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ABSTRACT. If a andb are compact operators acting on a complex separable Hilbert space, and
if p, q ∈ (1,∞) satisfy 1

p + 1
q = 1, then there exists a partial isometryu such that the initial

space ofu is (ker(|ab∗|))⊥ and

u|ab∗|u∗ ≤ 1
p
|a|p +

1
q
|b|q.

Furthermore, if|ab∗| is injective, then the operatoru in the inequality above can be taken as a
unitary. In this paper, we discuss the case of equality of this Young’s inequality, and obtain a
characterization for compact normal operators.
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1. I NTRODUCTION

Operator and matrix versions of classical inequalities are of considerable interest, and there is
an extensive body of literature treating this subject; see, for example, [1] – [4], [6] – [11]. In one
direction, many of the operator inequalities to have come under study are inequalities between
the norms of operators. However, a second line of research is concerned with inequalities
arising from the partial order on Hermitian operators acting on a Hilbert space. It is in this latter
direction that this paper aims.

A fundamental inequality between positive real numbers is the arithmetic-geometric mean
inequality, which is of interest herein, as is its generalisation in the form of Young’s inequality.

For the positive real numbersa, b, the arithmetic-geometric mean inequality says that
√

ab ≤ 1

2
(a + b).
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2 RENYING ZENG

Replacinga, b by their squares, this could be written in the form

ab ≤ 1

2
(a2 + b2).

R. Bhatia and F. Kittaneh [3] extended the arithmetic-geometric mean inequality to positive
(semi-definite) matricesa, b in the following manner: for anyn×n positive matricesa, b, there
is ann× n unitary matrixu such that

u|ab∗|u∗ ≤ 1

2
(a2 + b2).

(The modulus|y| is defined by

|y| = (y∗y)
1
2 .

for anyn× n complex matrixy.) We note that the productab of two positive matricesa andb
is not necessarily positive.

Young’s inequality is a generalisation of the arithmetic-geometric mean inequality: for any
positive real numbersa, b, and anyp, q ∈ (1,∞) with 1

p
+ 1

q
= 1,

ab ≤ 1

p
ap +

1

q
bq.

T. Ando [2] showed Young’s inequality admits a matrix-valued version analogous to the Bhatia–
Kittaneh theorem: ifp, q ∈ (1,∞) satisfy 1

p
+ 1

q
= 1, then for any paira, b of n × n complex

matrices, there is a unitary matrixu such that

u|ab∗|u∗ ≤ 1

p
|a|p +

1

q
|b|q.

Although finite-rank operators are norm-dense in the set of all compact operators acting on a
fixed Hilbert space, the Ando–Bhatia–Kittaneh inequalities, like most matrix inequalities, do
not immediately carry over to compact operators via the usual approximation methods, and
consequently only a few of the fundamental matrix inequalities are known to hold in compact
operators.

J. Erlijman, D. R. Farenick, and the author [4] developed a technique through which the
Ando–Bhatia–Kittaneh results extend to compact operators, and established the following ver-
sion of Young’s inequality.

Theorem 1.1. If a andb are compact operators acting on a complex separable Hilbert space,
and if p, q ∈ (1,∞) satisfy 1

p
+ 1

q
= 1, then there is a partial isometryu such that the initial

space ofu is (ker(|ab ∗ |))⊥ and

u|ab∗|u∗ ≤ 1

p
|a|p +

1

q
|b|q.

Furthermore, if|ab∗| is injective, then the operatoru in the inequality above can be taken to be
a unitary.

Theorem 1.1 is made in a special case as a corollary below.

Corollary 1.2. If a andb are positive compact operators with trivial kernels, and ift ∈ [0, 1],
then there is a unitaryu such that

u|atb1−t|u∗ ≤ ta + (1− t)b.

The proof of the following Theorem 1.3 is very straightforward.
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Theorem 1.3. If A is a commutativeC∗-algebra with multiplicative identity, and ifp, q ∈
(1,∞) satisfy1

p
+ 1

q
= 1, then

|ab∗| ≤ 1

p
|a|p +

1

q
|b|q

for all a, b ∈ A. Furthermore, if the equality holds, then

|b| = |a|p−1.

2. AN EXAMPLE

We give an example here for convenience.
We illustrate that, in general, we do not have

|ab∗| ≤ 1

p
|a|p +

1

q
|b|q.

But, for this example, there exists a unitaryu such that

u|ab∗|u∗ ≤ 1

2
(|a|p + |b|q).

Example 2.1. If a =

(
2 0
0 1

)
andb =

(
1 1
1 1

)
, thena andb are (semi-definite) positive

and
1

2
(a2 + b2) =

(
3 1
1 1

2

)
,

and

|ab∗| = |ab| =

( √
10
2

√
10
2

√
10
2

√
10
2

)
.

