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ABSTRACT. We show that one half is a lower bound for the critical probability of an oriented
site percolation process of Grimmett and Hiemer. This value improves the known lower bound of
one third. We employ an Ansatz which we use also for a related oriented site percolation problem
considered by Bishir. Monte Carlo simulation indicates a critical value of close to 0.535, so the
bound appears to be fairly tight.
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1. I NTRODUCTION

Percolation theory investigates questions related to the deterministic flow of fluid through a
random medium consisting of a lattice of sites (vertices, atoms) with adjacent sites connected by
edges (bonds). In the bond percolation process, each edge is open (with probabilityp) or closed
(with probability1 − p). In the site percolation process, each site is open (with probabilityp)
or closed (with probability1 − p). In either process “fluid” is envisaged as entering the lattice
at the origin. In the site process, any site connected to the origin by a chain of consecutive
adjacent open sites is said to be wetted. Similarly in the bond process, any edge joined to the
origin through a connected sequence of open edges is termed wetted. Percolation occurs when
an infinite number of sites (resp. edges) are wetted. Mixed site and bond percolation processes
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2 C.E.M. PEARCE AND F.K. FLETCHER

are also possible, sites and bonds being open with respective probabilitiesps andpb. Fluid will
flow between two sites if and only if both are open and an open bond exists between them.

Each formulation admits oriented versions. Here bonds between pairs of sites have an asso-
ciated orientation and fluid may flow only in the direction of that orientation. For a discussion
of oriented percolation see [7].

A phenomenon associated with percolation processes is that of phase transitions: for small
p percolation does not occur while ifp is above a critical probability thresholdpc there is a
positive probabilityθ(p) of percolation. Thus

pc = sup{p : θ(p) = 0}.
The functionθ is nondecreasing inp. A conceptual graph ofθ(p) is shown in Figure 1.1 (see
[13, 14, 20]).
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Figure 1.1:The behaviour of the percolation probabilityθ(p) with p

Key problems in percolation theory include ascertaining the critical probabilitypc and char-
acterising the system in the subcritical and supercritical phases and its behaviour forp close to
pc. Summaries are given in [13, 14, 17, 19]. For a one–dimensional percolation process,pc = 1.
For a hypercubic latticeLd of dimensiond ≥ 2 we have0 < pc(Ld) < 1 (see [13, 14]). To
distinguish the critical probabilities for site and bond processes we denote the former bypcs and
the latter bypcb.

The study of percolation processes has grown enormously following the work of Broadbent
[5] and Broadbent and Hammersley [6]. The following exact results have been determined for
pcb in the two–dimensional lattices shown in Figure 1.2.
Kesten [18]: for (a),pcb = 1/2.
Wierman [25]: for (b),pcb = 2 sin(π/18).
Wierman [25]: for (c),pcb = 1− 2 sin(π/18).
Wierman [26]: for (d),pcb is the unique root in(0, 1) of 1− p− 6p2 + 6p3 − p5 = 0.

By contrast there are few exact results for site percolation or oriented percolation. The results
above were derived using dual graphs, a technique generally inapplicable to oriented percolation
(though see [27]). For site percolation the relevant structural idea is that ofmatchingin place of
duality (see [14, Ch. 3]). Some results of Monte Carlo simulation for site percolation are given
in [10, 11]. With most percolation problems effort has concentrated on finding lower and upper
bounds for the critical probability, see for example [1, 4, 22, 28, 29, 30]. The result

(1.1) pcb < pcs

J. Inequal. Pure and Appl. Math., 6(5) Art. 135, 2005 http://jipam.vu.edu.au/

http://jipam.vu.edu.au/
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(a) (b) 

(c) (d) 

Figure 1.2: Illustration of generic portions of the graphs for whichpcb is known: (a) square lattice, (b) triangular
lattice, (c) hexagonal lattice and (d) bow-tie lattice.

was originally shown for a general class of graph structures by Hammersley [16]. Later proofs
have centred on a lemma of Oxley and Welsh [24].

