SOME SUBORDINATION CRITERIA CONCERNING THE SǍLǍGEAN OPERATOR

KAZUO KUROKI AND SHIGEYOSHI OWA
Department of Mathematics
Kinki University
Higashi-Osaka, Osaka 577-8502, Japan
EMail: freedom@sakai.zaq.ne.jp owa@math.kindai.ac.jp

Received:
Accepted:
Communicated by:
2000 AMS Sub. Class.:
Key words:
Abstract.

14 September, 2008
11 January, 2009
H.M. Srivastava

26D15.
Janowski function, Starlike, Convex, Univalent, Subordination.
Applying Sǎlǎgean operator, for the class \mathcal{A} of analytic functions $f(z)$ in the open unit disk \mathbb{U} which are normalized by $f(0)=f^{\prime}(0)-1=0$, the generalization of an analytic function to discuss the starlikeness is considered. Furthermore, from the subordination criteria for Janowski functions generalized by some complex parameters, some interesting subordination criteria for $f(z) \in \mathcal{A}$ are given.

Subordination Criteria

Kazuo Kuroki and Shigeyoshi Owa vol. 10, iss. 2, art. 36, 2009

Title Page
Contents

$\langle 4$	
4	
Page 1 of 23	
Go Back	

Full Screen
Close
journal of inequalities in pure and applied mathematics

Contents

1 Introduction, Definition and Preliminaries

2 Subordinations for the Class Defined ly the Sǎlǎgean Operator 11
3 Subordination Criteria for Other Analytic Functions 1717

Subordination Criteria
Kazuo Kuroki and Shigeyoshi Owa vol. 10, iss. 2, art. 36, 2009

Title Page
Contents

Page 2 of 23
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

1. Introduction, Definition and Preliminaries

Let \mathcal{A} denote the class of functions $f(z)$ of the form:

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1.1}
\end{equation*}
$$

which are analytic in the open unit disk

$$
\mathbb{U}=\{z: z \in \mathbb{C} \quad \text { and } \quad|z|<1\} .
$$

Subordination Criteria
Kazuo Kuroki and Shigeyoshi Owa vol. 10, iss. 2, art. 36, 2009

Title Page
Contents

Page 3 of 23
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

In particular, if $g(z)$ is univalent in \mathbb{U}, then it is known that

$$
f(z) \prec g(z) \quad(z \in \mathbb{U}) \quad \Longleftrightarrow \quad f(0)=g(0) \quad \text { and } \quad f(\mathbb{U}) \subset g(\mathbb{U})
$$

For the function $p(z) \in \mathcal{P}$, we introduce the following function

$$
\begin{equation*}
p(z)=\frac{1+A z}{1+B z} \quad(-1 \leqq B<A \leqq 1) \tag{1.3}
\end{equation*}
$$

which has been investigated by Janowski [3]. Thus, the function $p(z)$ given by (1.3) is said to be the Janowski function. And, as a generalization of the Janowski function, Kuroki, Owa and Srivastava [2] have discussed the function

$$
p(z)=\frac{1+A z}{1+B z}
$$

for some complex parameters A and B which satisfy one of following conditions

$$
\left\{\begin{array}{l}
(i)|A| \leqq 1,|B|<1, A \neq B, \text { and } \operatorname{Re}(1-A \bar{B}) \geqq|A-B| \\
(i i)|A| \leqq 1,|B|=1, A \neq B, \text { and } 1-A \bar{B}>0
\end{array}\right.
$$

Subordination Criteria
Kazuo Kuroki and Shigeyoshi Owa vol. 10, iss. 2, art. 36, 2009

Title Page
Contents

Page 4 of 23
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

Also, for some complex numbers A and B which satisfy condition (ii), the function $p(z)$ is analytic and univalent in \mathbb{U} and the domain $p(\mathbb{U})$ is the right half-plane satisfying

$$
\begin{equation*}
\operatorname{Re}(p(z))>\frac{1-|A|^{2}}{2(1-A \bar{B})} \geqq 0 \tag{1.6}
\end{equation*}
$$

