{1 / 2} \\
& =|b||a| .
\end{aligned}
$$

Which implies that $|a||b|$ is positive and

$$
|a||b|=(|a||b|)^{*}=|b||a| .
$$

(In fact, $|a||b|$ is the positive square root of the positive operator $a^{*} a b^{*} b$).
Lemma 3.2. If $a, b \in B(H)$ are normal operators such that $a b=b a$, then the following statements are equivalent:
(i) the kernel of $\left|a b^{*}\right|: \operatorname{ker}\left(\left|a b^{*}\right|\right)=\{0\}$;
(ii) a and b are injective and have dense range.

Proof. (i) \rightarrow (ii). Let $b=w|b|$ be the polar decomposition of b. By observation we have

$$
\|a\| b \|=\left(|b||a|^{2}|b|\right)^{1 / 2}
$$

Thus, because the closures of the ranges of a positive operator and its square root are equal, the closures of the ranges of $|b||a|^{2}|b|$ and $\|a\| \mid b \|$ are the same. Moreover, as $w^{*} w\|a\| b\|=\| a\|b\|$, we have that

$$
\begin{equation*}
f\left(w|b||a|^{2}|b| w^{*}\right)=w f\left(|b||a|^{2}|b|\right) w^{*} \tag{3.1}
\end{equation*}
$$

for all polynomials f. Choose $\delta>0$ so that $\sigma\left(|b||a|^{2}|b|\right) \subseteq[0, \delta]$. By the Weierstrass approximation theorem, there is a sequence of polynomials f_{n} such that $f_{n}(t) \rightarrow \sqrt{t}(n \rightarrow \infty)$ uniformly on $[0, \delta]$. Thus, from (3.1) and functional calculus,

$$
\left(w|b||a|^{2}|b| w^{*}\right)^{1 / 2}=w\left(|b||a|^{2}|b|\right)^{1 / 2} w^{*}=w\|a\| b| | w^{*}
$$

Let $a=v|a|$ be the polar decomposition of a. Then the left-hand term in the equalities above expands as follows:

$$
\left(w|b||a|^{2}|b| w^{*}\right)^{1 / 2}=w\left(|b||a| v^{*} v|a||b|\right)^{1 / 2} w^{*}=\left(b a^{*} a b^{*}\right)^{1 / 2}=\left|a b^{*}\right| .
$$

Thus,

$$
\left|a b^{*}\right|=w\|a\| b \| w^{*} .
$$

Because a and b are commuting normal, from Lemma $3.1|a||b|=|b||a|$ and $|a||b|$ is positive. This implies that

$$
\left|a b^{*}\right|=w|a||b| w^{*} .
$$

If $\xi \in \operatorname{ker}\left(w^{*}\right)$, then $\xi \in \operatorname{ker}\left(\left|a b^{*}\right|\right)$. Hence $\operatorname{ker}\left(w^{*}\right)=\{0\}$, which means that the range of $\operatorname{ran}(w)=H$. Hence, w is unitary. By the theorem on polar decomposition [5, p. 75], b is injective and has dense range.

Let $a=v|a|$ be the polar decomposition of a. We know that $a b=b a$ implies that $a b^{*}=b^{*} a$ (again, by Fuglede theorem). Therefore, we can interchange the role of a and b in the previous paragraph to obtain: a^{*} is injective and has dense range. Thus, a is injective and has dense range.
(ii) \rightarrow (i). From the hypothesis we have polar decompositions $a=v|a|, b=w|b|$, where v and w are unitary [5] p. 75]. Therefore, $\operatorname{ker}(|a|)=\operatorname{ker}(|b|)=\{0\}$. Because

$$
\left|a b^{*}\right|=w|a||b| w^{*}
$$

and w is unitary, we have

$$
\operatorname{ker}\left(a b^{*}\right)=\{0\}
$$

Lemma 3.3. If $x \in B(H)$ is positive, compact, and injective, and if $x \leq u^{*} x u$ for some unitary u, then u is diagonalisable and commutes with x.
Proof. Because x is injective, the Hilbert space H is the direct sum of the eigenspaces of x :

$$
H=\sum_{\lambda \in \sigma_{p}(x)}^{\oplus} \operatorname{ker}(x-\lambda 1)
$$

Let

$$
\sigma_{p}(x)=\left\{\lambda_{1}, \lambda_{2}, \ldots\right\}
$$

where $\lambda_{1}>\lambda_{2}>\cdots>0$ are the (distinct) eigenvalues of x, listed in descending order. Our first goal is to prove that $\operatorname{ker}\left(x-\lambda_{j} 1\right)$ is invariant under u and u^{*} for every positive integer j; we shall do so by induction.