In Section 2 we introduce two oriented lattices,~L2 and~L2
alt, on which site percolations exhibit

phase transitions. In Section 3 we provide a useful Ansatz. In Section 4 we make use of this in

amplifying a derivation by Bishir [3] of a lower bound forpcs

(
~L2

)
. Finally, in Section 5, we

give our main result, an improved lower bound forpcs

(
~L2

alt

)
.

2. THE ORIENTED L ATTICES ~L2 AND ~L2
alt

The graph structure illustrated in Figure 2.1 was first considered in an oriented bond perco-
lation context by Grimmett and Hiemer [15]. We follow their notation~L2

alt. We write~L2 for
the two–dimensional latticeL2 with bonds oriented in the positivex andy directions. The set
of sites that may be reached at timen from the origin is then the set of sites{(x, y)} on the
diagonalx + y = n (see Figure 2.2(a)). Figure 2.2(b) shows this graph rotated throughπ/4.

Consider the graph formed by removing all sites(x, y) with x+y odd. This consists of bonds
directed from each site(x, y) with x + y even to(x + 1, y − 1) and(x + 1, y + 1) and so is
simply the graph~L2, showing that~L2

alt ⊃ ~L2.
Durrett [7], Liggett [21], Ballister, Bollobas and Stacey [1] use the graph~L2 in an oriented

bond or site percolation model. In particular, Liggett [21] considers percolation on the graph
~L2, where the probability of a site being present at timet is dependent on whether it has 0, 1
or 2 neighbours at timet − 1. Denote byAn the set of sites open at timen, that is, sites with
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4 C.E.M. PEARCE AND F.K. FLETCHER

t=0
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Figure 2.1:Possible state transitions in the first three time steps on~L2
alt.

x + y = n. The probability of a site(x, y) being open at timen + 1 is then given by

P{(x, y) ∈ An+1|An} =


q if |An ∩ {(x, y − 1), (x− 1, y)}| = 2

p if |An ∩ {(x, y − 1), (x− 1, y)}| = 1

0 otherwise

.

This general formulation allows for site percolation, bond percolation and mixed percolation
processes on the graph. We say that(An) survives or dies out according to whetherP (An 6=
∅ ∀n) is positive or zero (for nonempty finite initial states). Liggett proved that
(a) if q < 2(1− p), then(An) dies out;
(b) if 1

2
< p ≤ 1 andq ≥ 4p(1− p), then(An) survives.

t=1t=0 t=2 t=3

t=0

t=3

t=2

t=1

(a) (b)

Figure 2.2:The graph~L2 (a) oriented as the square lattice and (b) rotated45o so that thex-axis represents time
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ORIENTED SITE PERCOLATION, PHASE TRANSITIONS AND PROBABILITY BOUNDS 5

For site percolation on~L2, the probability of each site being open is independent of the
number of adjacent bonds and sites, sop = q. Result (b) then gives that(An) survives for

p ≥ 3/4, so thatpcs

(
~L2

)
satisfies

(2.1) pcs

(
~L2

)
≤ 3

4
.

This leads to the following.

Theorem 2.1.The site percolation process on~L2
alt undergoes a phase transition, with

1

3
≤ pcs

(
~L2

alt

)
≤ pcs

(
~L2

)
≤ 3

4
.

Proof. Let N(n) be the total number of openn–step paths in the site process on~L2
alt. From

the orientation of the graph, these will be self–avoiding. ThenN(n) ≤ 3n, the total number of
n-step paths on~L2

alt, so
P(N(n) ≥ 1) ≤ E(N(n)) ≤ 3npn.

Since3npn → 0 whenp < 1/3, we have

lim
n→∞

P(N(n) ≥ 1) = 0 for p <
1

3
.

This givespcs

(
~L2

alt

)
≥ 1/3.

