SOME SUBORDINATION CRITERIA CONCERNING THE SǍLǍGEAN OPERATOR

KAZUO KUROKI AND SHIGEYOSHI OWA
Department of Mathematics
Kinki University
Higashi-Osaka, Osaka 577-8502
JAPAN
freedom@sakai.zaq.ne.jp
owa@math.kindai.ac.jp

Received 14 September, 2008; accepted 11 January, 2009
Communicated by H.M. Srivastava

Abstract

Applying Sălăgean operator, for the class \mathcal{A} of analytic functions $f(z)$ in the open unit disk \mathbb{U} which are normalized by $f(0)=f^{\prime}(0)-1=0$, the generalization of an analytic function to discuss the starlikeness is considered. Furthermore, from the subordination criteria for Janowski functions generalized by some complex parameters, some interesting subordination criteria for $f(z) \in \mathcal{A}$ are given.

Key words and phrases: Janowski function, Starlike, Convex, Univalent, Subordination.
2000 Mathematics Subject Classification 26D15.

1. Introduction, Definition and Preliminaries

Let \mathcal{A} denote the class of functions $f(z)$ of the form:

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1.1}
\end{equation*}
$$

which are analytic in the open unit disk

$$
\mathbb{U}=\{z: z \in \mathbb{C} \quad \text { and } \quad|z|<1\} .
$$

Also, let \mathcal{P} denote the class of functions $p(z)$ of the form:

$$
\begin{equation*}
p(z)=1+\sum_{n=1}^{\infty} p_{n} z^{n} \tag{1.2}
\end{equation*}
$$

which are analytic in \mathbb{U}. If $p(z) \in \mathcal{P}$ satisfies $\operatorname{Re}(p(z))>0 \quad(z \in \mathbb{U})$, then we say that $p(z)$ is the Carathéodory function (cf. [1]).

By the familiar principle of differential subordination between analytic functions $f(z)$ and $g(z)$ in \mathbb{U}, we say that $f(z)$ is subordinate to $g(z)$ in \mathbb{U} if there exists an analytic function $w(z)$ satisfying the following conditions:

$$
w(0)=0 \quad \text { and } \quad|w(z)|<1 \quad(z \in \mathbb{U})
$$

such that

$$
f(z)=g(w(z)) \quad(z \in \mathbb{U})
$$

We denote this subordination by

$$
f(z) \prec g(z) \quad(z \in \mathbb{U})
$$

In particular, if $g(z)$ is univalent in \mathbb{U}, then it is known that

$$
f(z) \prec g(z) \quad(z \in \mathbb{U}) \quad \Longleftrightarrow \quad f(0)=g(0) \quad \text { and } \quad f(\mathbb{U}) \subset g(\mathbb{U})
$$

For the function $p(z) \in \mathcal{P}$, we introduce the following function

$$
\begin{equation*}
p(z)=\frac{1+A z}{1+B z} \quad(-1 \leqq B<A \leqq 1) \tag{1.3}
\end{equation*}
$$

which has been investigated by Janowski [3]. Thus, the function $p(z)$ given by 1.3 is said to be the Janowski function. And, as a generalization of the Janowski function, Kuroki, Owa and Srivastava [2] have discussed the function

$$
p(z)=\frac{1+A z}{1+B z}
$$

for some complex parameters A and B which satisfy one of following conditions

$$
\left\{\begin{array}{l}
(i)|A| \leqq 1,|B|<1, A \neq B, \text { and } \operatorname{Re}(1-A \bar{B}) \geqq|A-B| \\
(i i)|A| \leqq 1,|B|=1, A \neq B, \text { and } 1-A \bar{B}>0
\end{array}\right.
$$

Here, for some complex numbers A and B which satisfy condition (i), the function $p(z)$ is analytic and univalent in \mathbb{U} and $p(z)$ maps the open unit disk \mathbb{U} onto the open disk given by

$$
\begin{equation*}
\left|p(z)-\frac{1-A \bar{B}}{1-|B|^{2}}\right|<\frac{|A-B|}{1-|B|^{2}} \tag{1.4}
\end{equation*}
$$

Thus, it is clear that

$$
\begin{equation*}
\operatorname{Re}(p(z))>\frac{\operatorname{Re}(1-A \bar{B})-|A-B|}{1-|B|^{2}} \geqq 0 \quad(z \in \mathbb{U}) \tag{1.5}
\end{equation*}
$$

Also, for some complex numbers A and B which satisfy condition (ii), the function $p(z)$ is analytic and univalent in \mathbb{U} and the domain $p(\mathbb{U})$ is the right half-plane satisfying

$$
\begin{equation*}
\operatorname{Re}(p(z))>\frac{1-|A|^{2}}{2(1-A \bar{B})} \geqq 0 \tag{1.6}
\end{equation*}
$$

Hence, we see that the generalized Janowski function maps the open unit disk \mathbb{U} onto some domain which is on the right half-plane.