However,

c =
1

2
(a2 + b2)− |ab| =

(
3−

√
10
2

1−
√

10
2

1−
√

10
2

3−
√

10
2

)
is not a (semi-definite) positive matrix, i.e.,c = 1

2
(a2 + b2) − |ab| ≥ 0 does not hold. (In fact,

the determinant ofc satisfies thatdet(c) < 0). So, we do not have

|ab| ≤ 1

2
(a2 + b2).

But the spectrum of|ab| is

σ(|ab|) =
{√

10, 0
}

,

the spectrum of1
2
(a2 + b2) is

σ

(
1

2
(a2 + b2)

)
=

{
7

2
, 1

}
.

Therefore, there exists a unitary matrixu such that

u|ab|u∗ ≤ 1

2
(a2 + b2).

We compute the unitary matrixu as follows.
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Taking unitary matrices

v =
1√
5

(
−2 1
−1 −2

)
and

w =
1√
2

(
1 1
1 −1

)
,

we then have

v

(
1

2
(a2 + b2)

)
v∗ =

(
7
2

0

0 1

)
,

and

w|ab|w∗ =

( √
10 0
0 0

)
.

Therefore

w|ab|w∗ ≤ v

(
1

2
(a2 + b2)

)
v∗.

By taking a unitary matrix

u = v∗w =
1√
10

(
−3 −1
−1 3

)
,

we get

u|ab|u∗ ≤ 1

2
(a2 + b2).

3. THE CASE OF EQUALITY I N COMMUTING NORMAL OPERATORS

In this section, we discuss the cases of equality in Young’s inequality.
Assume thatH denotes a complex, separable Hilbert space of finite or infinite dimension.

The inner product of vectorsξ, η ∈ H is denoted by〈ξ, η〉, and the norm ofξ ∈ H is denoted
by ||ξ||.

If x : H → H is a linear transformation, thenx is called an operator (onH) if x is also
continuous with respect to the norm-topology onH. The complex algebra of all operators on
H is denoted byB(H), which is aC∗-algebra. We usex∗ to denote the adjoint ofx ∈ B(H).

An operatorx on H is said to be Hermitian ifx∗ = x. A Hermitian operatorx is positive
if σ(x) ⊆ R+

0 , whereσ(x) is the spectrum ofx, andR+
0 is the set of non-negative numbers.

Equivalently,x ∈ B(H) is positive if and only if〈xξ, ξ〉 ≥ 0 for all ξ ∈ H. If a, b ∈ B(H) are
Hermitian, thena ≤ b shall henceforth denote thatb− a is positive.

Lemma 3.1. If a, b ∈ B(H) are normal and commuting, whereB(H) is the complex algebra
of all continuous linear operators onH, then

|a||b| = |b||a|,
and|a||b| is positive.

Proof. We obviously have
a∗b∗ = b∗a∗.

And by the Fuglede theorem [5] we get

a∗b = ba∗, ab∗ = b∗a.

On the other hand, ifc, d ∈ B(H) with c,d positive and commuting, then

c1/2d1/2 · c1/2d1/2 = c1/2c1/2 · d1/2d1/2 = cd.
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Hence
(cd)1/2 = c1/2d1/2.

Therefore

|a||b| = (a∗a)1/2(b∗b)1/2

= (a∗ab∗b)1/2

= (b∗b)1/2(a∗a)1/2

= |b||a|.

Which implies that|a||b| is positive and

|a||b| = (|a||b|)∗ = |b||a|.

(In fact, |a||b| is the positive square root of the positive operatora∗ab∗b). �

Lemma 3.2. If a, b ∈ B(H)are normal operators such thatab = ba, then the following state-
ments are equivalent:

(i) the kernel of|ab∗| : ker(|ab∗|) = {0};
(ii) a andb are injective and have dense range.

Proof. (i) → (ii). Let b = w|b| be the polar decomposition ofb. By observation we have

||a||b|| = (|b||a|2|b|)1/2.

Thus, because the closures of the ranges of a positive operator and its square root are equal, the
closures of the ranges of|b||a|2|b|and||a||b|| are the same. Moreover, asw∗w||a||b|| = ||a||b||,
we have that

(3.1) f(w|b||a|2|b|w∗) = wf(|b||a|2|b|)w∗,

for all polynomialsf . Chooseδ > 0 so thatσ(|b||a|2|b|) ⊆ [0, δ]. By the Weierstrass ap-
proximation theorem, there is a sequence of polynomialsfn such thatfn(t) →

√
t(n → ∞)

uniformly on[0, δ]. Thus, from (3.1) and functional calculus,

(w|b||a|2|b|w∗)1/2 = w(|b||a|2|b|)1/2w∗ = w||a||b||w∗.