Since~L2
alt ⊃ ~L2, we havepcs

(
~L2

alt

)
≤ pcs

(
~L2

)
. The remainder of the enunciation follows

from (2.1). �

The above derivation ofpcs

(
~L2

)
≤ 3/4 was given by Liggett [21] in 1995. Earlier rigorous

upper bounds are 0.819 (Liggett [8] 1992), 0.762 (Balisteret al. [1] 1993) and 0.7491 (Balister
et al. [2] 1994). The last paper corrected a misprint in [1]. The tighter bounds required sub-
stantial computer calculation. A nonrigorous estimate 0.7055 was given by Onody and Neves
[23] in 1992. These values may be compared with the lower bound 2/3 found by Bishir and
discussed in Section 4. Although derived as far back as 1963, this does not appear to have been

improved subsequently. Thus (a) of Liggett also givespcs

(
~L2

)
≥ 2/3.

The derivation of the first inequality in Theorem 2.1 is due to Grimmett [14]. In fact by
considering instead the corresponding bond percolation and invoking (1.1), this result can be

strengthened minimally topcs

(
~L2

alt

)
> 1/3. In Section 5 we improve the lower bound for

pc

(
~L2

alt

)
from one third to one half.

3. ANSATZ

As a prelude to deriving an improved lower bound forpcs

(
~L2

alt

)
and filling out Bishir’s

derivation of a lower bound forpcs

(
~L2

)
, we introduce a useful lemma.

Lemma 3.1. SupposeR1, R2 are proper real polynomials inz, with R2 of degreem ≥ 1 and
R1 of degree less than or equal tom, and that

h(z) =
R1(z)

(1− z)R2(z)
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6 C.E.M. PEARCE AND F.K. FLETCHER

has a partial fractions decomposition

h(z) =
A1

1− z
+

m+1∑
i=2

Ai

1− z/zi

with
zm+1 > zm > . . . > z2 > 1

and theA’s satisfying
i∑

j=1

Aj > 0 for i = 1, 2, . . . ,m + 1.

If

h(z) :=
∞∑

n=0

hnz
n,

then(hn)∞n=0 is positive and bounded above.

Proof. From the given conditions we have forn ≥ 0 that

hn = A1 +
m+1∑
i=2

Ai

zn
i

≥ A1 + A2

zn
2

+
m+1∑
i=3

Ai

zn
i

≥ . . . . . .

≥ A1 + A2 + . . . + Am+1

zn
m

> 0,

supplying positivity. Boundedness follows from

hn → A1 asn →∞.

�

4. BISHIR ’ S L OWER BOUND

In this section a result of Bishir [3] is presented and proved. The result provides a lower
bound for the critical probability for oriented site percolation on the graph~L2. The conver-
gence arguments presented by Bishir [3] are incomplete. We present a more complete argument
utilising the lemma.

Theorem 4.1.The critical probabilitypcs

(
~L2

)
satisfies

pcs

(
~L2

)
≥ 2

3
.

Proof. Consider a modification of the percolation process wherein sites are open with proba-
bility p but where, if any two sites are wetted at timet, then all intervening sites are deemed
to be wetted. Letγ(p) be the probability that an infinite number of sites will be wetted in the
modified process andpγ

cs the corresponding critical probability. Thenγ(p) ≥ θ(p), since more

sites are wetted in the modified process. Accordinglypγ
cs ≤ pcs

(
~L2

)
. It thus suffices to show

thatpγ
cs = 2/3.

J. Inequal. Pure and Appl. Math., 6(5) Art. 135, 2005 http://jipam.vu.edu.au/

http://jipam.vu.edu.au/


ORIENTED SITE PERCOLATION, PHASE TRANSITIONS AND PROBABILITY BOUNDS 7

The modified process is a Markov chain whose state at timet is the numbern of consecutive
wetted sites. As for the original process, if there are no sites wetted at some time then no sites
can be wetted at any later time, so state 0 is absorbing. The transition probabilitypi,j takes the
form

(4.1) pi,j =



δ0,j for i = 0

qi+1 for i ≥ 1 andj = 0

(i + 1)pqi for i ≥ 1 andj = 1

(i + 2− j)p2qi+1−j for i ≥ 1 andj = 2, . . . , i + 1

0 for i ≥ 1 andj > i + 1.