Remark 1. For the function

$$
p(z)=\frac{1+A z}{1+B z}
$$

defined with the condition (i), the inequalities (1.4) and (1.5) give us that

$$
p(z) \neq 0 \quad \text { namely, } \quad 1+A z \neq 0 \quad(z \in \mathbb{U})
$$

Since, after a simple calculation, we see the condition $|A| \leqq 1$, we can omit the condition $|A| \leqq 1$ in (i).
Hence, the condition (i) is newly defined by the following conditions

$$
\begin{equation*}
|B|<1, A \neq B, \quad \text { and } \quad \operatorname{Re}(1-A \bar{B}) \geqq|A-B| \tag{1.7}
\end{equation*}
$$

A function $f(z) \in \mathcal{A}$ is said to be starlike of order α in \mathbb{U} if it satisfies

$$
\begin{equation*}
\operatorname{Re}\left(\frac{z f^{\prime}(z)}{f(z)}\right)>\alpha \quad(z \in \mathbb{U}) \tag{1.8}
\end{equation*}
$$

for some $\alpha(0 \leqq \alpha<1)$. We denote by $\mathcal{S}^{*}(\alpha)$ the subclass of \mathcal{A} consisting of all functions $f(z)$ which are starlike of order α in \mathbb{U}.

Similarly, if $f(z) \in \mathcal{A}$ satisfies the following inequality

$$
\begin{equation*}
\operatorname{Re}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)>\alpha \quad(z \in \mathbb{U}) \tag{1.9}
\end{equation*}
$$

for some $\alpha(0 \leqq \alpha<1)$, then $f(z)$ is said to be convex of order α in \mathbb{U}. We denote by $\mathcal{K}(\alpha)$ the subclass of \mathcal{A} consisting of all functions $f(z)$ which are convex of order α in \mathbb{U}.

As usual, in the present investigation, we write

$$
\mathcal{S}^{*}(0) \equiv \mathcal{S}^{*} \quad \text { and } \quad \mathcal{K}(0) \equiv \mathcal{K} .
$$

The classes $\mathcal{S}^{*}(\alpha)$ and $\mathcal{K}(\alpha)$ were introduced by Robertson [7].
We define the following differential operator due to Sǎlăgean [8].
For a function $f(z)$ and $j=1,2,3, \ldots$,

$$
\begin{equation*}
D^{0} f(z)=f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1.10}
\end{equation*}
$$

$$
\begin{align*}
& D^{1} f(z)=D f(z)=z f^{\prime}(z)=z+\sum_{n=2}^{\infty} n a_{n} z^{n} \tag{1.11}\\
& D^{j} f(z)=D\left(D^{j-1} f(z)\right)=z+\sum_{n=2}^{\infty} n^{j} a_{n} z^{n} \tag{1.12}
\end{align*}
$$

Also, we consider the following differential operator

$$
\begin{gather*}
D^{-1} f(z)=\int_{0}^{z} \frac{f(\zeta)}{\zeta} d \zeta=z+\sum_{n=2}^{\infty} n^{-1} a_{n} z^{n} \tag{1.13}\\
D^{-j} f(z)=D^{-1}\left(D^{-(j-1)} f(z)\right)=z+\sum_{n=2}^{\infty} n^{-j} a_{n} z^{n} \tag{1.14}
\end{gather*}
$$

for any negative integers.
Then, for $f(z) \in \mathcal{A}$ given by 1.1 , we know that

$$
\begin{equation*}
D^{j} f(z)=z+\sum_{n=2}^{\infty} n^{j} a_{n} z^{n} \quad(j=0, \pm 1, \pm 2, \ldots) \tag{1.15}
\end{equation*}
$$

We consider the subclass $\mathcal{S}_{j}^{k}(\alpha)$ as follows:

$$
\mathcal{S}_{j}^{k}(\alpha)=\left\{f(z) \in \mathcal{A}: \operatorname{Re}\left(\frac{D^{k} f(z)}{D^{j} f(z)}\right)>\alpha \quad(z \in \mathbb{U} ; 0 \leqq \alpha<1)\right\} .
$$

In particular, putting $k=j+1$, we also define $\mathcal{S}_{j}^{j+1}(\alpha)$ by

$$
\mathcal{S}_{j}^{j+1}(\alpha)=\left\{f(z) \in \mathcal{A}: \operatorname{Re}\left(\frac{D^{j+1} f(z)}{D^{j} f(z)}\right)>\alpha \quad(z \in \mathbb{U} ; 0 \leqq \alpha<1)\right\}
$$

Remark 2. Noting

$$
\frac{D^{1} f(z)}{D^{0} f(z)}=\frac{z f^{\prime}(z)}{f(z)}, \quad \frac{D^{2} f(z)}{D^{1} f(z)}=\frac{z\left(z f^{\prime}(z)\right)^{\prime}}{z f^{\prime}(z)}=1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}
$$

we see that

$$
\mathcal{S}_{0}^{1}(\alpha) \equiv \mathcal{S}^{*}(\alpha), \quad \mathcal{S}_{1}^{2}(\alpha) \equiv \mathcal{K}(\alpha) \quad(0 \leqq \alpha<1)
$$

