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ABSTRACT. We establish several sharp inequalities involving the functionSi(x) =
∫ x

0
sin t

t dt.
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1. I NTRODUCTION

Let

Si(x) =

∫ x

0

sin t

t
dt ,

be the sine integral function which plays an important role in various topics of Fourier analysis
(cf. [2]). In this article we prove that the functionSi(x) satisfies the inequalities given in the
theorem below.

Theorem 1.1.For all x ≥ 0 andy ≥ 0, we have

(1.1) 0 ≤ Si(x) + Si(y)− Si(x + y) ≤ 2 Si(π)− Si(2 π) = 2.285722 . . . .

Both bounds are sharp. We also have

(1.2) 0 ≤ Si(x) + Si(y) ≤ x + y

and

(1.3)
Si(x)

Si(y)
≤ x

y
, for x ≥ y > 0 .
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Note that inequality (1.1) contains the sub-additive property of the functionSi(x) and may
be viewed as a two-dimensional analogue of the classical inequality

0 ≤ Si(x) ≤ Si(π) = 1.8519 . . . ,

for all x ≥ 0.
Inequalities (1.2) and (1.3) are also sharp because

Si(x) = x + O(x3), as x→ 0.

A special case of (1.2) is the following

(1.4) 0 <
Si(x)

x
< 1, for x > 0.

The discrete analogue of (1.1), where the functionSi(x) is replaced by Fejér’s sumsSn(x) =∑n
k=1

sin kx
k

, has been obtained in [1].

2. L EMMAS

For the proof of inequalities (1.1) to (1.3) we need the following elementary lemmas.

Lemma 2.1. We suppose that the functionf has a continuous derivative on[0, ∞) and that
f(0) = 0. If xf ′(x) ≤ f(x) for all x in [0, ∞) then for0 ≤ t ≤ s, we havet f(s x) ≤
s f(t x) ≤ t x s f ′(0) for all x ∈ [0, ∞).

Proof. We fix x in [0,∞) and define

g(t) :=
f(t x)

t
, for t > 0,

andg(0) = x f ′(0). Differentiating with respect tot we obtain

t2 g′(t) = txf ′(tx)− f(tx).

It follows from this thatg is decreasing on[0, ∞) therefore for0 ≤ t ≤ s, we getg(s) ≤
g(t) ≤ g(0), which completes the proof of Lemma 2.1. �

Lemma 2.2. For all x > 0 we have

(2.1)
d

dx

{
1

x
Si(x)

}
< 0.

Proof. It is clear that (2.1) is equivalent to

(2.2) Si(x)− sin x > 0, x > 0.

The functionSi(x) attains its absolute minimum on[π,∞) atx = 2π andSi(2π) = 1.4181 . . ..
Thus we have to prove (2.2) only for0 < x < π. The functionSi(x) is strictly increasing on this
interval and sinceSi(π/2) = 1.37 . . ., it remains to show that (2.2) is valid for0 < x < π/2.

Let h(x) := Si(x) − sin(x). This function is strictly increasing on[0, π/2) because the
inequalityh′(x) > 0 is equivalent tox cot x < 1 which is clearly true for this range ofx and
therefore the proof of (2.2) is complete. �

Notice that (2.1) implies (1.4).
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3. PROOF OF THEOREM 1.1

It follows from Lemma 2.2 that the functionf(x) = Si(x) satisfies the conditions of Lemma
2.1. Obviouslyf ′(0) = 1. Therefore, for0 ≤ t ≤ s, we have

(3.1) t Si(s z) ≤ s Si(t z) ≤ t s z, for all z ≥ 0.

Forx > 0, y > 0, settingz = x + y, t = x
x+y

, s = 1 in this inequality we obtain

x

x + y
Si(x + y) ≤ Si(x) ≤ x,

and similarly forz = x + y, t = y
x+y

, s = 1 we have

y

x + y
Si(x + y) ≤ Si(y) ≤ y .

From these inequalities we conclude (1.2) and the first inequality of (1.1). Inequality (1.3)
follows easily from (3.1) settingz = 1, t = y, s = x.

In order to prove the second inequality in (1.1) we distinguish the following cases:

a) x + y ≥ π and
b) 0 < x + y < π.

