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1. INTRODUCTION

Si(z) = / sl g
O t

be the sine integral function which plays an important role in various topics of Fourier analysis
(cf. [2]). In this article we prove that the functidfi(x) satisfies the inequalities given in the
theorem below.

Let

Theorem 1.1.For all z > 0 andy > 0, we have
(1.1) 0 < Si(z) + Si(y) — Si(z +y) < 2 Si(7) — Si(27) = 2.285722....

Both bounds are sharp. We also have

(1.2) 0 < Si(x) +Si(y) <z +y
and
Si(z) =
(1.3) - < —, for z>y>0.
Si(y) ~ y

ISSN (electronic): 1443-5756
(© 2005 Victoria University. All rights reserved.
251-04


http://jipam.vu.edu.au/
mailto:skoumand@ucy.ac.cy
http://www.ams.org/msc/

2 STAMATIS KOUMANDOS

Note that inequality[(1]1) contains the sub-additive property of the funétir) and may
be viewed as a two-dimensional analogue of the classical inequality

0 < Si(z) < Si(r) = 1.8519. . .,

forall x > 0.
Inequalities[(I.R) and (1].3) are also sharp because

Si(z) =z + O(2*), asz — 0.
A special case of (1]2) is the following
Si(z)

(1.4) 0< <1, for = >0.
The discrete analogue ¢f (1.1), where the funcfign) is replaced by Fejér's sunts, (z) =

Soh_; 222 has been obtained inl[1].

2. LEMMAS

For the proof of inequalitie$ (1].1) tp (1.3) we need the following elementary lemmas.

Lemma 2.1. We suppose that the functighhas a continuous derivative dfi, co) and that
f(0) = 0. Ifzf'(z) < f(x) for all zin [0, co) then for0 < ¢ < s, we havet f(sz) <
sf(tx) <tzsf'(0)forall x € [0, c0).

Proof. We fix z in [0, co) and define

g(t) :== @, for ¢t >0,

andg(0) = = f’(0). Differentiating with respect towe obtain

t2g'(t) = taf'(tx) — f(to).
It follows from this thatg is decreasing of0, co) therefore for0 < ¢ < s, we getg(s) <
g(t) < g(0), which completes the proof of LemraP.1. O
Lemma 2.2. For all z > 0 we have
d (1.

Proof. Itis clear that[(Z2.]) is equivalent to
(2.2) Si(z) —sinz >0, x> 0.

The functionSi(z) attains its absolute minimum dn, co) atz = 27 andSi(27) = 1.4181. . ..
Thus we have to prove (2.2) only for< = < 7. The functiorSi(x) is strictly increasing on this
interval and sinc&i(r/2) = 1.37. ., it remains to show thaft (4.2) is valid for< = < /2.

Let h(z) := Si(z) — sin(x). This function is strictly increasing off), =/2) because the
inequality”’(x) > 0 is equivalent tor cot z < 1 which is clearly true for this range of and
therefore the proof of (2} 2) is complete. O

Notice that[(2.]1L) implieq (1]4).
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3. PROOF OF THEOREM [1.1

It follows from Lemmg 2.P that the functiofi(z) = Si(z) satisfies the conditions of Lemma
2.1. Obviouslyf’(0) = 1. Therefore, fo) < ¢ < s, we have

(3.2) tSi(sz) <sSi(tz) <tsz forall z>0.
Forz >0, y >0, settingz =z +y,t = ny s = 1in this inequality we obtain
Si(x +vy) < Si(z) < x,
1 Sile+y) <8i) <
and similarly forz =z + y, t = #y s = 1 we have
Y

prar Si(x +y) <Si(y) <y.

From these inequalities we conclude {1.2) and the first inequality of (1.1). Inequalify (1.3)
follows easily from|(3.]1) setting =1, t =y, s = .
In order to prove the second inequality [in (1.1) we distinguish the following cases:

a) x +y > mand
b) 0 <z+y<m.