Furthermore, by applying subordination, we consider the following subclass

$$
\mathcal{P}_{j}^{k}(A, B)=\left\{f(z) \in \mathcal{A}: \frac{D^{k} f(z)}{D^{j} f(z)} \prec \frac{1+A z}{1+B z} \quad(z \in \mathbb{U} ; A \neq B,|B| \leqq 1)\right\} .
$$

In particular, putting $k=j+1$, we also define

$$
\mathcal{P}_{j}^{j+1}(A, B)=\left\{f(z) \in \mathcal{A}: \frac{D^{j+1} f(z)}{D^{j} f(z)} \prec \frac{1+A z}{1+B z} \quad(z \in \mathbb{U} ; A \neq B,|B| \leqq 1)\right\} .
$$

Remark 3. Noting

$$
\frac{D^{k} f(z)}{D^{j} f(z)} \prec \frac{1+(1-2 \alpha) z}{1-z} \Longleftrightarrow \operatorname{Re}\left(\frac{D^{k} f(z)}{D^{j} f(z)}\right)>\alpha \quad(z \in \mathbb{U} ; 0 \leqq \alpha<1),
$$

we see that

$$
\mathcal{P}_{0}^{1}(1-2 \alpha,-1) \equiv \mathcal{S}^{*}(\alpha), \quad \mathcal{P}_{1}^{2}(1-2 \alpha,-1) \equiv \mathcal{K}(\alpha) \quad(0 \leqq \alpha<1)
$$

In our investigation here, we need the following lemma concerning the differential subordination given by Miller and Mocanu [5] (see also [6, p. 132]).
Lemma 1.1. Let the function $q(z)$ be analytic and univalent in \mathbb{U}. Also let $\phi(\omega)$ and $\psi(\omega)$ be analytic in a domain \mathcal{C} containing $q(\mathbb{U})$, with

$$
\psi(\omega) \neq 0 \quad(\omega \in q(\mathbb{U}) \subset \mathcal{C})
$$

Set

$$
Q(z)=z q^{\prime}(z) \psi(q(z)) \quad \text { and } \quad h(z)=\phi(q(z))+Q(z)
$$

and suppose that

$$
\begin{equation*}
Q(z) \text { is starlike and univalent in } \mathbb{U} \text {; } \tag{i}
\end{equation*}
$$

and
(ii)

$$
\operatorname{Re}\left(\frac{z h^{\prime}(z)}{Q(z)}\right)=\operatorname{Re}\left(\frac{\phi^{\prime}(q(z))}{\psi(q(z))}+\frac{z Q^{\prime}(z)}{Q(z)}\right)>0 \quad(z \in \mathbb{U})
$$

If $p(z)$ is analytic in \mathbb{U}, with

$$
p(0)=q(0) \quad \text { and } \quad p(\mathbb{U}) \subset \mathcal{C},
$$

and

$$
\phi(p(z))+z p^{\prime}(z) \psi(p(z)) \prec \phi(q(z))+z q^{\prime}(z) \psi(q(z))=: h(z) \quad(z \in \mathbb{U})
$$

then

$$
p(z) \prec q(z) \quad(z \in \mathbb{U})
$$

and $q(z)$ is the best dominant of this subordination.

By making use of Lemma 1.1, Kuroki, Owa and Srivastava [2] have investigated some subordination criteria for the generalized Janowski functions and deduced the following lemma.
Lemma 1.2. Let the function $f(z) \in \mathcal{A}$ be chosen so that $\frac{f(z)}{z} \neq 0 \quad(z \in \mathbb{U})$.
Also, let $\alpha(\alpha \neq 0), \beta(-1 \leqq \beta \leqq 1)$, and some complex parameters A and B satisfy one of following conditions:
(i) $|B|<1, A \neq B$, and $\operatorname{Re}(1-A \bar{B}) \geqq|A-B|$ be such that

$$
\frac{\beta(1-\alpha)}{\alpha}+\frac{(1+\beta)\{\operatorname{Re}(1-A \bar{B})-|A-B|\}}{1-|B|^{2}}+\frac{1-\beta}{1+|A|}+\frac{1+\beta}{1+|B|}-1 \geqq 0
$$

(ii) $|B|=1,|A| \leqq 1, A \neq B$, and $1-A \bar{B}>0$ be such that

$$
\frac{\beta(1-\alpha)}{\alpha}+\frac{(1+\beta)\left(1-|A|^{2}\right)}{2(1-A \bar{B})}+\frac{(1-\beta)(1-|A|)}{2(1+|A|)} \geqq 0 .
$$

