Journal of Inequalities in Pure and Applied Mathematics

Volume 7, Issue 4, Article 138, 2006

ON CERTAIN CLASSES OF MEROMORPHIC FUNCTIONS INVOLVING INTEGRAL OPERATORS

KHALIDA INAYAT NOOR
Mathematics Department
COMSATS Institute of Information Technology
IsLAMABAD, PaKistan.
khalidanoor@hotmail.com

Received 06 October, 2006; accepted 15 November, 2006
Communicated by N.E. Cho

AbSTRACT. We introduce and study some classes of meromorphic functions defined by using a meromorphic analogue of Noor [also Choi-Saigo-Srivastava] operator for analytic functions. Several inclusion results and some other interesting properties of these classes are investigated.

Key words and phrases: Meromorphic functions, Functions with positive real part, Convolution, Integral operator, Functions with bounded boundary and bounded radius rotation, Quasi-convex and close-to-convex functions.

2000 Mathematics Subject Classification 30C45, 30C50.

1. INTRODUCTION

Let \mathcal{M} denote the class of functions of the form

$$
f(z)=\frac{1}{z}+\sum_{n=0}^{\infty} a_{n} z^{n},
$$

which are analytic in $D=\{z: 0<|z|<1\}$.
Let $P_{k}(\beta)$ be the class of analytic functions $p(z)$ defined in unit disc $E=D \cup\{0\}$, satisfying the properties $p(0)=1$ and

$$
\begin{equation*}
\int_{0}^{2 \pi}\left|\frac{\operatorname{Re} p(z)-\beta}{1-\beta}\right| d \theta \leq k \pi, \tag{1.1}
\end{equation*}
$$

where $z=r e^{i \theta}, k \geq 2$ and $0 \leq \beta<1$. When $\beta=0$, we obtain the class P_{k} defined in [14] and for $\beta=0, k=2$, we have the class P of functions with positive real part.

Also, we can write (1.1) as

$$
\begin{equation*}
p(z)=\frac{1}{2} \int_{0}^{2 \pi} \frac{1+(1-2 \beta) z e^{-i t}}{1-z e^{-i t}} d \mu(t), \tag{1.2}
\end{equation*}
$$

ISSN (electronic): 1443-5756
(C) 2006 Victoria University. All rights reserved.

This research is supported by the Higher Education Commission, Pakistan, through research grant No: 1-28/HEC/HRD/2005/90.
252-06
where $\mu(t)$ is a function with bounded variation on $[0,2 \pi]$ such that

$$
\begin{equation*}
\int_{0}^{2 \pi} d \mu(t)=2, \quad \text { and } \quad \int_{0}^{2 \pi}|d \mu(t)| \leq k \tag{1.3}
\end{equation*}
$$

From (1.1), we can write, for $p \in P_{k}(\beta)$,

$$
\begin{equation*}
p(z)=\left(\frac{k}{4}+\frac{1}{2}\right) p_{1}(z)-\left(\frac{k}{4}-\frac{1}{2}\right) p_{2}(z) \tag{1.4}
\end{equation*}
$$

where $p_{1}, p_{2} \in P_{2}(\beta)=P(\beta), z \in E$.
We define the function $\lambda(a, b, z)$ by

$$
\lambda(a, b, z)=\frac{1}{z}+\sum_{n=0}^{\infty} \frac{(a)_{n+1}}{(c)_{n+1}} z^{n}, \quad z \in D
$$

$c \neq 0,-1,-2, \ldots, a>0$, where $(a)_{n}$ is the Pochhamer symbol (or the shifted factorial) defined by

$$
(a)_{0}=1, \quad(a)_{n}=a(a+1) \cdots(a+n-1), \quad n>1
$$

We note that

$$
\lambda(a, c, z)=\frac{1}{z}{ }_{2} F_{1}(1, a ; c, z),
$$

${ }_{2} F_{1}(1, a ; c, z)$ is Gauss hypergeometric function.
Let $f \in \mathcal{M}$. Denote by $\tilde{L}(a, c) ; \mathcal{M} \longrightarrow \mathcal{M}$, the operator defined by

$$
\tilde{L}(a, c) f(z)=\lambda(a, c, z) \star f(z), \quad z \in D,
$$

where the symbol \star stands for the Hadamard product (or convolution). The operator $\tilde{L}(a, c)$ was introduced and studied in [5]. This operator is closely related to the Carlson-Shaeffer operator [1] defined for the space of analytic and univalent functions in E, see [11, 13].

