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ABSTRACT. If ¢ andb are compact operators acting on a complex separable Hilbert space, and
if p,g € (1,00) satisfy% + % = 1, then there exists a partial isometeysuch that the initial

space ofu is (ker(|ab*|))* and
1 1
uab®|u* < —lal? + —|b]9.
p q

Furthermore, iflab*| is injective, then the operatarin the inequality above can be taken as a
unitary. In this paper, we discuss the case of equality of this Young's inequality, and obtain a
characterization for compact normal operators.
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1. INTRODUCTION

Operator and matrix versions of classical inequalities are of considerable interest, and there is
an extensive body of literature treating this subject; see, for example,[[1] =/[4],[[6] — [11]. In one
direction, many of the operator inequalities to have come under study are inequalities between
the norms of operators. However, a second line of research is concerned with inequalities
arising from the partial order on Hermitian operators acting on a Hilbert space. Itis in this latter
direction that this paper aims.

A fundamental inequality between positive real numbers is the arithmetic-geometric mean
inequality, which is of interest herein, as is its generalisation in the form of Young’s inequality.

For the positive real numbeus b, the arithmetic-geometric mean inequality says that

Vab < %(a—irb).
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2 RENYING ZENG

Replacinga, b by their squares, this could be written in the form
1
CLb S 5(@2 + 62)

R. Bhatia and F. Kittaneh [3] extended the arithmetic-geometric mean inequality to positive
(semi-definite) matrices, b in the following manner: for any x n positive matrices, b, there
is ann x n unitary matrixu such that

ulab*|u* < =(a® + b?).

N —

(The modulugy| is defined by

lyl = (y"y)>.
for anyn x n complex matrixy.) We note that the produab of two positive matrices andb
is not necessarily positive.

Young’s inequality is a generalisation of the arithmetic-geometric mean inequality: for any
positive real numbers, b, and anyp, g € (1, o) with IlJ + % =1,

1 1
ab < —a? + -b1.
p q

T. Ando [2] showed Young’s inequality admits a matrix-valued version analogous to the Bhatia—
Kittaneh theorem: ip, ¢ € (1, 0) satisfyll? + % = 1, then for any pairn, b of n x n complex
matrices, there is a unitary matrixsuch that

1 1
ulab*|u* < —=|al? + —|b|.
p q

Although finite-rank operators are norm-dense in the set of all compact operators acting on a
fixed Hilbert space, the Ando—Bhatia—Kittaneh inequalities, like most matrix inequalities, do
not immediately carry over to compact operators via the usual approximation methods, and
consequently only a few of the fundamental matrix inequalities are known to hold in compact
operators.

J. Erlijman, D. R. Farenick, and the author [4] developed a technique through which the
Ando-Bhatia—Kittaneh results extend to compact operators, and established the following ver-
sion of Young’s inequality.

Theorem 1.1.If « andb are compact operators acting on a complex separable Hilbert space,
and ifp,q € (1,00) satisfy}) + % = 1, then there is a partial isometry such that the initial

space ofu is (ker(|ab * |))* and
1 1
ulab*|u* < —|al? + —|b]".
p q
Furthermore, iflab*| is injective, then the operatar in the inequality above can be taken to be
a unitary.
Theorenj 1.]l is made in a special case as a corollary below.

Corollary 1.2. If « andb are positive compact operators with trivial kernels, and & [0, 1],
then there is a unitary, such that

ula'b' Hu* < ta+ (1 —t)b.

The proof of the following Theoreim 1.3 is very straightforward.
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Theorem 1.3.If A is a commutative_™*-algebra with multiplicative identity, and if,q <
(1,00) satisfy; + ¢ = 1, then

1 1
|ab™| < —[af” + —|b]*
p q
forall a,b € A. Furthermore, if the equality holds, then

b = lal”"".