If

$$
\begin{equation*}
\left(\frac{z f^{\prime}(z)}{f(z)}\right)^{\beta}\left(1+\alpha \frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right) \prec h(z) \quad(z \in \mathbb{U}) \tag{1.16}
\end{equation*}
$$

where

$$
h(z)=\left(\frac{1+A z}{1+B z}\right)^{\beta-1}\left\{(1-\alpha) \frac{1+A z}{1+B z}+\frac{\alpha(1+A z)^{2}+\alpha(A-B) z}{(1+B z)^{2}}\right\}
$$

then

$$
\frac{z f^{\prime}(z)}{f(z)} \prec \frac{1+A z}{1+B z} \quad(z \in \mathbb{U}) .
$$

2. Subordinations for the Class Defined by the Sǎlǎgean Operator

First of all, by applying the Sǎlǎgean operator for $f(z) \in \mathcal{A}$, we consider the following subordination criterion in the class $\mathcal{P}_{j}^{k}(A, B)$ for some complex parameters A and B.
Theorem 2.1. Let the function $f(z) \in \mathcal{A}$ be chosen so that $\frac{D^{j} f(z)}{z} \neq 0 \quad(z \in \mathbb{U})$.
Also, let $\alpha(\alpha \neq 0)$, $\beta(-1 \leqq \beta \leqq 1)$, and some complex parameters A and B satisfy one of following conditions:
(i) $|B|<1, A \neq B$, and $\operatorname{Re}(1-A \bar{B}) \geqq|A-B|$ be so that

$$
\frac{\beta(1-\alpha)}{\alpha}+\frac{(1+\beta)\{\operatorname{Re}(1-A \bar{B})-|A-B|\}}{1-|B|^{2}}+\frac{1-\beta}{1+|A|}+\frac{1+\beta}{1+|B|}-1 \geqq 0
$$

(ii) $|B|=1,|A| \leqq 1, A \neq B$, and $1-A \bar{B}>0$ be so that

$$
\frac{\beta(1-\alpha)}{\alpha}+\frac{(1+\beta)\left(1-|A|^{2}\right)}{2(1-A \bar{B})}+\frac{(1-\beta)(1-|A|)}{2(1+|A|)} \geqq 0 .
$$

If

$$
\begin{equation*}
\left(\frac{D^{k} f(z)}{D^{j} f(z)}\right)^{\beta}\left\{(1-\alpha)+\alpha\left(\frac{D^{k} f(z)}{D^{j} f(z)}+\frac{D^{k+1} f(z)}{D^{k} f(z)}-\frac{D^{j+1} f(z)}{D^{j} f(z)}\right)\right\} \prec h(z), \tag{2.1}
\end{equation*}
$$

where

$$
h(z)=\left(\frac{1+A z}{1+B z}\right)^{\beta-1}\left\{(1-\alpha) \frac{1+A z}{1+B z}+\frac{\alpha(1+A z)^{2}+\alpha(A-B) z}{(1+B z)^{2}}\right\}
$$

then

$$
\frac{D^{k} f(z)}{D^{j} f(z)} \prec \frac{1+A z}{1+B z} \quad(z \in \mathbb{U}) .
$$

Proof. If we define the function $p(z)$ by

$$
p(z)=\frac{D^{k} f(z)}{D^{j} f(z)} \quad(z \in \mathbb{U})
$$

then $p(z)$ is analytic in \mathbb{U} with $p(0)=1$. Further, since

$$
z p^{\prime}(z)=\left(\frac{D^{k} f(z)}{D^{j} f(z)}\right)\left(\frac{D^{k+1} f(z)}{D^{k} f(z)}-\frac{D^{j+1} f(z)}{D^{j} f(z)}\right),
$$

the condition (2.1) can be written as follows:

$$
\{p(z)\}^{\beta}\{(1-\alpha)+\alpha p(z)\}+\alpha z p^{\prime}(z)\{p(z)\}^{\beta-1} \prec h(z) \quad(z \in \mathbb{U})
$$

We also set

$$
q(z)=\frac{1+A z}{1+B z}, \quad \phi(z)=z^{\beta}(1-\alpha+\alpha z), \quad \text { and } \quad \psi(z)=\alpha z^{\beta-1}
$$

for $z \in \mathbb{U}$. Then, it is clear that the function $q(z)$ is analytic and univalent in \mathbb{U} and has a positive real part in \mathbb{U} for the conditions (i) and $(i i)$.
Therefore, ϕ and ψ are analytic in a domain \mathcal{C} containing $q(\mathbb{U})$, with

$$
\psi(\omega) \neq 0 \quad(\omega \in q(\mathbb{U}) \subset \mathcal{C})
$$

Also, for the function $Q(z)$ given by

$$
Q(z)=z q^{\prime}(z) \psi(q(z))=\frac{\alpha(A-B) z(1+A z)^{\beta-1}}{(1+B z)^{\beta+1}}
$$

we obtain

$$
\begin{equation*}
\frac{z Q^{\prime}(z)}{Q(z)}=\frac{1-\beta}{1+A z}+\frac{1+\beta}{1+B z}-1 \tag{2.2}
\end{equation*}
$$