Let bn be the probability that the process is never in state 0, given that it started in staten.
We note that(bn) must be nondecreasing. Since the percolation process has initial state 1, then
γ(p) = b1. SetB = (b1, b2, . . .)

T .
Suppose the states of the modified process are partitioned as[0|1, 2, . . .], inducing a partition

P =

[
1 0
R Q

]
of its transition matrix. It is well known (see, for example, [9, p. 364]) thatB is the maximal
solution to

(4.2) B = QB

satisfying

(4.3) 0 ≤ bn ≤ 1.

From (4.2)

(4.4) B(z) :=
∞∑

n=1

bnz
n = (z, z2, z3, . . .)B = (z, z2, z3, . . .)QB.

Since(bn) is nondecreasing, (4.3) gives thatB(z) has radius of convergence unity unlessbn ≡ 0,
when the radius of convergence is infinity. From (4.1) we have

(z, z2, z3, . . .)Q =

(
p

(1− qz)2
− p,

p2z

(1− qz)2
,

p2z2

(1− qz)2
, . . .

)
,

whereq = 1− p.
Substitution into (4.4) gives

B(z) =
p2

z(1− qz)2
B(z) +

(
p− p2

(1− qz)2
− p

)
b1

=
pz(q − (1− qz)2)

z(1− qz)2 − p2
b1

=
pzg(z)

1− z
b1,

where

(4.5) g(z) =
(1− qz)2 − q

(p− qz)2 − q2z
.

SinceB(z) is convergent on the open unit disk, the seriesg(z) :=
∑∞

n=0 gnz
n must also have a

radius of convergence of at least unity.
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8 C.E.M. PEARCE AND F.K. FLETCHER

Whenp = 0, absorption occurs at the first step, so thatbn = 0 for n > 0. Whenp = 1,
the process always survives provided it does not start in state 0, so thatbn = 1 for n > 0. For
0 < p < 1, the denominator of the right–hand side of (4.5) has two zeros given by

z2 =
1 + p−

√
(1 + p)2 − 4p2

2q
,

z3 =
1 + p +

√
(1 + p)2 − 4p2

2q
.

The factorisation(1 + p)2 − 4p2 = (1 + 3p)(1 − p) > 0 for all 0 < p < 1 ensures thatz2 and
z3 are real and positive. Alsoz3 > 1 for all 0 < p < 1. It may be seen by taking the derivative
of z2 with respect top thatz2 is increasing for0 < p < 1.

First suppose0 < p < 2/3. In this case0 < z2 < 1, sog(z) has a pole inside the unit disk
unless the numerator in (4.5) vanishes forz = z2. The latter is readily seen to be impossible for
p > 0. ForB(z) to converge inside that disk we requireb1 = 0, which implies thatbn = 0 for
all n ≥ 1.

Next suppose2/3 < p < 1. In this case

(4.6) z3 > z2 > 1.

The function

h(z) :=
g(z)

1− z
has partial fraction decomposition

g(z)

1− z
=

A1

1− z
+

A2

1− z/z2

+
A3

1− z/z3

,

where

A1 =
p2 − q

(p− q)2 − q2
,

A2 =
(1− qz2)

2 − q

(1− z2)p2(1− z2/z3)
,

A3 =
(1− qz3)

2 − q

(1− z3)p2(1− z3/z2)
.

We haveA1 > 0 for 2/3 < p < 1. Further,

A1 + A2 + A3 = g(0) =
1

p
> 0.

To deriveA1 + A2 > 0, it suffices to demonstrate thatA3 < 0. By (4.6) the denominator ofA3

must be positive. Substitution ofz3 into the numerator gives

(1− qz3)
2 − q =

−q

2
(q +

√
4q − 3q2) < 0,

yielding the desired resultA3 < 0.
Thush(z) satisfies the conditions of the lemma, so that(hn)∞n=0 is positive and bounded

above. SinceB(z) = pzb1h(z), the sequence(bn) is also positive and bounded above unless
b1 = 0, whenbn ≡ 0.

