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Abstract

We introduce and study some classes of meromorphic functions defined by us-
ing a meromorphic analogue of Noor [also Choi-Saigo-Srivastava] operator for
analytic functions. Several inclusion results and some other interesting proper-
ties of these classes are investigated.
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1. Introduction
LetM denote the class of functions of the form

f(z) =
1

z
+

∞∑
n=0

anz
n,

which are analytic inD = {z : 0 < |z| < 1}.
Let Pk(β) be the class of analytic functionsp(z) defined in unit discE =

D ∪ {0}, satisfying the propertiesp(0) = 1 and

(1.1)
∫ 2π

0

∣∣∣∣Re p(z)− β

1− β

∣∣∣∣ dθ ≤ kπ,

wherez = reiθ, k ≥ 2 and0 ≤ β < 1. Whenβ = 0, we obtain the classPk

defined in [14] and forβ = 0, k = 2, we have the classP of functions with
positive real part.

Also, we can write (1.1) as

(1.2) p(z) =
1

2

∫ 2π

0

1 + (1− 2β)ze−it

1− ze−it
dµ(t),

whereµ(t) is a function with bounded variation on[0, 2π] such that

(1.3)
∫ 2π

0

dµ(t) = 2, and
∫ 2π

0

|dµ(t)| ≤ k.

From (1.1), we can write, forp ∈ Pk(β),

(1.4) p(z) =

(
k

4
+

1

2

)
p1(z)−

(
k

4
− 1

2

)
p2(z),
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where p1, p2 ∈ P2(β) = P (β), z ∈ E.

We define the functionλ(a, b, z) by

λ(a, b, z) =
1

z
+

∞∑
n=0

(a)n+1

(c)n+1

zn, z ∈ D,

c 6= 0,−1,−2, . . . , a > 0, where(a)n is the Pochhamer symbol (or the shifted
factorial) defined by

(a)0 = 1, (a)n = a(a + 1) · · · (a + n− 1), n > 1.

We note that

λ(a, c, z) =
1

z
2F1(1, a; c, z),

2F1(1, a; c, z) is Gauss hypergeometric function.
Let f ∈M. Denote byL̃(a, c);M−→M, the operator defined by

L̃(a, c)f(z) = λ(a, c, z) ? f(z), z ∈ D,

where the symbol? stands for the Hadamard product (or convolution). The
operatorL̃(a, c) was introduced and studied in [5]. This operator is closely
related to the Carlson-Shaeffer operator [1] defined for the space of analytic
and univalent functions inE, see [11, 13].

We now introduce a function(λ(a, c, z))(−1) given by

λ(a, c, z) ? (λ(a, c, z))(−1) =
1

z(1− z)µ
, (µ > 0), z ∈ D.
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Analogous tõL(a, c), a linear operatorIµ(a, c) onM is defined as follows, see
[2].

Iµ(a, c)f(z) = (λ(a, c, z))(−1) ? f(z),(1.5)

(µ > 0, a > 0, c 6= 0,−1,−2, . . . , z ∈ D).

We note that

I2(2, 1)f(z) = f(z), and I2(1, 1)f(z) = zf ′(z) + 2f(z).

It can easily be verified that

z (Iµ(a + 1, c)f(z))′ = aIµ(a, c)f(z)− (a + 1)Iµ(a + 1, c)f(z),(1.6)

z (Iµ(a, c)f(z))′ = µIµ+1(a, c)f(z)− (µ + 1)Iµ(a, c)f(z).(1.7)

We note that the operatorIµ(a, c) is motivated essentially by the operators de-
fined and studied in [2, 11].

Now, using the operatorIµ(a, c), we define the following classes of mero-
morphic functions forµ > 0, 0 ≤ η, β < 1, α ≥ 0, z ∈ D.

We shall assume, unless stated otherwise, thata 6= 0,−1,−2, . . . , c 6=
0,−1,−2, . . .

Definition 1.1. A functionf ∈ M is said to belong to the classMRk(η) for
z ∈ D, 0 ≤ η < 1, k ≥ 2, if and only if

−zf ′(z)

f(z)
∈ Pk(η)
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andf ∈ MVk(η), for z ∈ D, 0 ≤ η < 1, k ≥ 2, if and only if

−(zf ′(z))′

f ′(z)
∈ Pk(η).

We callf ∈ MRk(η), a meromorphic function with bounded radius rotation of
orderη andf ∈ MVk a meromorphic function with bounded boundary rotation.

Definition 1.2. Letf ∈M, 0 ≤ η < 1, k ≥ 2, z ∈ D. Then

f ∈ MRk(µ, η, a, c) if and only if Iµ(a, c)f ∈ MRk(η).

Also

f ∈ MVk(µ, η, a, c) if and only if Iµ(a, c)f ∈ MVk(η), z ∈ D.