Furthermore, we have

$$
\begin{aligned}
h(z) & =\phi(q(z))+Q(z) \\
& =\left(\frac{1+A z}{1+B z}\right)^{\beta}\left(1-\alpha+\alpha \frac{1+A z}{1+B z}\right)+\frac{\alpha(A-B) z(1+A z)^{\beta-1}}{(1+B z)^{\beta+1}}
\end{aligned}
$$

and

$$
\begin{equation*}
\frac{z h^{\prime}(z)}{Q(z)}=\frac{\beta(1-\alpha)}{\alpha}+(1+\beta) q(z)+\frac{z Q^{\prime}(z)}{Q(z)} \tag{2.3}
\end{equation*}
$$

Hence,
(i) For the complex numbers A and B such that

$$
|B|<1, A \neq B, \quad \text { and } \quad \operatorname{Re}(1-A \bar{B}) \geqq|A-B|,
$$

it follows from (2.2) and (2.3) that

$$
\operatorname{Re}\left(\frac{z Q^{\prime}(z)}{Q(z)}\right)>\frac{1-\beta}{1+|A|}+\frac{1+\beta}{1+|B|}-1 \geqq 0
$$

and

$$
\begin{aligned}
& \operatorname{Re}\left(\frac{z h^{\prime}(z)}{Q(z)}\right)>\frac{\beta(1-\alpha)}{\alpha}+\frac{(1+\beta)\{\operatorname{Re}(1-A \bar{B})-|A-B|\}}{1-|B|^{2}} \\
&+\frac{1-\beta}{1+|A|}+\frac{1+\beta}{1+|B|}-1 \geqq 0 \quad(z \in \mathbb{U}) .
\end{aligned}
$$

(ii) For the complex numbers A and B such that

$$
|B|=1,|A| \leqq 1, A \neq B, \quad \text { and } \quad 1-A \bar{B}>0
$$

from (2.2) and (2.3), we get

$$
\operatorname{Re}\left(\frac{z Q^{\prime}(z)}{Q(z)}\right)>\frac{1-\beta}{1+|A|}+\frac{1}{2}(1+\beta)-1=\frac{(1-\beta)(1-|A|)}{2(1+|A|)} \geqq 0
$$

and

$$
\operatorname{Re}\left(\frac{z h^{\prime}(z)}{Q(z)}\right)>\frac{\beta(1-\alpha)}{\alpha}+\frac{(1+\beta)\left(1-|A|^{2}\right)}{2(1-A \bar{B})}+\frac{(1-\beta)(1-|A|)}{2(1+|A|)} \geqq 0 \quad(z \in \mathbb{U})
$$

Since all the conditions of Lemma 1.1 are satisfied, we conclude that

$$
\frac{D^{k} f(z)}{D^{j} f(z)} \prec \frac{1+A z}{1+B z} \quad(z \in \mathbb{U})
$$

which completes the proof of Theorem 2.1 .
Remark 4. We know that a function $f(z)$ satisfying the conditions in Theorem 2.1 belongs to the class $\mathcal{P}_{j}^{k}(A, B)$.

Letting $k=j+1$ in Theorem 2.1, we obtain the following theorem.
Theorem 2.2. Let the function $f(z) \in \mathcal{A}$ be chosen so that $\frac{D^{j} f(z)}{z} \neq 0 \quad(z \in \mathbb{U})$.
Also, let $\alpha(\alpha \neq 0)$, $\beta(-1 \leqq \beta \leqq 1)$, and some complex parameters A and B satisfy one of following conditions
(i) $|B|<1, A \neq B$, and $\operatorname{Re}(1-A \bar{B}) \geqq|A-B|$ be so that

$$
\frac{\beta(1-\alpha)}{\alpha}+\frac{(1+\beta)\{\operatorname{Re}(1-A \bar{B})-|A-B|\}}{1-|B|^{2}}+\frac{1-\beta}{1+|A|}+\frac{1+\beta}{1+|B|}-1 \geqq 0
$$

(ii) $|B|=1,|A| \leqq 1, A \neq B$, and $1-A \bar{B}>0$ be so that

$$
\frac{\beta(1-\alpha)}{\alpha}+\frac{(1+\beta)\left(1-|A|^{2}\right)}{2(1-A \bar{B})}+\frac{(1-\beta)(1-|A|)}{2(1+|A|)} \geqq 0 .
$$

If

$$
\begin{equation*}
\left(\frac{D^{j+1} f(z)}{D^{j} f(z)}\right)^{\beta}\left(1-\alpha+\alpha \frac{D^{j+2} f(z)}{D^{j+1} f(z)}\right) \prec h(z), \tag{2.4}
\end{equation*}
$$

where

$$
h(z)=\left(\frac{1+A z}{1+B z}\right)^{\beta-1}\left\{(1-\alpha) \frac{1+A z}{1+B z}+\frac{\alpha(1+A z)^{2}+\alpha(A-B) z}{(1+B z)^{2}}\right\}
$$

then

$$
\frac{D^{j+1} f(z)}{D^{j} f(z)} \prec \frac{1+A z}{1+B z} \quad(z \in \mathbb{U}) .
$$

Remark 5. A function $f(z)$ satisfying the conditions in Theorem 2.2 belongs to the class $\mathcal{P}_{j}^{j+1}(A, B)$. Setting $j=0$ in Theorem 2.2, we obtain Lemma 1.2 proven by Kuroki, Owa and Srivastava [2].