2. AN EXAMPLE

We give an example here for convenience.
We illustrate that, in general, we do not have

1 1
|ab™| < —[af” + —|b]".
p q
But, for this example, there exists a unitarguch that

1
ulab*|u* < 5(]a|p + [6]9).

Example 2.1.1f a = ( g (1) > andb = ( 1 } > thena andb are (semi-definite) positive
and
1 2 2\ 3 1
seen=(11),
and
V10 V10
k| _ 2 2
|ab|—|ab|—<@@>.
2 2
However,

I
=

V10
_1 2 2 _ 3 1_2
c-§(a +b)—]ab\—<1_ 5 4 yD

2
is not a (semi-definite) positive matrix, i.e.= 3(a” + b?) — |ab| > 0 does not hold. (In fact,
the determinant of satisfies thatlet(c) < 0). So, we do not have

N

1
lab| < §(a2 + b2).

But the spectrum ofub| is

o(labl) = {V10,0}.

- <%(a2 +62)) _ {;1}

Therefore, there exists a unitary matrixsuch that

the spectrum of (a? + b?) is

1
ulablu® < §(a2 +b%).

We compute the unitary matrixas follows.
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Taking unitary matrices

and

we then have

and
Therefore

By taking a unitary matrix

we get
1
ulablu® < §(a2 +b%).

3. THE CASE OF EQUALITY IN COMMUTING NORMAL OPERATORS

In this section, we discuss the cases of equality in Young’s inequality.
Assume thatd denotes a complex, separable Hilbert space of finite or infinite dimension.
The inner product of vectors n € H is denoted by¢, ), and the norm of € H is denoted

by [I]]-
If + : H — H is a linear transformation, thenis called an operator (o) if = is also

continuous with respect to the norm-topology Bn The complex algebra of all operators on
H is denoted byB(H ), which is aC*-algebra. We use* to denote the adjoint of € B(H).

An operatorz on H is said to be Hermitian it* = x. A Hermitian operator: is positive
if o(z) C R, whereo(z) is the spectrum of, andR; is the set of non-negative numbers.
Equivalently,x € B(H) is positive if and only if(x¢, &) > 0forall{ € H. If a,b € B(H) are
Hermitian, ther: < b shall henceforth denote th@at- «a is positive.

Lemma 3.1.If a,b € B(H) are normal and commuting, whefe(H) is the complex algebra
of all continuous linear operators of, then

|al[b] = [b]]al,
and |al|b| is positive.

Proof. We obviously have
a*b* =b*a".
And by the Fuglede theoreml[5] we get
a*b =ba*, ab* = b*a.
On the other hand, if, d € B(H) with ¢,d positive and commuting, then
2qH2 L A2g0 2 — V2012 2002 — g
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Hence
(cd)1/2 — A2q1 2.
Therefore
lal[b] = (a*a)!2(b"0)""?
= (a*ab*b)*/?
_ (b*b)l/Z(a a)1/2
= [bf]al.

Which implies thata||b| is positive and
|al[b] = (lal[o])" = [bl|al.
(In fact, |a||| is the positive square root of the positive operatarb*b). OJ

Lemma 3.2. If a,b € B(H)are normal operators such thab = ba, then the following state-
ments are equivalent:

(i) the kernel ofab*| : ker(|ab*|) = {0};
(i) @ andb are injective and have dense range.

Proof. (i) — (ii). Let b = w|b| be the polar decomposition bf By observation we have
llallbl] = ([bllal?[b])'/2.

Thus, because the closures of the ranges of a positive operator and its square root are equal, the
closures of the ranges @fl|a|?*|b]and||a||b|| are the same. Moreover, agw||a||b|| =
we have that

(3.1) f(wlbllal*blw*) = wf([b]|al*|b])w

for all polynomialsf. Choosed > 0 so thato(|b||al?|0]) C [0,d]. By the Weierstrass ap-
proximation theorem, there is a sequence of polynomjialsuch thatf,(t) — vt(n — oo)
uniformly on|[0, §]. Thus, from|(3.1L) and functional calculus,

(wlbllaf*[blw*) = w(|bl|al*[o])/*w* = wl|al|b]Jw".