Start with λ_{1}; note that $\lambda_{1}=\|x\|$.
If $\xi \in \operatorname{ker}\left(x-\lambda_{1} 1\right)$ is a unit vector, then

$$
\begin{aligned}
\lambda_{1} & =\lambda_{1}\langle\xi, \xi\rangle \\
& =\left\langle\lambda_{1} \xi, \xi\right\rangle \\
& =\langle x \xi, \xi\rangle \\
& \leq\left\langle u^{*} x u \xi, \xi\right\rangle \\
& =\langle x u \xi, u \xi\rangle \\
& \leq\|x\| \cdot\|u \xi\|^{2}=\lambda_{1} .
\end{aligned}
$$

Thus,

$$
\langle x u \xi, u \xi\rangle=\lambda_{1}=\max \{\langle x \eta, \eta\rangle:\|\eta\|=1\}
$$

Which means that $u \xi$ is an eigenvector of x corresponding to the eigenvalue λ_{1}. Then,

$$
u \xi \in \operatorname{ker}\left(x-\lambda_{1} 1\right)
$$

$\operatorname{Because} \operatorname{ker}\left(x-\lambda_{1} 1\right)$ is finite-dimensional and u is unitary, we have that

$$
u: \operatorname{ker}\left(x-\lambda_{1} 1\right) \rightarrow \operatorname{ker}\left(x-\lambda_{1} 1\right)
$$

is an isomorphism. Furthermore, $\left.U\right|_{\operatorname{ker}\left(x-\lambda_{1} 1\right)}$ is diagonalisable because

$$
\operatorname{dim}\left(\operatorname{ker}\left(x-\lambda_{1} 1\right)\right)<\infty
$$

where $\left.U\right|_{\operatorname{ker}\left(x-\lambda_{1} 1\right)}$ is the restriction of U in the subspace $\operatorname{ker}\left(x-\lambda_{1} 1\right)$. Hence, $\operatorname{ker}\left(x-\lambda_{1} 1\right)$ is invariant under u^{*} (because $\operatorname{ker}\left(x-\lambda_{1} 1\right.$) has a finite orthonormal basis of eigenvectors of u), which means that if

$$
\eta \in \operatorname{ker}\left(x-\lambda_{1} 1\right)
$$

then

$$
u \eta \in \operatorname{ker}\left(x-\lambda_{1} 1\right)
$$

Now choose λ_{2}, and pick up a unit vector $\xi \in \operatorname{ker}\left(x-\lambda_{2} 1\right)$.
Note that

$$
\lambda_{2}=\max \left\{\langle x \eta, \eta\rangle:\|\eta\|=1, \eta \in \operatorname{ker}\left(x-\lambda_{1} 1\right)^{\perp}\right\}
$$

Using the arguments of the previous paragraph,

$$
\lambda_{2} \leq\langle x \xi, \xi\rangle \leq\langle x u \xi, u \xi\rangle \leq \lambda_{2}
$$

(Because $u \xi$ is a unit vector orthogonal to $\operatorname{ker}\left(x-\lambda_{1} 1\right)$). Hence, by the minimum maximum principle,

$$
u \xi \in \operatorname{ker}\left(x-\lambda_{2} 1\right)
$$

So

$$
u: \operatorname{ker}\left(x-\lambda_{2} 1\right) \rightarrow \operatorname{ker}\left(x-\lambda_{2} 1\right)
$$

is an isomorphism, $\operatorname{ker}\left(x-\lambda_{2} 1\right)$ has an orthonormal basis of eigenvectors of u.
And if $\eta \in \operatorname{ker}\left(x-\lambda_{1} 1\right) \oplus \operatorname{ker}\left(x-\lambda_{2} 1\right)$, then

$$
u \eta \in \operatorname{ker}\left(x-\lambda_{1} 1\right) \oplus \operatorname{ker}\left(x-\lambda_{2} 1\right)
$$