We now introduce a function $(\lambda(a, c, z))^{(-1)}$ given by

$$
\lambda(a, c, z) \star(\lambda(a, c, z))^{(-1)}=\frac{1}{z(1-z)^{\mu}}, \quad(\mu>0), \quad z \in D .
$$

Analogous to $\tilde{L}(a, c)$, a linear operator $I_{\mu}(a, c)$ on \mathcal{M} is defined as follows, see [2].

$$
\begin{equation*}
I_{\mu}(a, c) f(z)=(\lambda(a, c, z))^{(-1)} \star f(z), \quad(\mu>0, a>0, \quad c \neq 0,-1,-2, \ldots, \quad z \in D) . \tag{1.5}
\end{equation*}
$$

We note that

$$
I_{2}(2,1) f(z)=f(z), \quad \text { and } \quad I_{2}(1,1) f(z)=z f^{\prime}(z)+2 f(z)
$$

It can easily be verified that

$$
\begin{gather*}
z\left(I_{\mu}(a+1, c) f(z)\right)^{\prime}=a I_{\mu}(a, c) f(z)-(a+1) I_{\mu}(a+1, c) f(z), \tag{1.6}\\
z\left(I_{\mu}(a, c) f(z)\right)^{\prime}=\mu I_{\mu+1}(a, c) f(z)-(\mu+1) I_{\mu}(a, c) f(z) . \tag{1.7}
\end{gather*}
$$

We note that the operator $I_{\mu}(a, c)$ is motivated essentially by the operators defined and studied in [2, 11].

Now, using the operator $I_{\mu}(a, c)$, we define the following classes of meromorphic functions for $\mu>0,0 \leq \eta, \beta<1, \alpha \geq 0, z \in D$.

We shall assume, unless stated otherwise, that $a \neq 0,-1,-2, \ldots, c \neq 0,-1,-2, \ldots$

Definition 1.1. A function $f \in \mathcal{M}$ is said to belong to the class $M R_{k}(\eta)$ for $z \in D, 0 \leq \eta<$ $1, k \geq 2$, if and only if

$$
-\frac{z f^{\prime}(z)}{f(z)} \in P_{k}(\eta)
$$

and $f \in M V_{k}(\eta)$, for $z \in D, 0 \leq \eta<1, k \geq 2$, if and only if

$$
-\frac{\left(z f^{\prime}(z)\right)^{\prime}}{f^{\prime}(z)} \in P_{k}(\eta)
$$

We call $f \in M R_{k}(\eta)$, a meromorphic function with bounded radius rotation of order η and $f \in M V_{k}$ a meromorphic function with bounded boundary rotation.

Definition 1.2. Let $f \in \mathcal{M}, 0 \leq \eta<1, k \geq 2, z \in D$. Then

$$
f \in M R_{k}(\mu, \eta, a, c) \quad \text { if and only if } \quad I_{\mu}(a, c) f \in M R_{k}(\eta)
$$

Also

$$
f \in M V_{k}(\mu, \eta, a, c) \quad \text { if and only if } \quad I_{\mu}(a, c) f \in M V_{k}(\eta), \quad z \in D
$$

We note that, for $z \in D$,

$$
f \in M V_{k}(\mu, \eta, a, c) \quad \Longleftrightarrow \quad-z f^{\prime} \in M R_{k}(\mu, \eta, a, c) .
$$

Definition 1.3. Let $\alpha \geq 0, f \in \mathcal{M}, 0 \leq \eta, \beta<1, \mu>0$ and $z \in D$. Then $f \in \mathcal{B}_{k}^{\alpha}(\mu, \beta, \eta, a, c)$, if and only if there exists a function $g \in M C(\mu, \eta, a, c)$, such that

$$
\left[(1-\alpha) \frac{\left(I_{\mu}(a, c) f(z)\right)^{\prime}}{\left(I_{\mu}(a, c) g(z)\right)^{\prime}}+\alpha\left\{-\frac{\left(z\left(I_{\mu}(a, c) f(z)\right)^{\prime}\right)^{\prime}}{\left(I_{\mu}(a, c) g(z)\right)^{\prime}}\right\}\right] \in P_{k}(\beta)
$$