Let a = v|a| be the polar decomposition af Then the left-hand term in the equalities above
expands as follows:

(wlbllal*blw*)!* = w(|bl|alv*v]al b)) w* = (ba*ab”)'/* = |ab"|.

Thus,

|ab”| = w]|al[b][w".
Because: andb are commuting normal, from Lemna Bd||b| = |b]|a| and|a||b| is positive.
This implies that

lab™| = wlal|b|w™.
If & € ker(w*), then{ € ker(|ab*|). Henceker(w*) = {0}, which means that the range of
ran(w) = H. Hence,w is unitary. By the theorem on polar decompositioh [5, p. 75k
injective and has dense range.

Let a = v|a| be the polar decomposition af We know thatub = ba implies thatab* = b*a
(again, by Fuglede theorem). Therefore, we can interchange the rolanafb in the previous
paragraph to obtaina* is injective and has dense range. Thuss injective and has dense
range.
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(i) — (i). From the hypothesis we have polar decompositiorsv|a|, b = w|b|, wherev and
w are unitary[[5, p. 75]. Thereforker(|a|) = ker(|b|) = {0}. Because

lab*| = wlal|b|w*
andw is unitary, we have
ker(ab*) = {0}.
0

Lemma 3.3.If x € B(H) is positive, compact, and injective, and:iK «*zu for some unitary
u, thenu is diagonalisable and commutes with

Proof. Becauser is injective, the Hilbert spac# is the direct sum of the eigenspaces:of

@
H = ZAG%(I) ker(x — Al1).
Let
op(x) = {1, Aay ...},
where); > X\, > --- > 0 are the (distinct) eigenvalues of listed in descending order. Our
first goal is to prove thatter(z — A;1) is invariant under: andw* for every positive integey;
we shall do so by induction.
Start with\;; note that\, = ||z||.
If £ € ker(z — A;1) is a unit vector, then
)\1 - >\1 <£7 €>

= <>‘1§> €>

= (%€, ¢)

< (u'zug,§)

= (wug, ug)

< ll] - [|ug]* = A
Thus,

(rug, ug) = A = max{{zn,n) : [[n]| = 1}.

Which means thaté is an eigenvector of corresponding to the eigenvalie. Then,

ué € ker(z — A1),
Becauséer(z — A1) is finite-dimensional and is unitary, we have that

u: ker(x — A1) — ker(x — A1)
is an isomorphism. Furthermor€|y..(.—»,1) is diagonalisable because
dim(ker(x — \1)) < o0,

whereU | e (z—a,1) IS the restriction ot/ in the subspacker(x — A\;1). Henceker(x — A1) is
invariant undern* (becauséer(z — A\;1) has a finite orthonormal basis of eigenvectors pf
which means that if

n € ker(x — A1),
then

un € ker(x — A\1).
Now choose\,, and pick up a unit vectaf € ker(zx — A21).

Note that
Ao = max{(zn,n) : [|n|| = 1,7 € ker(z — A1)}
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Using the arguments of the previous paragraph,

(Because:£ is a unit vector orthogonal ther(x — A\11)). Hence, by the minimum maximum
principle,
ué € ker(z — A21).
So
u: ker(z — Agl) — ker(z — Ag1)

is an isomorphismker(x — A\21) has an orthonormal basis of eigenvectors of
And if n € ker(z — A1) @ ker(z — A21), then

un € ker(x — A1) @ ker(z — A\a1).