The valueb = limn→∞ bn may be obtained from Abel’s theorem as

b = lim
z→1−

(1− z)B(z) =
p2 − q

1− 3q
b1.
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ORIENTED SITE PERCOLATION, PHASE TRANSITIONS AND PROBABILITY BOUNDS 9

When b1 > 0, the maximal solution to (4.2) satisfying (4.3) hasb = 1, so thatb1 = (1 −
3q)/(p2 − q) and

B(z) =
1− 3q

p2 − q
pzg(z).

Finally supposep = 2/3. In this casez2 = 1, soB(z) has a pole of order two atz = 1 unless
bn ≡ 0. Suppose, if possible, thatbn → b > 0 asn →∞. By Abel’s theorem

b = lim
z→1−

(1− z)B(z) = ∞,

contradictingb ≤ 1. Thus we must havebn ≡ 0 for p = 2/3.
Accordingly the probability of obtaining an infinite number of wetted sites starting from a

single site is

γ(p) =


0 for p ≤ 2

3

1− 3q

p2 − q
for p >

2

3

.

Thuspγ
cs = sup{p : γ(p) = 0} = 2/3, completing the proof. �

5. A L OWER BOUND FOR pcs

(
~L2

alt

)
The approach of the previous section may be employed to develop a lower bound forpcs

(
~L2

alt

)
.

In this section, we use this technique to derive a bound that is a substantial improvement on that
of Theorem 2.1.

Theorem 5.1.The critical probabilitypcs

(
~L2

alt

)
satisfiespcs

(
~L2

alt

)
≥ 1/2.

Proof. We introduce a modified process on the graph~L2
alt with the same structure as the original

oriented site percolation problem except in that if any two sites are wetted at timet, then all
sites between them at timet are deemed wetted, so the wetted sites at timet are consecutive.
Denote the probability of wetting an infinite number of sites for this new process byη(p). The
percolation thresholdpη

c for this process is

pη
cs = sup{p : η(p) = 0}.

The percolation probability for the modified process will be at least as large as that for the
original oriented site percolation process, since sites not wetted at timet in the latter may be in
the former. These sites may in turn lead to other sites being wetted at the next time step. Thus

θ(p) ≤ η(p) and pcs

(
~L2

alt

)
≥ pη

cs

and it suffices to demonstrate thatpη
cs = 1/2.

The state of the process at any time is the number of sites wetted at that time. By construc-
tion these sites are contiguous. The modified process is a Markov chain whose states are the
nonnegative integers.
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10 C.E.M. PEARCE AND F.K. FLETCHER

When no sites are wetted at some timek, then none are wetted subsequently, so 0 is an
absorbing state. The transition probabilities for the chain are

pi,j =



δ0,j for i = 0

qi+2 for i ≥ 1 andj = 0

(i + 2)pqi+1 for i ≥ 1 andj = 1

(i + 3− j)p2qi+2−j for i ≥ 1 andj = 2, . . . , i + 2

0 for i ≥ 1 andj > i + 2,

whereq = 1−p. We definebn, B, Q as in Theorem 4.1. With initial state 1, we haveη(p) = b1.
As before (4.2)–(4.4) hold.

We set

Qj(z) =
∞∑
i=1

zipi,j (j ≥ 1).

This is well–defined for|z| < 1, since0 ≤ pi,j ≤ 1. We derive

Q1(z) =
∞∑
i=1

zi(i + 2)pqi+1 = pq2z
3− 2qz

(1− qz)2
,

Q2(z) =
∞∑
i=1

zi(i + 1)p2qi =
p2

(1− qz)2
− p2,

and forj ≥ 3

Qj(z) =
∞∑

i=j−2

zi(i + 3− j)p2qi+2−j

=
∞∑

k=0

(k + 1)zk+j−2p2qk

=
p2zj−2

(1− qz)2
.

Hence for|z| < 1

(z, z2, z3, . . .)Q = (Q1(z), Q2(z), Q3(z), . . .)

=
p2

z(1− qz)2
(1, z, z2, . . .)

+

(
pq2z

3− 2qz

(1− qz)2
− p2

z(1− qz)2
,−p2, 0, 0, . . .