In particular, for $\alpha=0, k=a=\mu=2$, and $c=1$, we obtain the class of meromorphic close-to-convex functions, see [4]. For $\alpha=1, k=\mu=a=2, c=1$, we have the class of meromorphic quasi-convex functions defined for $z \in D$. We note that the class C^{\star} of quasiconvex univalent functions, analytic in E, were first introduced and studied in [7]. See also [9, 12].

The following lemma will be required in our investigation.
Lemma 1.1 ([6]). Let $u=u_{1}+i u_{2}$ and $v=v_{1}+i v_{2}$ and let $\Phi(u, v)$ be a complex-valued function satisfying the conditions:
(i) $\Phi(u, v)$ is continuous in a domain $\mathcal{D} \subset \mathcal{C}^{2}$,
(ii) $(1,0) \in \mathcal{D}$ and $\Phi(1,0)>0$.
(iii) $\operatorname{Re} \Phi\left(i u_{2}, v_{1}\right) \leq 0$ whenever $\left(i u_{2}, v_{1}\right) \in \mathcal{D}$ and $v_{1} \leq-\frac{1}{2}\left(1+u_{2}^{2}\right)$.

If $h(z)=1+\sum_{m=1}^{\infty} c_{m} z^{m}$ is a function, analytic in E, such that $\left(h(z), z h^{\prime}(z)\right) \in \mathcal{D}$ and $\operatorname{Re}\left(h(z), z h^{\prime}(z)\right)>0$ for $z \in E$, then $\operatorname{Re} h(z)>0$ in E.

2. Main Results

Theorem 2.1.

$$
M R_{k}(\mu+1, \eta, a, c) \subset M R_{k}(\mu, \beta, a, c) \subset M R_{k}(\mu, \gamma, a+1, c)
$$

Proof. We prove the first part of the result and the second part follows by using similar arguments. Let

$$
f \in M R_{k}(\mu+1, \eta, a, c), \quad z \in D
$$

and set

$$
\begin{align*}
H(z) & =\left(\frac{k}{4}+\frac{1}{2}\right) h_{1}(z)-\left(\frac{k}{4}-\frac{1}{2}\right) h_{2}(z) \\
& =-\left[\frac{z\left(I_{\mu}(a, c) f(z)\right)^{\prime}}{I_{\mu}(a, c) f(z)}\right] \tag{2.1}
\end{align*}
$$

where $H(z)$ is analytic in E with $H(0)=1$.
Simple computation together with (2.1) and (1.7) yields

$$
\begin{equation*}
-\left[\frac{z\left(I_{\mu+1}(a, c) f(z)\right)^{\prime}}{I_{\mu+1}(a, c) f(z)}\right]=\left[H(z)+\frac{z H^{\prime}(z)}{-H(z)+\mu+1}\right] \in P_{k}(\eta), \quad z \in E \tag{2.2}
\end{equation*}
$$

Let

$$
\Phi_{\mu}(z)=\frac{1}{\mu+1}\left[\frac{1}{z}+\sum_{k=0}^{\infty} z^{k}\right]+\frac{\mu}{\mu+1}\left[\frac{1}{z}+\sum_{k=0}^{\infty} k z^{k}\right]
$$

then

$$
\begin{align*}
\left(H(z) \star z \Phi_{\mu}(z)\right)= & H(z)+\frac{z H^{\prime}(z)}{-H(z)+\mu+1} \\
= & \left(\frac{k}{4}+\frac{1}{2}\right)\left(h_{1}(z) \star z \Phi_{\mu}(z)\right)-\left(\frac{k}{4}-\frac{1}{2}\right)\left(h_{2}(z) \star z \Phi_{\mu}(z)\right) \\
= & \left(\frac{k}{4}+\frac{1}{2}\right)\left[h_{1}(z)+\frac{z h_{1}^{\prime}(z)}{-h_{1}(z)+\mu+1}\right] \\
& \quad-\left(\frac{k}{4}-\frac{1}{2}\right)\left[h_{2}(z)+\frac{z h_{2}^{\prime}(z)}{-h_{2}(z)+\mu+1}\right] \tag{2.3}
\end{align*}
$$