Inductively, assume that u leaves $\operatorname{ker}\left(x-\lambda_{j} 1\right)$ invariant for all $1 \leq j \leq k$, and look at λ_{k+1}. By the arguments above,

$$
\left(\sum_{1 \leq j \leq k}^{\oplus} \operatorname{ker}\left(x-\lambda_{j} 1\right)\right)^{\perp}
$$

is also invariant under u. Hence, if $\xi \in \operatorname{ker}\left(x-\lambda_{k+1} 1\right)$ is a unit vector, then

$$
\begin{aligned}
\lambda_{k+1} & =\langle x \xi, \xi\rangle \\
& \leq\langle x u \xi, u \xi\rangle \\
& \leq \max \left\{\langle x \eta, \eta\rangle:\|\eta\|=1, \eta \in\left(\sum_{1 \leq j \leq k}^{\oplus} \operatorname{ker}\left(x-\lambda_{j} 1\right)\right)^{\perp}\right\} \\
& =\lambda_{k+1}
\end{aligned}
$$

By the minimum-maximum principle, $u \xi$ is an eigenvector of x corresponding to λ_{k+1}. Hence,

$$
\operatorname{ker}\left(x-\lambda_{k+1} 1\right)
$$

is invariant under u and u^{*}. This completes the induction process.
What these arguments show is that H has an orthonormal basis $\{\phi\}_{j=1}^{\infty}$ of eigenvectors of both x and u; hence

$$
x u \phi_{j}=u x \phi_{j},
$$

for each positive integer j. Consequently,

$$
x u \xi=u x \xi, \forall \xi \in H .
$$

meaning that

$$
x u=u x .
$$

Below is a major result of this paper
Theorem 3.4. Assume that $a, b \in B(H)$ are commuting compact normal operators, each being injective and having dense ranges. If there exists a unitary u such that:

$$
u\left|a b^{*}\right| u^{*}=\frac{1}{p}|a|^{p}+\frac{1}{q}|b|^{q},
$$

for some $p, q \in(1, \infty)$ with $\frac{1}{p}+\frac{1}{q}=1$, then

$$
|b|=|a|^{p-1} .
$$

Proof. By the hypothesis, if $b=w|b|$ is the polar decomposition of b, then $\operatorname{ker}\left(\left|a b^{*}\right|\right)=\{0\}$, (Lemma 3.2) and w is unitary ([5] p. 75]). Moreover,

$$
\left|a b^{*}\right|=w|a||b| w^{*},
$$

as a and b are commuting normals (noting that $|a||b|$ is positive from Lemma 3.1). Thus $u\left|a b^{*}\right| u^{*}=\frac{1}{p}|a|^{p}+\frac{1}{q}|b|^{q}$ becomes

$$
\begin{equation*}
u w|a||b| w^{*} u^{*}=\frac{1}{p}|a|^{p}+\frac{1}{q}|b|^{q} . \tag{3.2}
\end{equation*}
$$

By Theorem 1.3, and because $|a||b|=|b||a|$ (Lemma 3.2), we get

$$
\frac{1}{p}|a|^{p}+\frac{1}{q}|b|^{q} \geq|a||b|
$$

Hence from (3.2)

$$
\begin{equation*}
u w|a||b| w^{*} u^{*}=\frac{1}{p}|a|^{p}+\frac{1}{q}|b|^{q} \geq|a||b| \tag{3.3}
\end{equation*}
$$

Because $u w$ is unitary (since w is unitary from the proof of Lemma 3.2, and because $|a||b|$ is positive, Lemma 3.3 yields

$$
|a||b|=u w|a||b| w^{*} u^{*} .
$$

Hence, (3.2) becomes

$$
\begin{equation*}
|a||b|=\frac{1}{p}|a|^{p}+\frac{1}{q}|b|^{q} . \tag{3.4}
\end{equation*}
$$

Let

$$
\lambda_{1}(|a|) \geq \lambda_{2}(|a|) \geq \cdots>0
$$

and

$$
\lambda_{1}(|b|) \geq \lambda_{2}(|b|) \geq \cdots>0
$$

be the eigenvalues of $|a|$ and $|b|$. Because $|a|$ and $|b|$ belong to a commutative C^{*}-algebra, the spectra of $|a||b|$ and $\frac{1}{p}|a|^{p}+\frac{1}{q}|b|^{q}$ are determined from the spectra of $|a|$ and $|b|$, i.e., for each positive integer k,

$$
\lambda_{k}(|a||b|)=\lambda_{k}(|a|) \lambda_{k}(|b|),
$$

and

$$
\lambda_{k}\left(\frac{1}{p}|a|^{p}+\frac{1}{q}|b|^{q}\right)=\frac{1}{p} \lambda_{k}(|a|)^{p}+\frac{1}{q} \lambda_{k}(|b|)^{q} .
$$