Also, if we assume that

$$
\alpha=1, \beta=A=0, \quad \text { and } \quad B=\frac{1-\mu}{1+\mu} e^{i \theta} \quad(0 \leqq \mu<1,0 \leqq \theta<2 \pi),
$$

Theorem 2.2 becomes the following corollary.
Corollary 2.3. If $f(z) \in \mathcal{A}\left(\frac{D^{j} f(z)}{z} \neq 0\right.$ in $\left.\mathbb{U}\right)$ satisfies

$$
\frac{D^{j+2} f(z)}{D^{j+1} f(z)} \prec \frac{1+\mu-(1-\mu) e^{i \theta} z}{1+\mu+(1-\mu) e^{i \theta} z} \quad(z \in \mathbb{U} ; 0 \leqq \theta<2 \pi)
$$

for some $\mu(0 \leqq \mu<1)$, then

$$
\frac{D^{j+1} f(z)}{D^{j} f(z)} \prec \frac{1+\mu}{1+\mu+(1-\mu) e^{i \theta} z} \quad(z \in \mathbb{U})
$$

From the above corollary, we have

$$
\operatorname{Re}\left(\frac{D^{j+2} f(z)}{D^{j+1} f(z)}\right)>\mu \quad \Longrightarrow \quad \operatorname{Re}\left(\frac{D^{j+1} f(z)}{D^{j} f(z)}\right)>\frac{1+\mu}{2} \quad(z \in \mathbb{U} ; 0 \leqq \mu<1)
$$

In particular, making $j=0$, we get

$$
\operatorname{Re}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)>\mu \quad \Longrightarrow \quad \operatorname{Re}\left(\frac{z f^{\prime}(z)}{f(z)}\right)>\frac{1+\mu}{2} \quad(z \in \mathbb{U} ; 0 \leqq \mu<1)
$$

namely

$$
f(z) \in \mathcal{K}(\mu) \quad \Longrightarrow \quad f(z) \in \mathcal{S}^{*}\left(\frac{1+\mu}{2}\right) \quad(z \in \mathbb{U} ; 0 \leqq \mu<1)
$$

And, taking $\mu=0$, we find that every convex function is starlike of order $\frac{1}{2}$. This fact is well-known as the Marx-Strohhäcker theorem in Univalent Function Theory (cf. [4, 9]).

3. Subordination Criteria for Other Analytic Functions

In this section, by making use of Lemma 1.1, we consider some subordination criteria concerning the analytic function $\frac{D^{j} f(z)}{z}$ for $f(z) \in \mathcal{A}$.
Theorem 3.1. Let $\alpha(\alpha \neq 0), \beta(-1 \leqq \beta \leqq 1)$, and some complex parameters A and B which satisfy one of following conditions
(i) $|B|<1, A \neq B$, and $\operatorname{Re}(1-A \bar{B}) \geqq|A-B|$ be so that

$$
\frac{\beta}{\alpha}+\frac{1-\beta}{1+|A|}+\frac{1+\beta}{1+|B|}-1 \geqq 0
$$

(ii) $|B|=1,|A| \leqq 1, A \neq B$, and $1-A \bar{B}>0$ be so that

$$
\frac{\beta}{\alpha}+\frac{(1-\beta)(1-|A|)}{2(1+|A|)} \geqq 0 .
$$

If $f(z) \in \mathcal{A}$ satisfies

$$
\begin{equation*}
\left(\frac{D^{j} f(z)}{z}\right)^{\beta}\left(1-\alpha+\alpha \frac{D^{j+1} f(z)}{D^{j} f(z)}\right) \prec h(z), \tag{3.1}
\end{equation*}
$$

where

$$
h(z)=\left(\frac{1+A z}{1+B z}\right)^{\beta}+\frac{\alpha(A-B) z(1+A z)^{\beta-1}}{(1+B z)^{\beta+1}}
$$

then

$$
\frac{D^{j} f(z)}{z} \prec \frac{1+A z}{1+B z} \quad(z \in \mathbb{U}) .
$$

Proof. If we define the function $p(z)$ by

$$
p(z)=\frac{D^{j} f(z)}{z} \quad(z \in \mathbb{U}),
$$

then $p(z)$ is analytic in \mathbb{U} with $p(0)=1$ and the condition (3.1) can be written as follows:

$$
\{p(z)\}^{\beta}+\alpha z p^{\prime}(z)\{p(z)\}^{\beta-1} \prec h(z) \quad(z \in \mathbb{U})
$$