Since $f \in M R_{k}(\mu+1, \eta, a, c)$, it follows from (2.2) and (2.3) that

$$
\left[h_{i}(z)+\frac{z h_{i}^{\prime}(z)}{-h_{i}(z)+\mu+1}\right] \in P(\eta), \quad i=1,2, \quad z \in E
$$

Let $h_{i}(z)=(1-\beta) p_{i}(z)+\beta$. Then

$$
\left\{(1-\beta) p_{i}(z)+\left[\frac{(1-\beta) z p_{i}^{\prime}(z)}{-(1-\beta) p_{i}(z)-\beta+\mu+1}\right]+(\beta-\eta)\right\} \in P, \quad z \in E
$$

We shall show that $p_{i} \in P, i=1,2$.
We form the functional $\Phi(u, v)$ by taking $u=p_{i}(z), v=z p_{i}^{\prime}(z)$ with $u=u_{1}+i u_{2}, v=$ $v_{1}+i v_{2}$. The first two conditions of Lemma 1.1 can easily be verified. We proceed to verify the condition (iii).

$$
\Phi(u, v)=(1-\beta) u+\frac{(1-\beta) v}{-(1-\beta) u-\beta+\mu+1}+(\beta-\eta)
$$

implies that

$$
\operatorname{Re} \Phi\left(i u_{2}, v_{1}\right)=(\beta-\eta)+\frac{(1-\beta)(1+\mu-\beta) v_{1}}{(1+\mu-\beta)^{2}+(1-\beta)^{2} u_{2}^{2}}
$$

By taking $v_{1} \leq-\frac{1}{2}\left(1+u_{2}^{2}\right)$, we have

$$
\operatorname{Re} \Phi\left(i u_{2}, v_{1}\right) \leq \frac{A+B u_{2}^{2}}{2 C}
$$

where

$$
\begin{aligned}
& A=2(\beta-\eta)(1+\mu-\beta)^{2}-(1-\beta)(1+\mu-\beta), \\
& B=2(\beta-\eta)(1-\beta)^{2}-(1-\beta)(1+\mu-\beta), \\
& C=(1+\mu-\beta)^{2}+(1-\beta)^{2} u_{2}^{2}>0 .
\end{aligned}
$$

We note that $\operatorname{Re} \Phi\left(i u_{2}, v_{1}\right) \leq 0$ if and only if $A \leq 0$ and $B \leq 0$. From $A \leq 0$, we obtain

$$
\begin{equation*}
\beta=\frac{1}{4}\left[(3+2 \mu+2 \eta)-\sqrt{(3+2 \mu+2 \eta)^{2}-8}\right] \tag{2.4}
\end{equation*}
$$

and $B \leq 0$ gives us $0 \leq \beta<1$.
Now using Lemma 1.1, we see that $p_{i} \in P$ for $z \in E, i=1,2$ and hence $f \in M R_{k}(\mu, \beta, a, c)$ with β given by (2.4.

In particular, we note that

$$
\beta=\frac{1}{4}\left[(3+2 \mu)-\sqrt{4 \mu^{2}+12 \mu+1}\right] .
$$

Theorem 2.2.

$$
M V_{k}(\mu+1, \eta, a, c) \subset M V_{k}(\mu, \beta, a,, c) \subset M V_{k}(\mu, \gamma, a+1, c) .
$$

Proof.

$$
\begin{aligned}
f \in M V_{k}(\mu+1, \eta, a, c) & \Longleftrightarrow-z f^{\prime} \in M R_{k}(\mu+1, \eta, a, c) \\
& \Rightarrow-z f^{\prime} \in M R_{k}(\mu, \beta, a, c) \\
& \Longleftrightarrow f \in M V_{k}(\mu, \beta, a, c),
\end{aligned}
$$

where β is given by (2.4).
The second part can be proved with similar arguments.