Inductively, assume thatleavesker(z — A;1) invariant for alll < j < k, and look at\;;. By

the arguments above,
ey 1
< g L<jen ker(x — )\jl))

is also invariant undet. Hence, if¢ € ker(z — A\i411) is a unit vector, then

/\k-i—l - <[L‘f7§>
< (zug, ug)
1
< { o) il = 1 € (357 derte A1)}
= >\k+1-

By the minimum-maximum principle;¢ is an eigenvector of corresponding td,, ;. Hence,
ker(x — Apy11)

is invariant under: andu*. This completes the induction process.
What these arguments show is théathas an orthonormal bas{#}52, of eigenvectors of
bothz andu; hence

TUD; = UTQ;,

for each positive integer. Consequently,
rué = uxé, V€ € H.

meaning that
ITU = Uux.

Below is a major result of this paper

Theorem 3.4. Assume that, b € B(H) are commuting compact normal operators, each being
injective and having dense ranges. If there exists a unitasych that:

1 1
ulab™u” = ~lal” + ~1b|%,
p 4q
for somep, g € (1, 00) with £ + - = 1, then

b = lal""".
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Proof. By the hypothesis, ib = w|b| is the polar decomposition &f thenker(|ab*|) = {0},
(Lemmd 3.2) andv is unitary ([3, p. 75]). Moreover,

|ab*| = wal[blw®,

asa and b are commuting normals (noting that||b| is positive from Lemma 3]1). Thus
ulab*|u* = Jla” + £ |b]* becomes

1 1
(3.2) uwlal|b|lw*u* = =|a|’ + —|b|%.
p q
By Theorenj 1.8, and becaugé|b| = |b||a| (Lemmd 3.2), we get
1 1
~lal” + ~[b]" = |al[b].
p q
Hence from|[(3.2)
1 1
(3.3) uw|al|blw*u* = =|a|’ + =|b|? > |al|b|.
p q

Becauseuw is unitary (sincew is unitary from the proof of Lemmia 3.2), and becajigé| is
positive, Lemma 3]3 yields

la||b| = uwlal|b|lw*u*.
Hence,[(3.R) becomes

(3.9) allbl = Jaf? + [b.
p q
Let
Alal) > Aollal) > -+ > 0
and

A(fol) = Ao([bl) = -+ >0
be the eigenvalues ¢é| and|b|. Becauseéa| and|b| belong to a commutative™*-algebra, the
spectra ofja||b| and%|a|p + %|b[‘1 are determined from the spectra|of and|b|, i.e., for each
positive integerk,

Ak(lal[b]) = Ae(fal) Ae([0]),

and
1 1 1 1
A | —lal? + =167 ) = =Ae(la])? + = Ax(|b])7.
 (lab o Sit) = aelal + 2xude)
Therefore, the equatiop (3.4) implies that for eviry
1 1
Ai(lal)Ax([b]) = 5Ak(\a!)p + 5/\k(‘b|)q'

This is equality in the (scalar) Young’s inequality, and hence for ekery
Ak([0]) = Ae(lal)
which yields (note that andb are normal operators)

B = lal"™".
From Theorem 3]4 we immediately have
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Corollary 3.5. If @ andb are positive commuting compact operators such théltis injective,
and if there is an isometry € B(H) for which

ula'd "t ut = ta + (1 —t)b
for somet € [0, 1], then

b — at—l

Theorem 3.6. Assume that, b € B(H) are commuting compact normal operators, each being
injective and having dense range. If

bl = lal"~",

then there exists a unitary such that:
1 1
ulab™u” = ~lal” + ~1b|*,
p q
H 1 1 _
forp,q € (1,00) Wlthg +,=1
Proof. By the hypothesis, it is easy to get
1 1
lal[b] = —lal” + =%,
p q

we note thata||b| is positive here.
If b = w|b| is the polar decomposition &f thenker(|ab*|) = {0} (Lemmd 3.2)w is unitary
(5, p. 75]), and

|ab*| = w]|a||bjw™.
Letu = w*. Then . .
ulab®|u* = —l|al? + —|b|%.
p q
O

Corollary 3.7. If a andb are positive commuting compact operators such tlta injective,
and if there existg € [0, 1] such that

b=a"",
then there is an isometry € B(H ) for which

ula'b* ! |u* = ta + (1 — t)b.
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