Hence, we see that the generalized Janowski function maps the open unit disk \mathbb{U} onto some domain which is on the right half-plane.
Remark 1. For the function

$$
p(z)=\frac{1+A z}{1+B z}
$$

defined with the condition (i), the inequalities (1.4) and (1.5) give us that

$$
p(z) \neq 0 \quad \text { namely, } \quad 1+A z \neq 0 \quad(z \in \mathbb{U})
$$

Since, after a simple calculation, we see the condition $|A| \leqq 1$, we can omit the condition $|A| \leqq 1$ in (i).
Hence, the condition (i) is newly defined by the following conditions

$$
\begin{equation*}
|B|<1, A \neq B, \quad \text { and } \quad \operatorname{Re}(1-A \bar{B}) \geqq|A-B| \tag{1.7}
\end{equation*}
$$

A function $f(z) \in \mathcal{A}$ is said to be starlike of order α in \mathbb{U} if it satisfies

$$
\begin{equation*}
\operatorname{Re}\left(\frac{z f^{\prime}(z)}{f(z)}\right)>\alpha \quad(z \in \mathbb{U}) \tag{1.8}
\end{equation*}
$$

for some $\alpha(0 \leqq \alpha<1)$. We denote by $\mathcal{S}^{*}(\alpha)$ the subclass of \mathcal{A} consisting of all functions $f(z)$ which are starlike of order α in \mathbb{U}.

Subordination Criteria
Kazuo Kuroki and Shigeyoshi Owa vol. 10, iss. 2, art. 36, 2009

Title Page
Contents

Page 5 of 23
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

Similarly, if $f(z) \in \mathcal{A}$ satisfies the following inequality

$$
\begin{equation*}
\operatorname{Re}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)>\alpha \quad(z \in \mathbb{U}) \tag{1.9}
\end{equation*}
$$

for some $\alpha(0 \leqq \alpha<1)$, then $f(z)$ is said to be convex of order α in \mathbb{U}. We denote by $\mathcal{K}(\alpha)$ the subclass of \mathcal{A} consisting of all functions $f(z)$ which are convex of order
α in \mathbb{U}.

As usual, in the present investigation, we write

$$
\mathcal{S}^{*}(0) \equiv \mathcal{S}^{*} \quad \text { and } \quad \mathcal{K}(0) \equiv \mathcal{K} .
$$

Subordination Criteria
Kazuo Kuroki and Shigeyoshi Owa

The classes $\mathcal{S}^{*}(\alpha)$ and $\mathcal{K}(\alpha)$ were introduced by Robertson [7].
We define the following differential operator due to Sǎlăgean [8].
For a function $f(z)$ and $j=1,2,3, \ldots$,

$$
\begin{equation*}
D^{0} f(z)=f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1.10}
\end{equation*}
$$

$$
\begin{equation*}
D^{1} f(z)=D f(z)=z f^{\prime}(z)=z+\sum_{n=2}^{\infty} n a_{n} z^{n} \tag{1.11}
\end{equation*}
$$

$$
D^{j} f(z)=D\left(D^{j-1} f(z)\right)=z+\sum_{n=2}^{\infty} n^{j} a_{n} z^{n}
$$

Also, we consider the following differential operator

$$
\begin{equation*}
D^{-1} f(z)=\int_{0}^{z} \frac{f(\zeta)}{\zeta} d \zeta=z+\sum_{n=2}^{\infty} n^{-1} a_{n} z^{n} \tag{1.13}
\end{equation*}
$$

vol. 10, iss. 2, art. 36, 2009

Title Page
Contents

Page 6 of 23
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
J

$$
\begin{equation*}
D^{-j} f(z)=D^{-1}\left(D^{-(j-1)} f(z)\right)=z+\sum_{n=2}^{\infty} n^{-j} a_{n} z^{n} \tag{1.14}
\end{equation*}
$$

for any negative integers.
Then, for $f(z) \in \mathcal{A}$ given by (1.1), we know that

$$
\begin{equation*}
D^{j} f(z)=z+\sum_{n=2}^{\infty} n^{j} a_{n} z^{n} \quad(j=0, \pm 1, \pm 2, \ldots) \tag{1.15}
\end{equation*}
$$