Theorem 2.3.

$$
\mathcal{B}_{k}^{\alpha}\left(\mu+1, \beta_{1}, \eta_{1}, a, c\right) \subset \mathcal{B}_{k}^{\alpha}\left(\mu, \beta_{2}, \eta_{2}, a, c\right) \subset \mathcal{B}_{k}^{\alpha}\left(\mu, \beta_{3}, \eta_{3}, a+1, c\right),
$$

where $\eta_{i}=\eta_{i}\left(\beta_{i}, \mu\right), i=1,2,3$ are given in the proof.
Proof. We prove the first inclusion of this result and other part follows along similar lines. Let $f \in \mathcal{B}_{k}^{\alpha}\left(\mu+1, \beta_{1}, \eta_{1}, a, c\right)$. Then, by Definition 1.3, there exists a function $g \in M V_{2}(\mu+$ $\left.1, \eta_{1}, a, c\right)$ such that

$$
\begin{equation*}
(1-\alpha)\left[\frac{\left(I_{\mu+1}(a, c) f(z)\right)^{\prime}}{\left(I_{\mu+1}(a, c) g(z)\right)^{\prime}}\right]+\alpha\left[-\frac{\left(z\left(I_{\mu+1}(a, c) f(z)\right)^{\prime}\right)^{\prime}}{\left(I_{\mu+1}(a, c) g(z)\right)^{\prime}}\right] \in P_{k}\left(\beta_{1}\right) . \tag{2.5}
\end{equation*}
$$

Set

$$
\begin{equation*}
p(z)=(1-\alpha)\left[\frac{\left(I_{\mu}(a, c) f(z)\right)^{\prime}}{\left(I_{\mu}(a, c) g(z)\right)^{\prime}}\right]+\alpha\left[-\frac{\left(z\left(I_{\mu}(a, c) f(z)\right)^{\prime}\right)^{\prime}}{\left(I_{\mu}(a, c) g(z)\right)^{\prime}}\right], \tag{2.6}
\end{equation*}
$$

where p is an analytic function in E with $p(0)=1$.
Now, $g \in M V_{2}\left(\mu+1, \eta_{1}, a, c\right) \subset M V_{2}\left(\mu, \eta_{2}, a, c\right)$, where η_{2} is given by the equation

$$
\begin{equation*}
2 \eta_{2}^{2}+\left(3+2 \mu-2 \eta_{1}\right) \eta_{2}-\left[2 \eta_{1}(1+\mu)+1\right]=0 \tag{2.7}
\end{equation*}
$$

Therefore,

$$
q(z)=\left(-\frac{\left(z\left(I_{\mu}(a, c) g(z)\right)^{\prime}\right)^{\prime}}{\left(I_{\mu}(a, c) g(z)\right)^{\prime}}\right) \in P\left(\eta_{2}\right), \quad z \in E
$$

By using (1.7), (2.5), (2.6) and (2.7), we have

$$
\begin{equation*}
\left[p(z)+\alpha \frac{z p^{\prime}(z)}{-q(z)+\mu+1}\right] \in P_{k}\left(\beta_{1}\right), \quad q \in P\left(\eta_{2}\right), \quad z \in E . \tag{2.8}
\end{equation*}
$$

With

$$
p(z)=\left(\frac{k}{4}+\frac{1}{2}\right)\left[\left(1-\beta_{2}\right) p_{1}(z)+\beta_{2}\right]-\left(\frac{k}{4}-\frac{1}{2}\right)\left[\left(1-\beta_{2}\right) p_{2}(z)+\beta_{2}\right],
$$

(2.8) can be written as

$$
\left.\left.\begin{array}{rl}
\left(\frac{k}{4}+\frac{1}{2}\right)\left[\left(1-\beta_{2}\right) p_{1}(z)+\alpha\right. & \left.\frac{\left(1-\beta_{2}\right) z p_{1}^{\prime}(z)}{-q(z)+\mu+1}+\beta_{2}\right] \\
& -\left(\frac{k}{4}-\frac{1}{2}\right)
\end{array}\right]\left(1-\beta_{2}\right) p_{2}(z)+\alpha \frac{\left(1-\beta_{2}\right) z p_{2}^{\prime}(z)}{-q(z)+\mu+1}+\beta_{2}\right], ~ \$, ~
$$

where

$$
\left[\left(1-\beta_{2}\right) p_{i}(z)+\alpha \frac{\left(1-\beta_{2}\right) z p_{i}^{\prime}(z)}{-q(z)+\mu+1}+\beta_{2}\right] \in P\left(\beta_{1}\right), \quad z \in E, i=1,2 .
$$