We note that, forz ∈ D,

f ∈ MVk(µ, η, a, c) ⇐⇒ −zf ′ ∈ MRk(µ, η, a, c).

Definition 1.3. Let α ≥ 0, f ∈ M, 0 ≤ η, β < 1, µ > 0 and z ∈ D. Then
f ∈ Bα

k (µ, β, η, a, c), if and only if there exists a functiong ∈ MC(µ, η, a, c),
such that[

(1− α)
(Iµ(a, c)f(z))′

(Iµ(a, c)g(z))′
+ α

{
−(z(Iµ(a, c)f(z))′)′

(Iµ(a, c)g(z))′

}]
∈ Pk(β).

In particular, for α = 0, k = a = µ = 2, and c = 1, we obtain the class of
meromorphic close-to-convex functions, see [4]. For α = 1, k = µ = a =
2, c = 1, we have the class of meromorphic quasi-convex functions defined for
z ∈ D. We note that the classC? of quasi-convex univalent functions, analytic
in E, were first introduced and studied in [7]. See also [9, 12].
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The following lemma will be required in our investigation.

Lemma 1.1 ([6]). Let u = u1 + iu2 and v = v1 + iv2 and letΦ(u, v) be a
complex-valued function satisfying the conditions:

(i) Φ(u, v) is continuous in a domainD ⊂ C2,

(ii) (1, 0) ∈ D andΦ(1, 0) > 0.

(iii) Re Φ(iu2, v1) ≤ 0 whenever(iu2, v1) ∈ D andv1 ≤ −1
2
(1 + u

2

2).

If h(z) = 1+
∑∞

m=1 cmzm is a function, analytic inE, such that(h(z), zh′(z)) ∈
D and Re(h(z), zh′(z)) > 0 for z ∈ E, thenRe h(z) > 0 in E.
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2. Main Results
Theorem 2.1.

MRk(µ + 1, η, a, c) ⊂ MRk(µ, β, a, c) ⊂ MRk(µ, γ, a + 1, c).

Proof. We prove the first part of the result and the second part follows by using
similar arguments. Let

f ∈ MRk(µ + 1, η, a, c), z ∈ D

and set

H(z) =

(
k

4
+

1

2

)
h1(z)−

(
k

4
− 1

2

)
h2(z)

= −
[
z(Iµ(a, c)f(z))′

Iµ(a, c)f(z)

]
,(2.1)

whereH(z) is analytic inE with H(0) = 1.

Simple computation together with (2.1) and (1.7) yields

(2.2) −
[
z (Iµ+1(a, c)f(z))′

Iµ+1(a, c)f(z)

]
=

[
H(z) +

zH ′(z)

−H(z) + µ + 1

]
∈ Pk(η), z ∈ E.

Let

Φµ(z) =
1

µ + 1

[
1

z
+

∞∑
k=0

zk

]
+

µ

µ + 1

[
1

z
+

∞∑
k=0

kzk

]
,
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then

(H(z) ? zΦµ(z)) = H(z) +
zH ′(z)

−H(z) + µ + 1

=

(
k

4
+

1

2

)
(h1(z) ? zΦµ(z))−

(
k

4
− 1

2

)
(h2(z) ? zΦµ(z))

=

(
k

4
+

1

2

) [
h1(z) +

zh′1(z)

−h1(z) + µ + 1

]
−

(
k

4
− 1

2

) [
h2(z) +

zh′2(z)

−h2(z) + µ + 1

]
.(2.3)

Sincef ∈ MRk(µ + 1, η, a, c), it follows from (2.2) and (2.3) that[
hi(z) +

zh′i(z)

−hi(z) + µ + 1

]
∈ P (η), i = 1, 2, z ∈ E.

Let hi(z) = (1− β)pi(z) + β. Then{
(1− β)pi(z) +

[
(1− β)zp′i(z)

−(1− β)pi(z)− β + µ + 1

]
+ (β − η)

}
∈ P, z ∈ E.

We shall show thatpi ∈ P, i = 1, 2.

We form the functionalΦ(u, v) by takingu = pi(z), v = zp′i(z) with u =
u1 + iu2, v = v1 + iv2. The first two conditions of Lemma1.1 can easily be
verified. We proceed to verify the condition (iii).

Φ(u, v) = (1− β)u +
(1− β)v

−(1− β)u− β + µ + 1
+ (β − η),

http://jipam.vu.edu.au/
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implies that

Re Φ(iu2, v1) = (β − η) +
(1− β)(1 + µ− β)v1

(1 + µ− β)2 + (1− β)2u2
2

.