In the case a) we recall that the functifi{z) attains its absolute maximum df, co) at
x = m while its absolute minimum ofr, co) is attained at = 27. Hence in this case we have

Si(x) + Si(y) — Si(z + y) < 2 Si(n) — Si(27) = 2.285722. ...
In the case b) we consider the following subcases:

bl) 0 < x4+ y < 7/4,

b2) r/d < x4y <m/2,

b3) 7/2 <z +y <3n/4and
bd)3r/d<x+y<m,

keeping in mind that the functiosi(z) is strictly increasing off0, 7.
In the case bl) we have

Si(z) + Si(y) — Si(z +y) < 2 Si (%) —1.5179. ..,
in the case b2) we have
™ m
: N coa (™Y _a (™) —
Si(z) + Si(y) — Si(z +y) < 2 Si (2) Si (4) 1.9825 ...,
in the case b3) we have
Si(z) + Si(y) — Si(z +y) < 2 Si (3—”) _Si (E) — 2.10873...
4 2
and finally in the case b4) we have
Si(z) + Si(y) — Si(z +vy) < 2 Si(n) — Si (%) =1.96412. .. .

The numerical values of the functi&i(z) have been calculated using Maple 8.
The proof of Theorern 11 is now complete. O

Remark 3.1. Alternately, one can prove the inequalities/in {1.1) using standard techniques from
multivariate calculus. Indeed, let

K(z,y) := Si(x) + Si(y) — Si(z + y) .
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We first observe that
K(0,0) =0, K(z,0)=0, K(0,y)=0.
Next, we assume that > 0, y > 0. The system of equations

QK(% y) =0,

0
—K(z,y) =0,
(z,9) 3y

Ox
has as solutions the lattice points

(z,y) = (pm,vm), pveN,

and this follows from the properties of the functisin = /x. Using the Hessian matrix test we
conclude that

1) Wheny is even and’ is oddor 1 is odd andv is even, the pointéu w, v ) are saddle
points.

2) Wheny is odd andv is odd the functionk'(z, y) has a local maximum &j. 7, v ).

3) Wheny is even and’ is even the Hessian matrix test gives no information about the
nature of the pointéu m, v ).

We deal with the case 3) separately.

It is easy to see that
T [€int in(t
Kz, y) = / sint  sin(t +y) it
0 t t+y

therefore, fomm, n =1,2,3..., we have

2mm
1 1
K(2mm, 2nr) = / (— — > sint dt.
0 t t+2nmw

It follows from this that

1
0 < K(2mm, 2nm) < / (— —
0

t t42nm
Next in the case 2) we obtain fat, n =0,1,2...,

(2m+1)m 1 1
K((2m+ L), 2n+1)7) = / (— + —> sint dt

t t+(2n+ D7

! —|— sint dt
t 2n+1)
( )smtdt

=2 Si(7r) 81(2 7) =2.285722 . ..

) sint dt < Si(r) = 1.8519. ..

+

1
t

This yields [(1.1).

Remark 3.2. Using Lemma 2]1, one can prove more general inequalities involving the function
Si(x). Indeed, for the functiorf(z) = (Si(z))* 2" the conditionz f'(z) < f(z) is equivalent

to

(3.2) (1 —p)Si(x) —asinex >0, z>0.

This inequality is valid precisely whem + 3 < 1 anda > 0. To see this, suppose first that
(3-2) holds. Dividing by5i(x) and lettingz — 0 we obtain the first condition. Frorp (3.2) when
a+ § — 1 we geta > 0, taking into accoun{ (2]2). Conversely, wher- 3 < 1 anda > 0,
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inequality [3.2) follows from[(2]2). Thus we obtain analogous results to inequafities (1.2), (1.3)
and to the first inequality in (1.1) for the functigitz) = (Si(x))* 2.

Remark 3.3. Several other sharp inequalities of the type considered in this paper may be ob-
tained using an appropriate functigfz), which satisfies the conditions of Lemina]2.1.
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