)
.

By (4.3), the power series

B(z) :=
∞∑

n=1

bnz
n

converges absolutely for|z| < 1. From (4.4) we derive

B(z) =
p2

z2(1− qz)2
B(z) +

[
pq2z

3− 2qz

(1− qz)2
− p2

z(1− qz)2

]
b1 − p2b2
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ORIENTED SITE PERCOLATION, PHASE TRANSITIONS AND PROBABILITY BOUNDS 11

for |z| < 1, so that

(5.1)
[
z2(1− qz)2 − p2

]
B(z) = pzN(z) for |z| < 1,

where
N(z) =

[
q2z2(3− 2qz)− p

]
b1 − pz(1− qz)2b2.

To show thatpη
cs = 1/2, we now establish that a necessary and sufficient condition for the

bn to be not all zero is thatq < 1/2. When this holds,bn > 0 for all n ≥ 1 and the radius of
convergence ofB(z) is unity.

A factorisation of the left–hand side of (5.1) yields

(5.2) [z(1− qz) + p](1− z)(qz − p)B(z) = pzN(z) (|z| < 1).

The zeros on the left–hand side of this expression occur atz1 = 1, z2 = p/q and at the roots of
z(1− qz) + p = 0.

The casesp = 0 andp = 1 are trivial: if p = 0, the process dies out at the first step with
probability 1; ifp = 1, the process grows strictly monotonically with probability 1.

Suppose first0 < p < 1/2, so that1/2 < q < 1 andz2 = p/q < 1. The left–hand side of
(5.2) vanishes forz = z2, so thatN(z2) = 0. Substitution ofz = z2 into N(z) gives

N(z2) = [p2(3− 2p)− p]b1 − p2qb2

= p[(1− p)(2p− 1)b1 − pqb2]

< 0

unlessb1 = b2 = 0. In the latter event,N(z) ≡ 0, so thatB(z) vanishes for eachz in the unit
circle, entailingbn = 0 for eachn ≥ 1.

If p = q = 1/2, thenz2 = 1 andN(1) < 0, soB(z) has a pole of order two atz = 1 unless
bn ≡ 0. Suppose if possible thatbn → b > 0 asn →∞. Then by Abel’s theorem,

b = lim
z→1

(1− z)B(z) = ∞ asn →∞,

contradictingb ≤ 1. Hence we must havebn ≡ 0 for q = 1/2.
This establishes necessity. For sufficiency, suppose that1/2 < p < 1 so that0 < q < 1/2.

In this case,z2 = p/q > 1, so thatqz − p is non-vanishing inside the unit disk. The quadratic
termz(1− qz) + p on the left–hand side of (5.2) has zeros

z0 = z0(p) =
1

2q

[
1−

√
1 + 4pq

]
∈ (−1, 0),

z3 = z3(p) =
1

2q

[
1 +

√
1 + 4pq

]
∈ (1,∞).(5.3)

We must haveN(z0) = 0 for a nontrivial solution to exist, so that

[q2z2
0(3− 2qz0)− p]b1 = pz0(1− qz0)

2b2.

Since

(5.4) 1− qz0 = qz3 and p = −qz0z3,

this simplifies to
[qz0(1 + 2qz3) + z3]b1 = pqz2

3b2

or

(5.5) (1 + pz3 − 2pq)b1 = pqz2
3b2,

which shows that ifb2 6= 0 thenb1/b2 is positive.
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A common factorz = z0 may be removed from both sides of (5.2) and division bypz3 yields(
1− z

z3

) (
1− qz

p

)
(1− z)B(z) = pzN1(z),

whereN1(z) is a quadratic inz. The coefficient ofB(z) is nonvanishing on the interior of the
unit disk, so thatB(z) may be written

(5.6) B(z) =
pzN1(z)

(1− z/z3) (1− qz/p) (1− z)
for |z| < 1.

It remains to show that ifb1 andb2 are positive and satisfy (5.5), then the constantsbn defined
through (5.6) are all positive.