That is

$$
\left[\left(1-\beta_{2}\right) p_{i}(z)+\alpha \frac{\left(1-\beta_{2}\right) z p_{i}^{\prime}(z)}{-q(z)+\mu+1}+\left(\beta_{2}-\beta_{1}\right)\right] \in P, \quad z \in E, \quad i=1,2 .
$$

We form the functional $\Psi(u, v)$ by taking $u=u_{1}+i u_{2}=p_{i}, v=v_{1}+i v_{2}=z p_{i}^{\prime}$, and

$$
\Psi(u, v)=\left(1-\beta_{2}\right) u+\alpha \frac{\left(1-\beta_{2}\right) v}{\left(-q_{1}+i q_{2}\right)+\mu+1}+\left(\beta_{2}-\beta_{1}\right), \quad\left(q=q_{1}+i q_{2}\right) .
$$

The first two conditions of Lemma 1.1 are clearly satisfied. We verify (iii), with $v_{1} \leq-\frac{1}{2}\left(1+u_{2}^{2}\right)$ as follows

$$
\begin{aligned}
\operatorname{Re} \Psi\left(i u_{2}, v_{1}\right) & =\left(\beta_{2}-\beta_{1}\right)+\operatorname{Re}\left[\frac{\alpha\left(1-\beta_{2}\right) v_{1}\left\{\left(-q_{1}+\mu+1\right)+i q_{2}\right\}}{(-q+\mu+1)^{2}+q_{2}^{2}}\right] \\
& \leq \frac{2\left(\beta-2-\beta_{1}\right)|-q+\mu+1|^{2}-\alpha\left(1-\beta_{2}\right)\left(-q_{1}+\mu+1\right)\left(1+u_{2}^{2}\right)}{2|-q+\mu+1|^{2}} \\
& =\frac{A+B u_{2}^{2}}{2 C}, \quad C=|-q+\mu+1|^{2}>0 \\
& \leq 0, \quad \text { if } A \leq 0 \quad \text { and } \quad B \leq 0,
\end{aligned}
$$

where

$$
\begin{aligned}
& A=2\left(\beta_{2}-\beta_{1}\right)|-q+\mu+1|^{2}-\alpha\left(1-\beta_{2}\right)\left(-q_{1}+\mu+1\right) \\
& B=-\alpha\left(1-\beta_{2}\right)\left(-q_{1}+\mu+1\right) \leq 0
\end{aligned}
$$

From $A \leq 0$, we get

$$
\begin{equation*}
\beta_{2}=\frac{2 \beta_{1}|-q+\mu+1|^{2}+\alpha \operatorname{Re}(-q(z)+\mu+1)}{2|-q+\mu+1|^{2}+\alpha \operatorname{Re}(-q(z)+\mu+1)} . \tag{2.9}
\end{equation*}
$$

Hence, using Lemma 1.1, it follows that $p(z)$, defined by 2.6), belongs to $P_{k}\left(\beta_{2}\right)$ and thus $f \in \mathcal{B}_{k}^{\alpha}\left(\mu, \beta_{2}, \eta_{2}, a, c\right), z \in D$. This completes the proof of the first part. The second part of this result can be obtained by using similar arguments and the relation (1.6).