Let a = v|a| be the polar decomposition ofa. Then the left-hand term in the equalities above
expands as follows:

(w|b||a|2|b|w∗)1/2 = w(|b||a|v∗v|a||b|)1/2w∗ = (ba∗ab∗)1/2 = |ab∗|.

Thus,
|ab∗| = w||a||b||w∗.

Becausea andb are commuting normal, from Lemma 3.1|a||b| = |b||a| and|a||b| is positive.
This implies that

|ab∗| = w|a||b|w∗.
If ξ ∈ ker(w∗), thenξ ∈ ker(|ab∗|). Henceker(w∗) = {0}, which means that the range of
ran(w) = H. Hence,w is unitary. By the theorem on polar decomposition [5, p. 75],b is
injective and has dense range.

Let a = v|a| be the polar decomposition ofa. We know thatab = ba implies thatab∗ = b∗a
(again, by Fuglede theorem). Therefore, we can interchange the role ofa andb in the previous
paragraph to obtain:a∗ is injective and has dense range. Thus,a is injective and has dense
range.
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(ii) → (i). From the hypothesis we have polar decompositionsa = v|a|, b = w|b|, wherev and
w are unitary [5, p. 75]. Therefore,ker(|a|) = ker(|b|) = {0}. Because

|ab∗| = w|a||b|w∗

andw is unitary, we have
ker(ab∗) = {0}.

�

Lemma 3.3. If x ∈ B(H) is positive, compact, and injective, and ifx ≤ u∗xu for some unitary
u, thenu is diagonalisable and commutes withx.

Proof. Becausex is injective, the Hilbert spaceH is the direct sum of the eigenspaces ofx:

H =
∑⊕

λ∈σp(x)
ker(x− λ1).

Let
σp(x) = {λ1, λ2, ...},

whereλ1 > λ2 > · · · > 0 are the (distinct) eigenvalues ofx, listed in descending order. Our
first goal is to prove thatker(x − λj1) is invariant underu andu∗ for every positive integerj;
we shall do so by induction.

Start withλ1; note thatλ1 = ||x||.
If ξ ∈ ker(x− λ11) is a unit vector, then

λ1 = λ1 〈ξ, ξ〉
= 〈λ1ξ, ξ〉
= 〈xξ, ξ〉
≤ 〈u∗xuξ, ξ〉
= 〈xuξ, uξ〉
≤ ||x|| · ||uξ||2 = λ1.

Thus,
〈xuξ, uξ〉 = λ1 = max{〈xη, η〉 : ||η|| = 1}.

Which means thatuξ is an eigenvector ofx corresponding to the eigenvalueλ1. Then,

uξ ∈ ker(x− λ11).

Becauseker(x− λ11) is finite-dimensional andu is unitary, we have that

u : ker(x− λ11) → ker(x− λ11)

is an isomorphism. Furthermore,U |ker(x−λ11) is diagonalisable because

dim(ker(x− λ11)) < ∞,

whereU |ker(x−λ11) is the restriction ofU in the subspaceker(x− λ11). Hence,ker(x− λ11) is
invariant underu∗ (becauseker(x − λ11) has a finite orthonormal basis of eigenvectors ofu),
which means that if

η ∈ ker(x− λ11),

then
uη ∈ ker(x− λ11).

Now chooseλ2, and pick up a unit vectorξ ∈ ker(x− λ21).
Note that

λ2 = max{〈xη, η〉 : ||η|| = 1, η ∈ ker(x− λ11)⊥}.
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Using the arguments of the previous paragraph,

λ2 ≤ 〈xξ, ξ〉 ≤ 〈xuξ, uξ〉 ≤ λ2.

(Becauseuξ is a unit vector orthogonal toker(x − λ11)). Hence, by the minimum maximum
principle,

uξ ∈ ker(x− λ21).

So
u : ker(x− λ21) → ker(x− λ21)

is an isomorphism,ker(x− λ21) has an orthonormal basis of eigenvectors ofu.
And if η ∈ ker(x− λ11)⊕ ker(x− λ21), then

uη ∈ ker(x− λ11)⊕ ker(x− λ21).

