A WEIGHTED GEOMETRIC INEQUALITY AND ITS APPLICATIONS

JIAN LIU

East China Jiaotong University
Nanchang City, Jiangxi Province
330013, P.R. China
EMail: liujian99168@yahoo.com.cn

27 July, 2007

Received:
Accepted:
Communicated by:
2000 AMS Sub. Class.:
Key words.
Abstract:

20 March, 2008
S.S. Dragomir

Primary 51M16.
Triangle, Point, Polar moment of inertia inequality.
A new weighted geometric inequality is established by Klamkin's polar moment of inertia inequality and the inversion transformation, some interesting applications of this result are given, and some conjectures which verified by computer are also mentioned.

Weighted Geometric Inequality
Jian Liu
vol. 9, iss. 2, art. 58, 2008

Title Page
Contents

Full Screen

Close
journal of inequalities in pure and applied mathematics
issn: 1443-575

Contents

1 Introduction 3

2 Main Result 4
3 Applications of the Theorem 7
4 Some Conjectures 14

Weighted Geometric Inequality
Jian Liu
vol. 9, iss. 2, art. 58, 2008

Title Page
Contents

Page 2 of 18
Go Back
Full Screen

Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

1. Introduction

In 1975, M.S. Klamkin [1] established the following inequality: Let $A B C$ be an arbitrary triangle of sides a, b, c, and let P be an arbitrary point in a space, the distances of P from the vertices A, B, C are R_{1}, R_{2}, R_{3}. If x, y, z are real numbers, then

$$
\begin{equation*}
(x+y+z)\left(x R_{1}^{2}+y R_{2}^{2}+z R_{3}^{2}\right) \geq y z a^{2}+z x b^{2}+x y c^{2}, \tag{1.1}
\end{equation*}
$$

with equality if and only if P lies in the plane of $\triangle A B C$ and $x: y: z=\vec{S}_{\triangle P B C}$:

Weighted Geometric Inequality Jian Liu
vol. 9, iss. 2, art. 58, 2008

Title Page
Contents

Page 3 of 18
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

2. Main Result

In order to prove our new results, we firstly give the following lemma.
Lemma 2.1. Let $A B C$ be an arbitrary triangle, and let P be an arbitrary point on the plane of the triangle $A B C$. If the following inequality:

$$
\begin{equation*}
f\left(a, b, c, R_{1}, R_{2}, R_{3}\right) \geq 0 \tag{2.1}
\end{equation*}
$$

holds, then we have the dual inequality:

$$
\begin{equation*}
f\left(a R_{1}, b R_{2}, c R_{3}, R_{2} R_{3}, R_{3} R_{1}, R_{1} R_{2}\right) \geq 0 \tag{2.2}
\end{equation*}
$$

Indeed, the above conclusion can be deduced by using inversion transformation, see [6] or [3], [7].

Now, we state and prove main result.
Theorem 2.2. Let x, y, z be positive real numbers. Then for any triangle $A B C$ and arbitrary point P in the plane of $\triangle A B C$, the following inequality holds:

$$
\begin{equation*}
\frac{R_{1}^{2}}{x}+\frac{R_{2}^{2}}{y}+\frac{R_{3}^{2}}{z} \geq \frac{a R_{1}+b R_{2}+c R_{3}}{\sqrt{y z+z x+x y}}, \tag{2.3}
\end{equation*}
$$

with equality if and only if $\triangle A B C$ is acute-angled, P coincides with its orthocenter and $x: y: z=\cot A: \cot B: \cot C$.
Proof. If P coincides with one of the vertices of $\triangle A B C$, for example $P \equiv A$, then $P A=0, P B=c, P C=b$, and (2.3) becomes a trivial inequality. In this case, equality in (2.3) obviously cannot occur.