We also set

$$
q(z)=\frac{1+A z}{1+B z}, \quad \phi(z)=z^{\beta}, \quad \text { and } \quad \psi(z)=\alpha z^{\beta-1}
$$

for $z \in \mathbb{U}$. Then, the function $q(z)$ is analytic and univalent in \mathbb{U} and satisfies

$$
\operatorname{Re}(q(z))>0 \quad(z \in \mathbb{U})
$$

for the condition (i) and (ii).
Thus, the functions ϕ and ψ satisfy the conditions required by Lemma 1.1.
Further, for the functions $Q(z)$ and $h(z)$ given by

$$
Q(z)=z q^{\prime}(z) \psi(q(z)) \quad \text { and } \quad h(z)=\phi(q(z))+Q(z)
$$

we have

$$
\frac{z Q^{\prime}(z)}{Q(z)}=\frac{1-\beta}{1+A z}+\frac{1+\beta}{1+B z}-1 \quad \text { and } \quad \frac{z h^{\prime}(z)}{Q(z)}=\frac{\beta}{\alpha}+\frac{z Q^{\prime}(z)}{Q(z)} .
$$

Then, similarly to the proof of Theorem 2.1, we see that

$$
\operatorname{Re}\left(\frac{z Q^{\prime}(z)}{Q(z)}\right)>0 \quad \text { and } \quad \operatorname{Re}\left(\frac{z h^{\prime}(z)}{Q(z)}\right)>0 \quad(z \in \mathbb{U})
$$

for the conditions (i) and $(i i)$.
Thus, by applying Lemma 1.1 , we conclude that $p(z) \prec q(z) \quad(z \in \mathbb{U})$.
The proof of the theorem is completed.
Letting $j=0$ in Theorem 3.1, we obtain the following theorem.
Theorem 3.2. Let $\alpha(\alpha \neq 0), \beta(-1 \leqq \beta \leqq 1)$, and some complex parameters A and B satisfy one of following conditions:
(i) $|B|<1, A \neq B$, and $\operatorname{Re}(1-A \bar{B}) \geqq|A-B|$ be so that

$$
\frac{\beta}{\alpha}+\frac{1-\beta}{1+|A|}+\frac{1+\beta}{1+|B|}-1 \geqq 0,
$$

(ii) $|B|=1,|A| \leqq 1, A \neq B$, and $1-A \bar{B}>0$ be so that

$$
\frac{\beta}{\alpha}+\frac{(1-\beta)(1-|A|)}{2(1+|A|)} \geqq 0 .
$$

If $f(z) \in \mathcal{A}$ satisfies

$$
\begin{equation*}
\left(\frac{f(z)}{z}\right)^{\beta-1}\left\{(1-\alpha) \frac{f(z)}{z}+\alpha f^{\prime}(z)\right\} \prec\left(\frac{1+A z}{1+B z}\right)^{\beta}+\frac{\alpha(A-B) z(1+A z)^{\beta-1}}{(1+B z)^{\beta+1}} \tag{3.2}
\end{equation*}
$$

then

$$
\frac{f(z)}{z} \prec \frac{1+A z}{1+B z} \quad(z \in \mathbb{U}) .
$$

Also, taking

$$
\alpha=1, \beta=A=0, \quad \text { and } \quad B=\frac{1-\nu}{\nu} e^{i \theta} \quad\left(\frac{1}{2} \leqq \nu<1,0 \leqq \theta<2 \pi\right)
$$

in Theorem 3.2, we have
Corollary 3.3. If $f(z) \in \mathcal{A}$ satisfies

$$
\frac{z f^{\prime}(z)}{f(z)} \prec \frac{\nu}{\nu+(1-\nu) e^{i \theta} z} \quad(z \in \mathbb{U} ; 0 \leqq \theta<2 \pi)
$$

for some $\nu\left(\frac{1}{2} \leqq \nu<1\right)$, then

$$
\frac{f(z)}{z} \prec \frac{\nu}{\nu+(1-\nu) e^{i \theta} z} \quad(z \in \mathbb{U}) .
$$

Further, making

$$
\alpha=\beta=1, \quad A=0, \quad \text { and } \quad B=\frac{1-\nu}{\nu} e^{i \theta} \quad\left(\frac{1}{2} \leqq \nu<1,0 \leqq \theta<2 \pi\right)
$$

in Theorem 3.2, we get
Corollary 3.4. If $f(z) \in \mathcal{A}$ satisfies

$$
f^{\prime}(z) \prec\left(\frac{\nu}{\nu+(1-\nu) e^{i \theta} z}\right)^{2} \quad(z \in \mathbb{U} ; 0 \leqq \theta<2 \pi)
$$

for some $\nu\left(\frac{1}{2} \leqq \nu<1\right)$, then

$$
\frac{f(z)}{z} \prec \frac{\nu}{\nu+(1-\nu) e^{i \theta} z} \quad(z \in \mathbb{U}) .
$$