Theorem 2.4.

$$
\begin{align*}
\mathcal{B}_{k}^{\alpha}(\mu, \beta, \eta, a, c) & \subset \mathcal{B}_{k}^{0}(\mu, \gamma, \eta, a, c) \tag{i}\\
\mathcal{B}_{k}^{\alpha_{1}}(\mu, \beta, \eta, a, c) & \subset \mathcal{B}_{k}^{\alpha_{2}}(\mu, \beta, \eta, a, c), \quad \text { for } \quad 0 \leq \alpha_{2}<\alpha_{1} \tag{ii}
\end{align*}
$$

Proof. (i). Let

$$
h(z)=\frac{\left(I_{\mu}(a, c) f(z)\right)^{\prime}}{\left(I_{\mu}(a, c) g(z)\right)^{\prime}},
$$

$h(z)$ is analytic in E and $h(0)=1$. Then

$$
\begin{equation*}
(1-\alpha)\left[\frac{\left(I_{\mu}(a, c) f(z)\right)^{\prime}}{\left(I_{\mu}(a, c) g(z)\right)^{\prime}}\right]+\alpha\left[-\frac{\left(z\left(I_{\mu}(a, c) f(z)\right)^{\prime}\right)^{\prime}}{\left(I_{\mu}(a, c) g(z)\right)^{\prime}}\right]=h(z)+\alpha \frac{z h^{\prime}(z)}{-h_{0}(z)}, \tag{2.10}
\end{equation*}
$$

where

$$
h_{0}(z)=-\frac{\left(z\left(I_{\mu}(a, c) g(z)\right)^{\prime}\right)^{\prime}}{\left(I_{\mu}(a, c) g(z)\right)^{\prime}} \in P(\eta) \text {. }
$$

Since $f \in \mathcal{B}_{k}^{\alpha}(\mu, \beta, \eta, a, c)$, it follows that

$$
\left[h(z)+\alpha \frac{z h^{\prime}(z)}{-h_{0}(z)}\right] \in P_{k}(\beta), \quad h_{0} \in P(\eta), \quad \text { for } \quad z \in E .
$$

Let

$$
h(z)=\left(\frac{k}{4}+\frac{1}{2}\right) h_{1}(z)-\left(\frac{k}{4}-\frac{1}{2}\right) h_{2}(z) .
$$

Then (2.10) implies that

$$
\left[h_{i}(z)+\alpha \frac{z h_{i}^{\prime}(z)}{-h_{0}(z)}\right] \in P(\beta), \quad z \in E, \quad i=1,2
$$

and from use of similar arguments, together with Lemma 1.1, it follows that $h_{i} \in P(\gamma), i=$ 1,2 , where

$$
\gamma=\frac{2 \beta\left|h_{0}\right|^{2}+\alpha \operatorname{Re} h_{0}}{2\left|h_{0}\right|^{2}+\alpha \operatorname{Re} h_{0}}
$$

Therefore $h \in P_{k}(\gamma)$, and $f \in \mathcal{B}_{k}^{0}(\mu, \gamma, \eta, a, c), z \in D$. In particular, it can be shown that $h_{i} \in P(\beta), i=1,2$. Consequently $h \in P_{k}(\beta)$ and $f \in \mathcal{B}_{k}^{0}(\mu, \beta, \eta, a, c)$ in D.

For $\alpha_{2}=0$, we have (i). Therefore, we let $\alpha_{2}>0$ and $f \in \mathcal{B}_{k}^{\alpha_{1}}(\mu, \beta, \eta, a, c)$. There exist two functions $H_{1}, H_{2} \in P_{k}(\beta)$ such that

$$
\begin{aligned}
& H_{1}(z)=\left(1-\alpha_{1}\right)\left[\frac{\left(I_{\mu}(a, c) f(z)\right)^{\prime}}{\left(I_{\mu}(a, c) g(z)\right)^{\prime}}\right]+\alpha_{1}\left[-\frac{\left(z\left(I_{\mu}(a, c) f(z)\right)^{\prime}\right)^{\prime}}{\left(I_{\mu}(a, c) g(z)\right)^{\prime}}\right] \\
& H_{2}(z)=\frac{\left(I_{\mu}(a, c) f(z)\right)^{\prime}}{\left(I_{\mu}(a, c) g(z)\right)^{\prime}}, \quad g \in M V_{2}(\mu, \eta, a, c) .
\end{aligned}
$$