Next, assume that P does not coincide with the vertices.
J

Weighted Geometric Inequality Jian Liu
vol. 9, iss. 2, art. 58, 2008

Title Page
Contents

Page 4 of 18
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

If x, y, z are positive real numbers, then by the polar moment of inertia inequality (1.1) we have

$$
\left(x R_{1}^{2}+y R_{2}^{2}+z R_{3}^{2}\right)\left(\frac{1}{y z}+\frac{1}{z x}+\frac{1}{x y}\right) \geq \frac{a^{2}}{x}+\frac{b^{2}}{y}+\frac{c^{2}}{z}
$$

On the other hand, from the Cauchy-Schwarz inequality we get

$$
\frac{a^{2}}{x}+\frac{b^{2}}{y}+\frac{c^{2}}{z} \geq \frac{(a+b+c)^{2}}{x+y+z}
$$

Weighted Geometric Inequality Jian Liu
vol. 9, iss. 2, art. 58, 2008
with equality if and only if $x: y: z=a: b: c$.
Combining these two above inequalities, for any positive real numbers x, y, z, the following inequality holds:

$$
\begin{equation*}
\left(x R_{1}^{2}+y R_{2}^{2}+z R_{3}^{2}\right)\left(\frac{1}{y z}+\frac{1}{z x}+\frac{1}{x y}\right) \geq \frac{(a+b+c)^{2}}{x+y+z} \tag{2.4}
\end{equation*}
$$

and equality holds if and only if $x: y: z=a: b: c$ and P is the incenter of $\triangle A B C$.
Now, applying the inversion transformation in the lemma to inequality (2.4), we obtain

$$
\left[x\left(R_{2} R_{3}\right)^{2}+y\left(R_{3} R_{1}\right)^{2}+z\left(R_{1} R_{2}\right)^{2}\right]\left(\frac{1}{y z}+\frac{1}{z x}+\frac{1}{x y}\right) \geq \frac{\left(a R_{1}+b R_{2}+c R_{3}\right)^{2}}{x+y+z}
$$

Title Page
Contents

Page 5 of 18
Go Back
Full Screen

Close

journal of inequalities in pure and applied mathematics
issn: 1443-575b

For $x \rightarrow x R_{1}^{2}, y \rightarrow y R_{2}^{2}, z \rightarrow z R_{3}^{2}$, we have:

$$
\begin{equation*}
\frac{1}{y z}+\frac{1}{z x}+\frac{1}{x y} \geq\left(\frac{a R_{1}+b R_{2}+c R_{3}}{x R_{1}^{2}+y R_{2}^{2}+z R_{3}^{2}}\right)^{2} \tag{2.6}
\end{equation*}
$$

Take again $x \rightarrow \frac{1}{x}, y \rightarrow \frac{1}{y}, z \rightarrow \frac{1}{z}$, we get the inequality (2.3) of the theorem.
Note the conclusion in [7]: If equality in (2.1) occurs only when P is the incenter of $\triangle A B C$, then equality in (2.2) occurs only when $\triangle A B C$ is acute-angled and P is its orthocenter. According to this and the condition for which equality holds in (2.4), we know that equality in (2.3) holds if and only if $\triangle A B C$ is acute-angled, P is its orthocenter and

$$
\begin{equation*}
\frac{R_{1}}{x a}=\frac{R_{2}}{y b}=\frac{R_{3}}{c z} . \tag{2.7}
\end{equation*}
$$

When P is the orthocenter of the acute triangle $A B C$, we have $R_{1}: R_{2}: R_{3}=$ $\cos A: \cos B: \cos C$. Hence, in this case, from (2.7) we have $x: y: z=\cot A:$ $\cot B: \cot C$. Thus, there is equality in (2.3) if and only if $\triangle A B C$ is acute-angled, P coincides with its orthocenter and $x / \cot A=y / \cot B=z / \cot C$. This completes the proof of the theorem.

Remark 1. If P does not coincide with the vertices, then inequality (2.4) is equivalent to the following result in [8]:

$$
\begin{equation*}
x \frac{R_{2} R_{3}}{R_{1}}+y \frac{R_{3} R_{1}}{R_{2}}+z \frac{R_{1} R_{2}}{R_{3}} \geq 2 \sqrt{\frac{x y z}{x+y+z}} s \tag{2.8}
\end{equation*}
$$

where s is the semi-perimeter of $\triangle A B C, x, y, z$ are positive real numbers. In [8], (2.8) was proved without using the polar moment of inertia inequality.