Therefore, the equation (3.4) implies that for every k

$$
\lambda_{k}(|a|) \lambda_{k}(|b|)=\frac{1}{p} \lambda_{k}(|a|)^{p}+\frac{1}{q} \lambda_{k}(|b|)^{q} .
$$

This is equality in the (scalar) Young's inequality, and hence for every k

$$
\lambda_{k}(|b|)=\lambda_{k}(|a|)^{p-1}
$$

which yields (note that a and b are normal operators)

$$
|b|=|a|^{p-1} .
$$

From Theorem 3.4 we immediately have

Corollary 3.5. If a and b are positive commuting compact operators such that $|a b|$ is injective, and if there is an isometry $v \in B(H)$ for which

$$
u\left|a^{t} b^{1-t}\right| u^{*}=t a+(1-t) b
$$

for some $t \in[0,1]$, then

$$
b=a^{t-1}
$$

Theorem 3.6. Assume that $a, b \in B(H)$ are commuting compact normal operators, each being injective and having dense range. If

$$
|b|=|a|^{p-1}
$$

then there exists a unitary u such that:

$$
u\left|a b^{*}\right| u^{*}=\frac{1}{p}|a|^{p}+\frac{1}{q}|b|^{q},
$$

for $p, q \in(1, \infty)$ with $\frac{1}{p}+\frac{1}{q}=1$.
Proof. By the hypothesis, it is easy to get

$$
|a||b|=\frac{1}{p}|a|^{p}+\frac{1}{q}|b|^{q},
$$

we note that $|a||b|$ is positive here.
If $b=w|b|$ is the polar decomposition of b, then $\operatorname{ker}\left(\left|a b^{*}\right|\right)=\{0\}$ (Lemma 3.2), w is unitary ([5] p. 75]), and

$$
\left|a b^{*}\right|=w|a||b| w^{*} .
$$

Let $u=w^{*}$. Then

$$
u\left|a b^{*}\right| u^{*}=\frac{1}{p}|a|^{p}+\frac{1}{q}|b|^{q} .
$$

Corollary 3.7. If a and b are positive commuting compact operators such that $a b$ is injective, and if there exists $t \in[0,1]$ such that

$$
b=a^{t-1}
$$

then there is an isometry $v \in B(H)$ for which

$$
u\left|a^{t} b^{1-t}\right| u^{*}=t a+(1-t) b .
$$

References

[1] C.A. AKEMANN, J. ANDERSON, AND G.K. PEDERSEN, Triangle inequalities in operator algebras, Linear and Multilinear Algebra, 11 (1982), 167-178.
[2] T. ANDO, Matrix Young's inequalities, Oper. Theory Adv. Appl., 75 (1995), 33-38.
[3] R. BHATIA AND F. KITTANEH, On the singular values of a product of operators, SIAM J. Matrix Anal. Appl., 11 (1990), 272-277.
[4] J. ERLIJMAN, D.R. FARENICK, AND R. ZENG, Young's inequality in compact operators, Oper. Theory. Adv. and Appl., 130 (2001), 171-184.
[5] P.R. HALMOS, A Hilbert Space Problem Book, $2^{\text {nd }}$ Edition, Springer-Verlag, New York, 1976.
[6] F. HANSEN AND G.K. PEDERSEN, Jensen's inequality for operators and Lowner's theorem, Math. Ann., 258 (1982), 29-241.
[7] F. HIAI and H. KOSAKI, Mean for matrices and comparison of their norms, Indiana Univ. Math. J., 48 (1999), 900-935.
[8] O. HIRZALLAH AND F. KITTANEH, Matrix Young inequality for the Hilbert-Schmidt norm, Linear Algebra Appl., 308 (2000), 77-84.
[9] R.C. THOMPSON, The case of equality in the matrix-valued triangle inequality, Pacific J. Math., 82 (1979), 279-280.
[10] R.C. THOMPSON, Matrix type metric inequalities, Linear and Multilinear Algebra, 5 (1978), 303-319.
[11] R.C. THOMPSON, Convex and concave functions of singular values of matrix sums, Pacific J. Math., 66 (1976), 285-290.
[12] R. ZENG, The quaternion matrix-valued Young's inequality, J. Inequal. Pure and Appl. Math., 6(3) (2005), Art. 89. [ONLINE: http://jipam.vu.edu.au/article.php?sid=562]