Inductively, assume thatu leavesker(x−λj1) invariant for all1 ≤ j ≤ k, and look atλk+1. By
the arguments above, (∑⊕

1≤j≤k
ker(x− λj1)

)⊥
is also invariant underu. Hence, ifξ ∈ ker(x− λk+11) is a unit vector, then

λk+1 = 〈xξ, ξ〉
≤ 〈xuξ, uξ〉

≤ max

{
〈xη, η〉 : ||η|| = 1, η ∈

(∑⊕

1≤j≤k
ker(x− λj1)

)⊥}
= λk+1.

By the minimum-maximum principle,uξ is an eigenvector ofx corresponding toλk+1. Hence,

ker(x− λk+11)

is invariant underu andu∗. This completes the induction process.
What these arguments show is thatH has an orthonormal basis{φ}∞j=1 of eigenvectors of

bothx andu; hence
xuφj = uxφj,

for each positive integerj. Consequently,

xuξ = uxξ, ∀ξ ∈ H.

meaning that
xu = ux.

�

Below is a major result of this paper

Theorem 3.4.Assume thata, b ∈ B(H) are commuting compact normal operators, each being
injective and having dense ranges. If there exists a unitaryu such that:

u|ab∗|u∗ =
1

p
|a|p +

1

q
|b|q,

for somep, q ∈ (1,∞) with 1
p

+ 1
q

= 1, then

|b| = |a|p−1.
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Proof. By the hypothesis, ifb = w|b| is the polar decomposition ofb, thenker(|ab∗|) = {0},
(Lemma 3.2) andw is unitary ([5, p. 75]). Moreover,

|ab∗| = w|a||b|w∗,

as a and b are commuting normals (noting that|a||b| is positive from Lemma 3.1). Thus
u|ab∗|u∗ = 1

p
|a|p + 1

q
|b|q becomes

(3.2) uw|a||b|w∗u∗ =
1

p
|a|p +

1

q
|b|q.

By Theorem 1.3, and because|a||b| = |b||a| (Lemma 3.2), we get

1

p
|a|p +

1

q
|b|q ≥ |a||b|.

Hence from (3.2)

(3.3) uw|a||b|w∗u∗ =
1

p
|a|p +

1

q
|b|q ≥ |a||b|.

Becauseuw is unitary (sincew is unitary from the proof of Lemma 3.2), and because|a||b| is
positive, Lemma 3.3 yields

|a||b| = uw|a||b|w∗u∗.
Hence, (3.2) becomes

(3.4) |a||b| = 1

p
|a|p +

1

q
|b|q.

Let
λ1(|a|) ≥ λ2(|a|) ≥ · · · > 0

and
λ1(|b|) ≥ λ2(|b|) ≥ · · · > 0

be the eigenvalues of|a| and|b|. Because|a| and|b| belong to a commutativeC∗-algebra, the
spectra of|a||b| and 1

p
|a|p + 1

q
|b|q are determined from the spectra of|a| and|b|, i.e., for each

positive integerk,
λk(|a||b|) = λk(|a|)λk(|b|),

and

λk

(
1

p
|a|p +

1

q
|b|q
)

=
1

p
λk(|a|)p +

1

q
λk(|b|)q.

Therefore, the equation (3.4) implies that for everyk

λk(|a|)λk(|b|) =
1

p
λk(|a|)p +

1

q
λk(|b|)q.

This is equality in the (scalar) Young’s inequality, and hence for everyk

λk(|b|) = λk(|a|)p−1

which yields (note thata andb are normal operators)

|b| = |a|p−1.

�

From Theorem 3.4 we immediately have
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Corollary 3.5. If a andb are positive commuting compact operators such that|ab| is injective,
and if there is an isometryv ∈ B(H) for which

u|atb1−t|u∗ = ta + (1− t)b

for somet ∈ [0, 1], then
b = at−1.

Theorem 3.6.Assume thata, b ∈ B(H) are commuting compact normal operators, each being
injective and having dense range. If

|b| = |a|p−1,

then there exists a unitaryu such that:

u|ab∗|u∗ =
1

p
|a|p +

1

q
|b|q,

for p, q ∈ (1,∞) with 1
p

+ 1
q

= 1.

Proof. By the hypothesis, it is easy to get

|a||b| = 1

p
|a|p +

1

q
|b|q,

we note that|a||b| is positive here.
If b = w|b| is the polar decomposition ofb, thenker(|ab∗|) = {0} (Lemma 3.2),w is unitary

([5, p. 75]), and
|ab∗| = w|a||b|w∗.

Let u = w∗. Then

u|ab∗|u∗ =
1

p
|a|p +

1

q
|b|q.

�

Corollary 3.7. If a and b are positive commuting compact operators such thatab is injective,
and if there existst ∈ [0, 1] such that

b = at−1,

then there is an isometryv ∈ B(H) for which

u|atb1−t|u∗ = ta + (1− t)b.
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