Weighted Geometric Inequality Jian Liu
vol. 9, iss. 2, art. 58, 2008

Title Page
Contents

Page 6 of 18
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

3. Applications of the Theorem

Besides the above notations, as usual, let R and r denote the radii of the circumcircle and incircle of triangle $A B C$, respectively, Δ denote the area, r_{a}, r_{b}, r_{c} denote the radii of the excircles. In addition, when point P lies in the interior of triangle $A B C$, let r_{1}, r_{2}, r_{3} denote the distances of P to the sides $B C, C A, A B$.

According to the theorem and the well-known inequality for any point P in the plane

$$
\begin{equation*}
a R_{1}+b R_{2}+c R_{3} \geq 4 \Delta \tag{3.1}
\end{equation*}
$$

we get
Conjecture 3.1. For any point P in the plane and arbitrary positive numbers x, y, z, the following inequality holds:

$$
\begin{equation*}
\frac{R_{1}^{2}}{x}+\frac{R_{2}^{2}}{y}+\frac{R_{3}^{2}}{z} \geq \frac{4 \Delta}{\sqrt{y z+z x+x y}} \tag{3.2}
\end{equation*}
$$

with equality if and only if $x: y: z=\cot A: \cot B: \cot C$ and P is the orthocenter of the acute angled triangle $A B C$.
Remark 2. Clearly, (3.2) is equivalent with

$$
\begin{equation*}
x R_{1}^{2}+y R_{2}^{2}+z R_{3}^{2} \geq 4 \sqrt{\frac{x y z}{x+y+z}} \Delta . \tag{3.3}
\end{equation*}
$$

The above inequality was first given in [9] by Xue-Zhi Yang. The author [10] obtained the following generalization:

$$
\begin{equation*}
x\left(\frac{a^{\prime}}{a} R_{1}\right)^{2}+y\left(\frac{b^{\prime}}{b} R_{2}\right)^{2}+z\left(\frac{c^{\prime}}{c} R_{3}\right)^{2} \geq 4 \sqrt{\frac{x y z}{x+y+z}} \Delta^{\prime}, \tag{3.4}
\end{equation*}
$$

where $a^{\prime}, b^{\prime}, c^{\prime}$ denote the sides of $\triangle A^{\prime} B^{\prime} C^{\prime}, \Delta^{\prime}$ denotes its area.

Weighted Geometric Inequality Jian Liu
vol. 9, iss. 2, art. 58, 2008

Title Page
Contents

Page 7 of 18
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

If, in (2.3) we put $x=\frac{1}{a}, y=\frac{1}{b}, z=\frac{1}{c}$, and note that $\frac{1}{b c}+\frac{1}{c a}+\frac{1}{a b}=\frac{1}{2 R r}$, then we get the result:

Conjecture 3.2. For arbitrary point P in the plane of $\triangle A B C$, the following inequality holds:

$$
\begin{equation*}
\frac{a R_{1}^{2}+b R_{2}^{2}+c R_{3}^{2}}{a R_{1}+b R_{2}+c R_{3}} \geq \sqrt{2 R r} \tag{3.5}
\end{equation*}
$$

Equality holds if and only if the triangle $A B C$ is equilateral and P is its center.
Remark 3. The conditions for equality that the following inequalities of Corollaries $3.4-3.8$ have are the same as the statement of Corollary 3.2.

In the theorem, for $x=\frac{R_{1}}{a}, y=\frac{R_{2}}{b}, z=\frac{R_{3}}{c}$, after reductions we obtain
Conjecture 3.3. If P is an arbitrary point which does not coincide with the vertices of $\triangle A B C$, then

$$
\begin{equation*}
\frac{R_{2} R_{3}}{b c}+\frac{R_{3} R_{1}}{c a}+\frac{R_{1} R_{2}}{a b} \geq 1 \tag{3.6}
\end{equation*}
$$

Equality holds if and only if $\triangle A B C$ is acute-angled and P is its orthocenter.
Inequality (3.6) was first proved by T. Hayashi (see [11] or [3]), who gave its two generalizations in [12].