By takingv1 ≤ −1
2
(1 + u2

2), we have

Re Φ(iu2, v1) ≤
A + Bu2

2

2C
,

where

A = 2(β − η)(1 + µ− β)2 − (1− β)(1 + µ− β),

B = 2(β − η)(1− β)2 − (1− β)(1 + µ− β),

C = (1 + µ− β)2 + (1− β)2u2
2 > 0.

We note thatRe Φ(iu2, v1) ≤ 0 if and only if A ≤ 0 andB ≤ 0. FromA ≤ 0,
we obtain

(2.4) β =
1

4

[
(3 + 2µ + 2η)−

√
(3 + 2µ + 2η)2 − 8

]
,

andB ≤ 0 gives us0 ≤ β < 1.

Now using Lemma1.1, we see thatpi ∈ P for z ∈ E, i = 1, 2 and hence
f ∈ MRk(µ, β, a, c) with β given by (2.4).

In particular, we note that

β =
1

4

[
(3 + 2µ)−

√
4µ2 + 12µ + 1

]
.
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Theorem 2.2.

MVk(µ + 1, η, a, c) ⊂ MVk(µ, β, a, , c) ⊂ MVk(µ, γ, a + 1, c).

Proof.

f ∈ MVk(µ + 1, η, a, c) ⇐⇒ −zf ′ ∈ MRk(µ + 1, η, a, c)

⇒ −zf ′ ∈ MRk(µ, β, a, c)

⇐⇒ f ∈ MVk(µ, β, a, c),

whereβ is given by (2.4).
The second part can be proved with similar arguments.

Theorem 2.3.

Bα
k (µ + 1, β1, η1, a, c) ⊂ Bα

k (µ, β2, η2, a, c) ⊂ Bα
k (µ, β3, η3, a + 1, c),

whereηi = ηi(βi, µ), i = 1, 2, 3 are given in the proof.

Proof. We prove the first inclusion of this result and other part follows along
similar lines. Letf ∈ Bα

k (µ + 1, β1, η1, a, c). Then, by Definition1.3, there
exists a functiong ∈ MV2(µ + 1, η1, a, c) such that

(2.5) (1− α)

[
(Iµ+1(a, c)f(z))′

(Iµ+1(a, c)g(z))′

]
+ α

[
−(z(Iµ+1(a, c)f(z))′)′

(Iµ+1(a, c)g(z))′

]
∈ Pk(β1).

Set

(2.6) p(z) = (1− α)

[
(Iµ(a, c)f(z))′

(Iµ(a, c)g(z))′

]
+ α

[
−(z(Iµ(a, c)f(z))′)′

(Iµ(a, c)g(z))′

]
,
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wherep is an analytic function inE with p(0) = 1.

Now, g ∈ MV2(µ + 1, η1, a, c) ⊂ MV2(µ, η2, a, c), whereη2 is given by the
equation

(2.7) 2η2
2 + (3 + 2µ− 2η1)η2 − [2η1(1 + µ) + 1] = 0.

Therefore,

q(z) =

(
−(z(Iµ(a, c)g(z))′)′

(Iµ(a, c)g(z))′

)
∈ P (η2), z ∈ E.

By using (1.7), (2.5), (2.6) and (2.7), we have

(2.8)

[
p(z) + α

zp′(z)

−q(z) + µ + 1

]
∈ Pk(β1), q ∈ P (η2), z ∈ E.

With

p(z) =

(
k

4
+

1

2

)
[(1− β2)p1(z) + β2]−

(
k

4
− 1

2

)
[(1− β2)p2(z) + β2] ,

(2.8) can be written as(
k

4
+

1

2

) [
(1− β2)p1(z) + α

(1− β2)zp
′
1(z)

−q(z) + µ + 1
+ β2

]
−

(
k

4
− 1

2

) [
(1− β2)p2(z) + α

(1− β2)zp
′
2(z)

−q(z) + µ + 1
+ β2

]
,
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where[
(1− β2)pi(z) + α

(1− β2)zp
′
i(z)

−q(z) + µ + 1
+ β2

]
∈ P (β1), z ∈ E, i = 1, 2.

That is[
(1− β2)pi(z) + α

(1− β2)zp
′
i(z)

−q(z) + µ + 1
+ (β2 − β1)

]
∈ P, z ∈ E, i = 1, 2.

We form the functionalΨ(u, v) by taking u = u1 + iu2 = pi, v = v1 + iv2 =
zp′i, and

Ψ(u, v) = (1− β2)u + α
(1− β2)v

(−q1 + iq2) + µ + 1
+ (β2 − β1), (q = q1 + iq2).