Now

$$
\begin{align*}
& \left(1-\alpha_{2}\right)\left[\frac{\left(I_{\mu}(a, c) f(z)\right)^{\prime}}{\left(I_{\mu}(a, c) g(z)\right)^{\prime}}\right]+\alpha_{2}\left[-\frac{\left(z\left(I_{\mu}(a, c) f(z)\right)^{\prime}\right)^{\prime}}{\left(I_{\mu}(a, c) g(z)\right)^{\prime}}\right] \tag{2.11}\\
& =\frac{\alpha_{2}}{\alpha_{1}} H_{1}(z)+\left(1-\frac{\alpha_{2}}{\alpha_{1}}\right) H_{2}(z) .
\end{align*}
$$

Since the class $P_{k}(\beta)$ is a convex set [10], it follows that the right hand side of (2.11) belongs to $P_{k}(\beta)$ and this shows that $f \in \mathcal{B}_{k}^{\alpha_{2}}(\mu, \beta, \eta, a, c)$ for $z \in D$. This completes the proof.

Let $f \in \mathcal{M}, b>0$ and let the integral operator F_{b} be defined by

$$
\begin{equation*}
F_{b}(f)=F_{b}(f)(z)=\frac{b}{z^{b+1}} \int_{0}^{z} t^{b} f(t) d t . \tag{2.12}
\end{equation*}
$$

From (2.12), we note that

$$
\begin{equation*}
z\left(I_{\mu}(a, c) F_{b}(f)(z)\right)^{\prime}=b I_{\mu}(a, c) f(z)-(b+1) I_{\mu}(a, c) F_{b}(f)(z) \tag{2.13}
\end{equation*}
$$

Using (2.12), (2.13) with similar techniques used earlier, we can prove the following:
Theorem 2.5. Let $f \in M R_{k}(\mu, \beta, a, c)$, or $M V_{k}(\mu, \beta, a, c)$, or $\mathcal{B}_{k}^{\alpha}(\mu, \beta, \eta, a, c)$, for $z \in D$. Then $F_{b}(f)$ defined by (2.12) is also in the same class for $z \in D$.

References

[1] B.C. CARLSON AND D.B. SCHAEFFER, Starlike and prestarlike hypergeometric functions, SIAM J. Math. Anal., 15 (1984), 737-745.
[2] N.E. CHO AND K. INAYAT NOOR, Inclusion properties for certain classes of meromorphic functions associated with Choi-Saigo-Srivastava operator, J. Math. Anal. Appl., 320 (2006), 779-786
[3] J.H. CHOI, M. SAIGO and H.M. SRIVASTAVA, Some inclusion properties of a certain family of integral operators, J. Math. Anal. Appl., 276 (2002), 432-445.
[4] V. KUMAR and S.L. SHULKA, Certain integrals for classes of p-valent meromorphic functions, Bull. Austral. Math. Soc., 25 (1982), 85-97.
[5] J.L. LIU and H.M. SRIVASTAVA, A linear operator and associated families of meromorphically multivalued functions, J. Math. Anal. Appl., 259 (2001), 566-581.
[6] S.S. MILLER, Differential inequalities and Caratheodory functions, Bull. Amer. Math. Soc., $\mathbf{8 1}$ (1975), 79-81.
[7] K.I. NOOR, On close-to-conex and related functions, Ph.D Thesis, University of Wales, Swansea, U. K., 1972.
[8] K.I. NOOR, A subclass of close-to-convex functions of order β type γ, Tamkang J. Math., $\mathbf{1 8}$ (1987), 17-33.
[9] K.I. NOOR, On quasi-convex functions and related topics, Inter. J. Math. Math. Sci., 10 (1987), 241-258.
[10] K.I. NOOR, On subclasses of close-to-convex functions of higher order, Inter. J. Math. Math. Sci., 15 (1992), 279-290.
[11] K.I. NOOR, Classes of analytic functions defined by the Hadamard product, New Zealand J. Math., 24 (1995), 53-64.
[12] K.I. NOOR and D.K. THOMAS, On quasi-convex univalent functions, Inter. J. Math. Math. Sci., 3 (1980), 255-266.
[13] K.I. NOOR AND M.A. NOOR, On integral operators, J. Math. Anal. Appl., 238 (1999), 341-352.
[14] B. PINCHUK, Functions with bounded boundary rotation, Isr. J. Math., 10 (1971), 7-16.