Indeed, assume P does not coincide with the vertices, put $x \rightarrow \frac{R_{1}}{x a}, y \rightarrow \frac{R_{2}}{y b}, z \rightarrow$ $\frac{R_{3}}{z c}$ in (2.2), then we get a weighted generalized form of Hayashi inequality:

$$
\begin{equation*}
\frac{R_{2} R_{3}}{y z b c}+\frac{R_{3} R_{1}}{z x c a}+\frac{R_{1} R_{2}}{x y a b} \geq\left(\frac{a R_{1}+b R_{2}+c R_{3}}{x a R_{1}+y b R_{2}+z c R_{3}}\right)^{2} \tag{3.7}
\end{equation*}
$$

J

Weighted Geometric Inequality Jian Liu
vol. 9, iss. 2, art. 58, 2008

Title Page
Contents

Page 8 of 18
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

For $x=\frac{1}{a}, y=\frac{1}{b}, z=\frac{1}{c}$, we have

$$
\begin{equation*}
\left(R_{2} R_{3}+R_{3} R_{1}+R_{1} R_{2}\right)\left(R_{1}+R_{2}+R_{3}\right)^{2} \geq\left(a R_{1}+b R_{2}+c R_{3}\right)^{2} \tag{3.8}
\end{equation*}
$$

Applying the inversion transformation of the lemma to the above inequality, then dividing both sides by $R_{1} R_{2} R_{3}$, we get the following result.

Conjecture 3.4. If P is an arbitrary point which does not coincide with the vertices of $\triangle A B C$, then

$$
\begin{equation*}
\left(R_{2} R_{3}+R_{3} R_{1}+R_{1} R_{2}\right)^{2}\left(\frac{1}{R_{2} R_{3}}+\frac{1}{R_{3} R_{1}}+\frac{1}{R_{1} R_{2}}\right) \geq 4 s^{2} \tag{3.9}
\end{equation*}
$$

It is not difficult to see that the above inequality is stronger than the following result which the author obtained many years ago:

$$
\begin{equation*}
\sqrt{\frac{R_{2} R_{3}}{R_{1}}}+\sqrt{\frac{R_{3} R_{1}}{R_{2}}}+\sqrt{\frac{R_{1} R_{2}}{R_{3}}} \geq \sqrt{2 \sqrt{3} s} \tag{3.10}
\end{equation*}
$$

Now, let P be an interior point of the triangle $A B C$. Then we have the well known inequalities (see [13]):

$$
a R_{1} \geq b r_{3}+c r_{2}, b R_{2} \geq c r_{1}+a r_{3}, c R_{3} \geq a r_{2}+b r_{1}
$$

Summing them up, we note that $a+b+c=2 s$ and by the identity $a r_{1}+b r_{2}+c r_{3}=$ $2 r s$, we easily get

$$
\begin{equation*}
a R_{1}+b R_{2}+c R_{3} \geq 2 s\left(r_{1}+r_{2}+r_{3}\right)-2 r s \tag{3.11}
\end{equation*}
$$

Multiplying both sides by 2 then adding inequality (3.1) and using $\Delta=r s$,

$$
3\left(a R_{1}+b R_{2}+c R_{3}\right) \geq 4 s\left(r_{1}+r_{2}+r_{3}\right)
$$

Weighted Geometric Inequality Jian Liu
vol. 9, iss. 2, art. 58, 2008

Title Page
Contents

Page 9 of 18
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
that is

$$
\begin{equation*}
\frac{a R_{1}+b R_{2}+c R_{3}}{r_{1}+r_{2}+r_{3}} \geq \frac{4}{3} s \tag{3.12}
\end{equation*}
$$

According to this and the equivalent form (2.5) of inequality (2.3), we immediately get the result:

Conjecture 3.5. Let P be an interior point of the triangle $A B C$. Then

$$
\begin{equation*}
\frac{\left(R_{2} R_{3}\right)^{2}}{r_{2} r_{3}}+\frac{\left(R_{3} R_{1}\right)^{2}}{r_{3} r_{1}}+\frac{\left(R_{1} R_{2}\right)^{2}}{r_{1} r_{2}} \geq \frac{16}{9} s^{2} \tag{3.13}
\end{equation*}
$$

From inequalities (3.8) and (3.12) we infer that

$$
\left(R_{2} R_{3}+R_{3} R_{1}+R_{1} R_{2}\right)\left(R_{1}+R_{2}+R_{3}\right)^{2} \geq \frac{16}{9} s^{2}\left(r_{1}+r_{2}+r_{3}\right)^{2}
$$

Noting again that $3\left(R_{2} R_{3}+R_{3} R_{1}+R_{1} R_{2}\right) \leq\left(R_{1}+R_{2}+R_{3}\right)^{2}$, we get the following inequality:

Conjecture 3.6. Let P be an interior point of triangle $A B C$, then

$$
\begin{equation*}
\frac{\left(R_{1}+R_{2}+R_{3}\right)^{2}}{r_{1}+r_{2}+r_{3}} \geq \frac{4}{\sqrt{3}} s \tag{3.14}
\end{equation*}
$$

Letting $x=r_{a}, y=r_{b}, z=r_{c}$ in (2.3) and noting that identity $r_{b} r_{c}+r_{c} r_{a}+r_{a} r_{b}=$ s^{2}, we have

$$
\begin{equation*}
\frac{R_{1}^{2}}{r_{a}}+\frac{R_{2}^{2}}{r_{b}}+\frac{R_{3}^{2}}{r_{c}} \geq \frac{1}{s}\left(a R_{1}+b R_{2}+c R_{3}\right) . \tag{3.15}
\end{equation*}
$$

This inequality and (3.12) lead us to the following inequality:

Weighted Geometric Inequality Jian Liu
vol. 9, iss. 2, art. 58, 2008

Title Page
Contents

Page 10 of 18
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

Conjecture 3.7. Let P be an interior point of the triangle $A B C$, then

$$
\begin{equation*}
\frac{R_{1}^{2}}{r_{a}}+\frac{R_{2}^{2}}{r_{b}}+\frac{R_{3}^{2}}{r_{c}} \geq \frac{4}{3}\left(r_{1}+r_{2}+r_{3}\right) . \tag{3.16}
\end{equation*}
$$

Adding (3.1) and (3.11) then dividing both sides by 2 , we have

$$
\begin{equation*}
a R_{1}+b R_{2}+c R_{3} \geq s\left(r_{1}+r_{2}+r_{3}+r\right) . \tag{3.17}
\end{equation*}
$$

From this and (3.15), we again get the following inequality which is similar to (3.16):

Weighted Geometric Inequality Jian Liu
vol. 9, iss. 2, art. 58, 2008

Title Page
Contents

Page 11 of 18
Go Back
Full Screen

Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

Conjecture 3.9. Let P be an interior point of the triangle $A B C$. Then

$$
\begin{equation*}
\frac{r_{1} r_{2} r_{3}}{r_{p}^{2}} \leq 2 R \tag{3.20}
\end{equation*}
$$

Equality holds if and only if P is the orthocenter of the triangle $A B C$.
It is well known that there are few inequalities relating a triangle and two points. Several years ago, the author conjectured that the following inequality holds:

$$
\begin{equation*}
\frac{R_{1}^{2}}{d_{1}}+\frac{R_{2}^{2}}{d_{2}}+\frac{R_{3}^{2}}{d_{3}} \geq 4\left(r_{1}+r_{2}+r_{3}\right) \tag{3.21}
\end{equation*}
$$

where d_{1}, d_{2}, d_{3} denote the distances from an interior point Q to the sides of $\triangle A B C$.
Inequality (3.21) is very interesting and the author has been trying to prove it. In what follows, we will prove a stronger result. To do so, we need a corollary of the following conclusion (see [15]):