The first two conditions of Lemma1.1are clearly satisfied. We verify (iii), with
v1 ≤ −1

2
(1 + u2

2) as follows

Re Ψ(iu2, v1)

= (β2 − β1) + Re

[
α(1− β2)v1{(−q1 + µ + 1) + iq2}

(−q + µ + 1)2 + q2
2

]
≤ 2(β − 2− β1)| − q + µ + 1|2 − α(1− β2)(−q1 + µ + 1)(1 + u2

2)

2| − q + µ + 1|2

=
A + Bu2

2

2C
, C = | − q + µ + 1|2 > 0

≤ 0, if A ≤ 0 and B ≤ 0,
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where

A = 2(β2 − β1)| − q + µ + 1|2 − α(1− β2)(−q1 + µ + 1),

B = −α(1− β2)(−q1 + µ + 1) ≤ 0.

FromA ≤ 0, we get

(2.9) β2 =
2β1| − q + µ + 1|2 + α Re(−q(z) + µ + 1)

2| − q + µ + 1|2 + α Re(−q(z) + µ + 1)
.

Hence, using Lemma1.1, it follows that p(z), defined by (2.6), belongs to
Pk(β2) and thus f ∈ Bα

k (µ, β2, η2, a, c), z ∈ D. This completes the proof
of the first part. The second part of this result can be obtained by using similar
arguments and the relation (1.6).

Theorem 2.4.

Bα
k (µ, β, η, a, c) ⊂ B0

k(µ, γ, η, a, c)(i)

Bα1
k (µ, β, η, a, c) ⊂ Bα2

k (µ, β, η, a, c), for 0 ≤ α2 < α1.(ii)

Proof. (i). Let

h(z) =
(Iµ(a, c)f(z))′

(Iµ(a, c)g(z))′
,

h(z) is analytic inE andh(0) = 1. Then

(2.10) (1− α)

[
(Iµ(a, c)f(z))′

(Iµ(a, c)g(z))′

]
+ α

[
−(z(Iµ(a, c)f(z))′)′

(Iµ(a, c)g(z))′

]
= h(z) + α

zh′(z)

−h0(z)
,
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where

h0(z) = −(z(Iµ(a, c)g(z))′)′

(Iµ(a, c)g(z))′
∈ P (η).

Since f ∈ Bα
k (µ, β, η, a, c), it follows that[

h(z) + α
zh′(z)

−h0(z)

]
∈ Pk(β), h0 ∈ P (η), for z ∈ E.

Let

h(z) =

(
k

4
+

1

2

)
h1(z)−

(
k

4
− 1

2

)
h2(z).

Then (2.10) implies that[
hi(z) + α

zh′i(z)

−h0(z)

]
∈ P (β), z ∈ E, i = 1, 2,

and from use of similar arguments, together with Lemma1.1, it follows that
hi ∈ P (γ), i = 1, 2, where

γ =
2β|h0|2 + α Re h0

2|h0|2 + α Re h0

.

Thereforeh ∈ Pk(γ), and f ∈ B0
k(µ, γ, η, a, c), z ∈ D. In particular, it can

be shown that hi ∈ P (β), i = 1, 2. Consequently h ∈ Pk(β) and f ∈
B0

k(µ, β, η, a, c) in D.
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Forα2 = 0, we have (i). Therefore, we letα2 > 0 and f ∈ Bα1
k (µ, β, η, a, c).

There exist two functionsH1, H2 ∈ Pk(β) such that

H1(z) = (1− α1)

[
(Iµ(a, c)f(z))′

(Iµ(a, c)g(z))′

]
+ α1

[
−(z(Iµ(a, c)f(z))′)′

(Iµ(a, c)g(z))′

]
H2(z) =

(Iµ(a, c)f(z))′

(Iµ(a, c)g(z))′
, g ∈ MV2(µ, η, a, c).

Now

(2.11) (1− α2)

[
(Iµ(a, c)f(z))′

(Iµ(a, c)g(z))′

]
+ α2

[
−(z(Iµ(a, c)f(z))′)′

(Iµ(a, c)g(z))′

]
=

α2

α1

H1(z) +

(
1− α2

α1

)
H2(z).

Since the classPk(β) is a convex set [10], it follows that the right hand side of
(2.11) belongs toPk(β) and this shows thatf ∈ Bα2

k (µ, β, η, a, c) for z ∈ D.
This completes the proof.

Let f ∈M, b > 0 and let the integral operatorFb be defined by

(2.12) Fb(f) = Fb(f)(z) =
b

zb+1

∫ z

0

tbf(t)dt.

From (2.12), we note that

(2.13) z (Iµ(a, c)Fb(f)(z))′ = bIµ(a, c)f(z)− (b + 1)Iµ(a, c)Fb(f)(z).

Using (2.12), (2.13) with similar techniques used earlier, we can prove the fol-
lowing:
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Theorem 2.5.Letf ∈ MRk(µ, β, a, c), or MVk(µ, β, a, c), orBα
k (µ, β, η, a, c),

for z ∈ D. ThenFb(f) defined by (2.12) is also in the same class forz ∈ D.
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