In the case a) we recall that the functionSi(x) attains its absolute maximum on[0,∞) at
x = π while its absolute minimum on[π, ∞) is attained atx = 2π. Hence in this case we have

Si(x) + Si(y)− Si(x + y) ≤ 2 Si(π)− Si(2 π) = 2.285722 . . . .

In the case b) we consider the following subcases:

b1) 0 < x + y ≤ π/4,
b2) π/4 < x + y ≤ π/2,
b3) π/2 < x + y < 3 π/4 and
b4) 3 π/4 < x + y < π,

keeping in mind that the functionSi(x) is strictly increasing on[0, π].
In the case b1) we have

Si(x) + Si(y)− Si(x + y) ≤ 2 Si
(π

4

)
= 1.5179 . . . ,

in the case b2) we have

Si(x) + Si(y)− Si(x + y) ≤ 2 Si
(π

2

)
− Si

(π

4

)
= 1.9825 . . . ,

in the case b3) we have

Si(x) + Si(y)− Si(x + y) ≤ 2 Si

(
3 π

4

)
− Si

(π

2

)
= 2.10873 . . .

and finally in the case b4) we have

Si(x) + Si(y)− Si(x + y) ≤ 2 Si(π)− Si

(
3 π

4

)
= 1.96412 . . . .

The numerical values of the functionSi(x) have been calculated using Maple 8.
The proof of Theorem 1.1 is now complete. �

Remark 3.1. Alternately, one can prove the inequalities in (1.1) using standard techniques from
multivariate calculus. Indeed, let

K(x, y) := Si(x) + Si(y)− Si(x + y) .
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We first observe that
K(0, 0) = 0, K(x, 0) = 0, K(0, y) = 0.

Next, we assume thatx > 0, y > 0. The system of equations

∂

∂x
K(x, y) = 0,

∂

∂y
K(x, y) = 0 ,

has as solutions the lattice points

(x, y) = (µ π, ν π), µ, ν ∈ N ,

and this follows from the properties of the functionsin x/x. Using the Hessian matrix test we
conclude that

1) Whenµ is even andν is oddor µ is odd andν is even, the points(µ π, ν π) are saddle
points.

2) Whenµ is odd andν is odd the functionK(x, y) has a local maximum at(µ π, ν π).
3) Whenµ is even andν is even the Hessian matrix test gives no information about the

nature of the points(µ π, ν π).

We deal with the case 3) separately.
It is easy to see that

K(x, y) =

∫ x

0

(
sin t

t
− sin(t + y)

t + y

)
dt ,

therefore, form, n = 1, 2, 3 . . ., we have

K(2mπ, 2nπ) =

∫ 2mπ

0

(
1

t
− 1

t + 2nπ

)
sin t dt.

It follows from this that

0 < K(2mπ, 2nπ) <

∫ π

0

(
1

t
− 1

t + 2nπ

)
sin t dt < Si(π) = 1.8519 . . .

Next in the case 2) we obtain form, n = 0, 1, 2 . . .,

K
(
(2m + 1)π, (2n + 1)π

)
=

∫ (2m+1)π

0

(
1

t
+

1

t + (2n + 1)π

)
sin t dt

≤
∫ π

0

(
1

t
+

1

t + (2n + 1)π

)
sin t dt

≤
∫ π

0

(
1

t
+

1

t + π

)
sin t dt

= 2 Si(π)− Si(2 π) = 2.285722 . . .

This yields (1.1).

Remark 3.2. Using Lemma 2.1, one can prove more general inequalities involving the function
Si(x). Indeed, for the functionf(x) = (Si(x))α xβ the conditionx f ′(x) ≤ f(x) is equivalent
to

(3.2) (1− β)Si(x)− α sin x > 0, x > 0 .

This inequality is valid precisely whenα + β ≤ 1 andα ≥ 0. To see this, suppose first that
(3.2) holds. Dividing bySi(x) and lettingx→ 0 we obtain the first condition. From (3.2) when
α + β → 1 we getα ≥ 0, taking into account (2.2). Conversely, whenα + β ≤ 1 andα ≥ 0,
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inequality (3.2) follows from (2.2). Thus we obtain analogous results to inequalities (1.2), (1.3)
and to the first inequality in (1.1) for the functionf(x) = (Si(x))α xβ.

Remark 3.3. Several other sharp inequalities of the type considered in this paper may be ob-
tained using an appropriate functionf(x), which satisfies the conditions of Lemma 2.1.
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