Let Q be an interior point of $\triangle A B C, t_{1}, t_{2}, t_{3}$ denote the bisector of $\angle B Q C$, $\angle C Q A, \angle A Q B$ respectively and $\triangle A^{\prime} B^{\prime} C^{\prime}$ be an arbitrary triangle. Then

$$
\begin{equation*}
t_{2} t_{3} \sin A^{\prime}+t_{3} t_{1} \sin B^{\prime}+t_{1} t_{2} \sin C^{\prime} \leq \frac{1}{2} \Delta \tag{3.22}
\end{equation*}
$$

with equality if and only if $\triangle A^{\prime} B^{\prime} C^{\prime} \sim \triangle A B C$, and Q is the circumcentre of $\triangle A B C$.

In (3.22), letting $\triangle A B C$ be equilateral, we immediately get

$$
\begin{equation*}
t_{2} t_{3}+t_{3} t_{1}+t_{1} t_{2} \leq \frac{1}{\sqrt{3}} \Delta \tag{3.23}
\end{equation*}
$$

From this and the simple inequality $s^{2} \geq 3 \sqrt{3} \Delta$, we have

$$
\begin{equation*}
t_{2} t_{3}+t_{3} t_{1}+t_{1} t_{2} \leq \frac{1}{9} s^{2} \tag{3.24}
\end{equation*}
$$

Weighted Geometric Inequality Jian Liu
vol. 9, iss. 2, art. 58, 2008

Title Page
Contents

Page 12 of 18
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

According to inequality (2.3) of the theorem and (3.24), we can see that

$$
\begin{equation*}
\frac{R_{1}^{2}}{t_{1}}+\frac{R_{2}^{2}}{t_{2}}+\frac{R_{3}^{2}}{t_{3}} \geq \frac{3}{s}\left(a R_{1}+b R_{2}+c R_{3}\right) . \tag{3.25}
\end{equation*}
$$

By using inequality (3.12), we obtain the following stronger version of inequality (3.21).

Conjecture 3.10. Let P and Q be two interior points of $\triangle A B C$, then

$$
\begin{equation*}
\frac{R_{1}^{2}}{t_{1}}+\frac{R_{2}^{2}}{t_{2}}+\frac{R_{3}^{2}}{t_{3}} \geq 4\left(r_{1}+r_{2}+r_{3}\right) \tag{3.26}
\end{equation*}
$$

with equality if and only if $\triangle A B C$ is equilateral and P, Q are both its center.
Analogously, from inequality (3.17) and inequality (3.25) we get:
Conjecture 3.11. Let P and Q be two interior points of $\triangle A B C$, then

$$
\begin{equation*}
\frac{R_{1}^{2}}{t_{1}}+\frac{R_{2}^{2}}{t_{2}}+\frac{R_{3}^{2}}{t_{3}} \geq 3\left(r_{1}+r_{2}+r_{3}+r\right) . \tag{3.27}
\end{equation*}
$$

with equality if and only if $\triangle A B C$ is equilateral and P, Q are both its center.

Weighted Geometric Inequality Jian Liu
vol. 9, iss. 2, art. 58, 2008

Title Page
Contents

Page 13 of 18
Go Back
Full Screen

Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

4. Some Conjectures

In this section, we will state some conjectures in relation to our results.
Inequality (3.8) is equivalent to

$$
\begin{equation*}
R_{2} R_{3}+R_{3} R_{1}+R_{1} R_{2} \geq\left(\frac{a R_{1}+b R_{2}+c R_{3}}{R_{1}+R_{2}+R_{3}}\right)^{2} \tag{4.1}
\end{equation*}
$$

With this one and the well known inequality:

$$
\begin{equation*}
R_{2} R_{3}+R_{3} R_{1}+R_{1} R_{2} \geq 4\left(w_{2} w_{3}+w_{3} w_{1}+w_{1} w_{2}\right) \tag{4.2}
\end{equation*}
$$

in mind, we pose the following
Corollary 4.1. Let P be an arbitrary interior point of the triangle $A B C$, then

$$
\begin{equation*}
\left(\frac{a R_{1}+b R_{2}+c R_{3}}{R_{1}+R_{2}+R_{3}}\right)^{2} \geq 4\left(w_{2} w_{3}+w_{3} w_{1}+w_{1} w_{2}\right) \tag{4.3}
\end{equation*}
$$