The power seriesB(z) has radius of convergence unity provided thatN1(1) 6= 0. To establish
this inequality, it suffices to show thatN(1) 6= 0. We have

N(1) = [q2(3− 2q)− 1 + q]b1 − p3b2.

Forq ∈ [0, 1/2], the expression in brackets is strictly increasing inq and achieves value zero for
q = 1/2, providing the required result thatN1(1) 6= 0.

We consider

h(z) =
N1(z)

(1− z)(1− qz/p)(1− z/z3)

=
A1

1− z
+

A2

1− qz/p
+

A3

1− z/z3

.

By applying the cover–up rule to

h(z) =
N(z)

−p2(1− z)(1− z/z0)(1− z/z3)(1− qz/p)
,

we derive that

A1 =
N(1)

−p2(1− 1/z0)(1− 1/z3)(1− q/p)
,

A3 =
[q2z2

3(3− 2qz3)− p]b1 − pz3(1− qz3)
2b2

−p2(1− z3/z0)(1− z3)(1− qz3/p)
.(5.7)

Note from (5.3) that

(5.8) z3 >
1

q
>

p

q
= z2 > 1,

so that the notationz2, z3 adopted in this section is consistent with the usage of the lemma.
SinceN(1) < 0 for q ∈ [0, 1/2], we have thatA1 > 0. Also

A1 + A2 + A3 = g(0) =
b1

p
> 0.

We shall prove thatA3 < 0, from which it follows thatA1 +A2 > 0 and thus that the conditions
of the lemma are satisfied.

By (5.8) andz0 < 0, the denominator of the fraction in (5.7) is negative, so that we need to
establish that the numerator is positive. By exploiting (5.4), the numerator may be expressed as

qz3

[
{qz3(1 + 2qz0) + z0} b1 − pqz2

0b2

]
.

By (5.4), the expression in brackets reduces further to

{pz0 + 1− 2pq} b1 − pqz2
0b2.
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We wish to show that this must be positive. By (5.5),

{pz3 + 1− 2pq} b1 − pqz2
3b2 = 0,

so our task is equivalent to deriving that

p(z0 − z3)b1 − pq(z2
0 − z2

3)b2 > 0

or equivalently that

b1 − q(z0 + z3)b2 < 0,

which by (5.4) reduces further to

b1 − b2 < 0.

Substitution forb1/b2 from (5.5) converts this condition to

pqz2
3 − pz3 + 2pq − 1 < 0.

Sinceqz2
3 = z3 + p, the left–hand side may be cast as

p2 + 2pq − 1 = −p2 + 2p− 1 = −q2,

so the condition is satisfied. Thus the conditions of the lemma apply so that a positive, bounded
solution(hn) exists in the case0 < q < 1/2. The relation

(5.9) B(z) = pzh(z)

providesbn = phn−1, so the maximal solution(bn) to (4.2) subject to (4.3) is positive. This
completes the proof. �

Remark 5.2. By Abel’s theorem,bn → b asn →∞ where

b = lim
z→1

(1− z)B(z) = A1.

Takingb = 1 givesA1 = 1 or

[q2(3− 2q)− 1 + q]b1 − p3b2 = −p2

(
1− 1

z0

) (
1− 1

z3

) (
1− q

p

)
.

The values ofb1, b2 may be found by solving this equation with (5.5), whence the values ofbn

for all n > 0 follow from (5.9).

6. SIMULATIONS

A Monte Carlo simulation has been performed of the site percolation process on~L2
alt. Tracks

were able to run for 20,000 time steps and those still alive at this time were deemed to have
lasted infinitely long. After some initial testing over shorter periods of time, values ofp were
varied from0.53 to0.54 in steps of size0.0001. One thousand Monte Carlo runs were performed
for each of these probabilities. The results of this simulation are illustrated in Figure 6.1.

There are tracks lasting 20,000 steps for probabilities greater than approximatelyp = 0.535,
suggesting thatpcs ≈ 0.535.
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Figure 6.1:Monte Carlo simulation results for the oriented site percolation process on~L2
alt.
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