The above corollaries give:

$$
\begin{equation*}
\operatorname{Re}\left(\frac{z f^{\prime}(z)}{f(z)}\right)>\nu \quad \Longrightarrow \quad \operatorname{Re}\left(\frac{f(z)}{z}\right)>\nu \quad\left(z \in \mathbb{U} ; \frac{1}{2} \leqq \nu<1\right) \tag{3.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{Re} \sqrt{f^{\prime}(z)}>\nu \quad \Longrightarrow \quad \operatorname{Re}\left(\frac{f(z)}{z}\right)>\nu \quad\left(z \in \mathbb{U} ; \frac{1}{2} \leqq \nu<1\right) . \tag{3.4}
\end{equation*}
$$

Here, taking $\nu=\frac{1}{2}$, we find some results that are known as the Marx-Strohhäcker theorem in Univalent Function Theory (cf. [4], [9]).

Setting $j=1$ in Theorem 3.1, we obtain the following theorem.
Theorem 3.5. Let $\alpha(\alpha \neq 0), \beta(-1 \leqq \beta \leqq 1)$, and some complex parameters A and B satisfy one offollowing conditions
(i) $|B|<1, A \neq B$, and $\operatorname{Re}(1-A \bar{B}) \geqq|A-B|$ be so that

$$
\frac{\beta}{\alpha}+\frac{1-\beta}{1+|A|}+\frac{1+\beta}{1+|B|}-1 \geqq 0
$$

(ii) $|B|=1,|A| \leqq 1, A \neq B$, and $1-A \bar{B}>0$ be so that

$$
\frac{\beta}{\alpha}+\frac{(1-\beta)(1-|A|)}{2(1+|A|)} \geqq 0
$$

If $f(z) \in \mathcal{A}$ satisfies

$$
\begin{equation*}
\left(f^{\prime}(z)\right)^{\beta}\left(1+\alpha \frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right) \prec\left(\frac{1+A z}{1+B z}\right)^{\beta}+\frac{\alpha(A-B) z(1+A z)^{\beta-1}}{(1+B z)^{\beta+1}} \tag{3.5}
\end{equation*}
$$

then

$$
f^{\prime}(z) \prec \frac{1+A z}{1+B z} \quad(z \in \mathbb{U})
$$

Here, making

$$
\alpha=1, \beta=A=0, \quad \text { and } \quad B=\frac{1-\nu}{\nu} e^{i \theta} \quad\left(\frac{1}{2} \leqq \nu<1,0 \leqq \theta<2 \pi\right)
$$

in Theorem 3.5, we have:
Corollary 3.6. If $f(z) \in \mathcal{A}$ satisfies

$$
1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)} \prec \frac{\nu}{\nu+(1-\nu) e^{i \theta} z} \quad(z \in \mathbb{U} ; 0 \leqq \theta<2 \pi)
$$

for some $\nu\left(\frac{1}{2} \leqq \nu<1\right)$, then

$$
f^{\prime}(z) \prec \frac{\nu}{\nu+(1-\nu) e^{i \theta} z} \quad(z \in \mathbb{U})
$$

Also, from Corollary 3.6 we have:

$$
\begin{equation*}
\operatorname{Re}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)>\nu \quad \Longrightarrow \quad \operatorname{Re}\left(f^{\prime}(z)\right)>\nu \quad\left(z \in \mathbb{U} ; \frac{1}{2} \leqq \nu<1\right) \tag{3.6}
\end{equation*}
$$

REFERENCES

[1] P.L. DUREM, Univalent Functions, Springer-Verlag, New York, Berlin, Heidelberg, Tokyo, 1983.
[2] K. KUROKI, S. OWA AND H.M. SRIVASTAVA, Some subordination criteria for analytic functions, Bull. Soc. Sci. Lett. Lodz, Vol., 52 (2007), 27-36.
[3] W. JANOWSKI, Extremal problem for a family of functions with positive real part and for some related families, Ann. Polon. Math., 23 (1970), 159-177.
[4] A. MARX, Untersuchungen uber schlichte Abbildungen, Math. Ann., 107 (1932/33), 40-67.
[5] S.S. MILLER and P.T. MOCANU, On some classes of first-order differential subordinations, Michigan Math. J., 32 (1985), 185-195.
[6] S.S. MILLER and P.T. MOCANU, Differential Subordinations, Pure and Applied Mathematics 225, Marcel Dekker, 2000.
[7] M.S. ROBERTSON, On the theory of univalent functions, Ann. Math., 37 (1936), 374-408.
[8] G.S. SǍLǍGEAN, Subclass of univalent functions, Complex Analysis-Fifth Romanian-Finnish Seminar, Part 1(Bucharest, 1981), Lecture Notes in Math., vol. 1013, Springer, Berlin, 1983, pp. 362-372.
[9] E. STROHHÄCKER, Beitrage zur Theorie der schlichten Funktionen, Math. Z., 37 (1933), 356-380.