Considering Corollary 3.5 , the author posed these two conjectures:
Corollary 4.2. Let P be an arbitrary interior point of the triangle $A B C$, then

$$
\begin{equation*}
\frac{\left(R_{2} R_{3}\right)^{2}}{w_{2} w_{3}}+\frac{\left(R_{3} R_{1}\right)^{2}}{w_{3} w_{1}}+\frac{\left(R_{1} R_{2}\right)^{2}}{w_{1} w_{2}} \geq \frac{4}{3}\left(a^{2}+b^{2}+c^{2}\right) \tag{4.4}
\end{equation*}
$$

Corollary 4.3. Let P be an arbitrary interior point of the triangle $A B C$, then

$$
\begin{equation*}
\frac{\left(R_{2} R_{3}\right)^{2}}{r_{2} r_{3}}+\frac{\left(R_{3} R_{1}\right)^{2}}{r_{3} r_{1}}+\frac{\left(R_{1} R_{2}\right)^{2}}{r_{1} r_{2}} \geq 4\left(R_{1}^{2}+R_{2}^{2}+R_{3}^{2}\right) . \tag{4.5}
\end{equation*}
$$

From the inequality of Corollary 3.6, we surmise that the following stronger inequality holds:

Weighted Geometric Inequality Jian Liu
vol. 9, iss. 2, art. 58, 2008

Title Page
Contents

Page 14 of 18
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

Corollary 4.4. Let P be an arbitrary interior point of the triangle $A B C$, then

$$
\begin{equation*}
\frac{R_{2} R_{3}+R_{3} R_{1}+R_{1} R_{2}}{r_{1}+r_{2}+r_{3}} \geq \frac{4}{3 \sqrt{3}} s \tag{4.6}
\end{equation*}
$$

On the other hand, for the acute-angled triangle, we pose the following:
Corollary 4.5. Let $\triangle A B C$ be acute-angled and P an arbitrary point in its interior, then

$$
\begin{equation*}
\frac{\left(R_{1}+R_{2}+R_{3}\right)^{2}}{w_{1}+w_{2}+w_{3}} \geq 6 R \tag{4.7}
\end{equation*}
$$

Two years ago, Xue-Zhi Yang proved the following inequality (private communication):

$$
\begin{equation*}
\frac{\left(R_{1}+R_{2}+R_{3}\right)^{2}}{r_{1}+r_{2}+r_{3}} \geq 2 \sqrt{a^{2}+b^{2}+c^{2}} . \tag{4.8}
\end{equation*}
$$

which is stronger than (3.14). Here, we further put forward the following
Corollary 4.6. Let P be an arbitrary interior point of the triangle $A B C$, then

$$
\begin{equation*}
\frac{\left(R_{1}+R_{2}+R_{3}\right)^{2}}{w_{1}+w_{2}+w_{3}} \geq 2 \sqrt{a^{2}+b^{2}+c^{2}} \tag{4.9}
\end{equation*}
$$

Go Back
Full Screen

Close

journal of inequalities in pure and applied mathematics
issn: 1443-575b

Corollary 4.7. Let $\triangle A B C$ be acute-angled and P an arbitrary point in its interior. Then

$$
\begin{equation*}
\frac{a R_{1}+b R_{2}+c R_{3}}{w_{1}+w_{2}+w_{3}} \geq \frac{4}{3} s . \tag{4.10}
\end{equation*}
$$

Corollary 4.8. Let $\triangle A B C$ be acute-angled and P an arbitrary point in its interior. Then

$$
\begin{equation*}
\frac{a R_{1}+b R_{2}+c R_{3}}{w_{1}+w_{2}+w_{3}+r} \geq 2 s \tag{4.11}
\end{equation*}
$$

Corollary 4.9. Let P and Q be two interior points of the $\triangle A B C$. Then

$$
\begin{equation*}
\frac{R_{1}^{2}}{t_{1}}+\frac{R_{2}^{2}}{t_{2}}+\frac{R_{3}^{2}}{t_{3}} \geq 4\left(w_{1}+w_{2}+w_{3}\right) \tag{4.12}
\end{equation*}
$$

Corollary 4.10. Let P and Q be two interior points of the $\triangle A B C$. Then

$$
\begin{equation*}
\frac{R_{1}^{2}}{t_{1}}+\frac{R_{2}^{2}}{t_{2}}+\frac{R_{3}^{2}}{t_{3}} \geq 3\left(w_{1}+w_{2}+w_{3}+r\right) \tag{4.13}
\end{equation*}
$$

Remark 4. If Conjectures 4.7 and 4.8 are proved, then we can prove that Conjectures 4.9 and 4.10 are valid for the acute triangle $A B C$.

Weighted Geometric Inequality Jian Liu
vol. 9, iss. 2, art. 58, 2008

Title Page
Contents

Page 16 of 18
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

References

[1] M.S. KLAMKIN, Geometric inequalities via the polar moment of inertia, Mathematics Magazine, 48(1) (1975), 44-46.
[2] G. BENNETT, Multiple triangle inequality, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz., No. 577-598 (1977), 39-44.
[3] D. MITRINOVIĆ, J.E. PEČARIĆ AND V. VOLENEC, Recent Advances in Geometric Inequalities, Kluwer Academic Publishers, 1989.
[4] JIAN LIU, On the polar moment of inertia inequality, Shanghai Zhongxue Shuxue, 1 (1992), 36-39. (Chinese)
[5] TONG-YI MA AND XIONG HU, Klamkin is the integration of a lot of triangle inequality, Journal of Normal Colleges, 6(2) (2001), 18-22. (Chinese)
[6] M.S. KLAMKIN, Triangle inequalities via transforms, Notices of Amer. Math. Soc., 1972, A-103, 104.
[7] JIAN LIU, Several new inequalities for the triangle, Mathematics Competition, Hunan Education Press. Hunan, P.R.C., 15 (1992), 80-100. (Chinese)
[8] JIAN LIU, Exponential generalization of Carlitz-Klamkin inequality, Journal of Suzhou Railway Teachers College, 16(4) (1999), 73-79. (Chinese)
[9] XUE-ZHI YANG, A Further Generalization of a trigonometric inequality, 1 (1988), 23-25. (Chinese)
[10] JIAN LIU, The inequality for the multi-triangles, Hunan Annals of Mathematics, 15(4) (1995), 29-41. (Chinese)

J

Weighted Geometric Inequality Jian Liu
vol. 9, iss. 2, art. 58, 2008

Title Page
Contents

Page 17 of 18
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
[11] T. HAYASHI, Two theorems on complex number, Tôhoku Math. J., 4 (19131914), 68-70.
[12] JIAN LIU, On a generalization of the Hayashi inequality, Teaching Monthly, (7-8) (1997), 6-8.(Chinese)
[13] O. BOTTEMA, R.Ž. DJORDJEVIĆ, R.R. JANIĆ, D.S. MITRINOVIĆ, AND P.M. VASIĆ, Geometric Inequalities, Groningen, 1969.
[14] JIAN LIU, Principle of geometric inequality for the triangle and its applications, Zhongxue Shuxue, 9 (1992), 26-29. (Chinese)
[15] JIAN LIU, A quadratic form inequality for the triangle and its applications, Zhong Xue Jiao Yan (Mathematics), (7-8) (1998), 67-71. (Chinese)
[16] JIAN LIU, A consequence and ten conjectures of a kind of geometric inequality, Journal of Hunan University of Arts and Science, 16(1) (2004), 14-15, 24. (Chinese)

Weighted Geometric Inequality Jian Liu
vol. 9, iss. 2, art. 58, 2008

Title Page

Contents

Page 18 of 18
Go Back
Full Screen

Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