Subordination Criteria
Kazuo Kuroki and Shigeyoshi Owa vol. 10, iss. 2, art. 36, 2009

We consider the subclass $\mathcal{S}_{j}^{k}(\alpha)$ as follows:

$$
\mathcal{S}_{j}^{k}(\alpha)=\left\{f(z) \in \mathcal{A}: \operatorname{Re}\left(\frac{D^{k} f(z)}{D^{j} f(z)}\right)>\alpha \quad(z \in \mathbb{U} ; 0 \leqq \alpha<1)\right\} .
$$

In particular, putting $k=j+1$, we also define $\mathcal{S}_{j}^{j+1}(\alpha)$ by

$$
\mathcal{S}_{j}^{j+1}(\alpha)=\left\{f(z) \in \mathcal{A}: \operatorname{Re}\left(\frac{D^{j+1} f(z)}{D^{j} f(z)}\right)>\alpha \quad(z \in \mathbb{U} ; 0 \leqq \alpha<1)\right\}
$$

Remark 2. Noting

$$
\frac{D^{1} f(z)}{D^{0} f(z)}=\frac{z f^{\prime}(z)}{f(z)}, \quad \frac{D^{2} f(z)}{D^{1} f(z)}=\frac{z\left(z f^{\prime}(z)\right)^{\prime}}{z f^{\prime}(z)}=1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}
$$

we see that

$$
\mathcal{S}_{0}^{1}(\alpha) \equiv \mathcal{S}^{*}(\alpha), \quad \mathcal{S}_{1}^{2}(\alpha) \equiv \mathcal{K}(\alpha) \quad(0 \leqq \alpha<1)
$$

Contents

Page 7 of 23
Go Back
Full Screen

Close

journal of inequalities in pure and applied mathematics
issn: 1443-575b

Furthermore, by applying subordination, we consider the following subclass

$$
\mathcal{P}_{j}^{k}(A, B)=\left\{f(z) \in \mathcal{A}: \frac{D^{k} f(z)}{D^{j} f(z)} \prec \frac{1+A z}{1+B z} \quad(z \in \mathbb{U} ; A \neq B,|B| \leqq 1)\right\} .
$$

In particular, putting $k=j+1$, we also define

$$
\mathcal{P}_{j}^{j+1}(A, B)=\left\{f(z) \in \mathcal{A}: \frac{D^{j+1} f(z)}{D^{j} f(z)} \prec \frac{1+A z}{1+B z} \quad(z \in \mathbb{U} ; A \neq B,|B| \leqq 1)\right\}
$$

Remark 3. Noting

$$
\frac{D^{k} f(z)}{D^{j} f(z)} \prec \frac{1+(1-2 \alpha) z}{1-z} \quad \Longleftrightarrow \quad \operatorname{Re}\left(\frac{D^{k} f(z)}{D^{j} f(z)}\right)>\alpha \quad(z \in \mathbb{U} ; 0 \leqq \alpha<1)
$$

Subordination Criteria
Kazuo Kuroki and Shigeyoshi Owa vol. 10, iss. 2, art. 36, 2009

Title Page
Contents

Page 8 of 23
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
and

$$
\text { (ii) } \quad \operatorname{Re}\left(\frac{z h^{\prime}(z)}{Q(z)}\right)=\operatorname{Re}\left(\frac{\phi^{\prime}(q(z))}{\psi(q(z))}+\frac{z Q^{\prime}(z)}{Q(z)}\right)>0 \quad(z \in \mathbb{U}) \text {. }
$$

If $p(z)$ is analytic in \mathbb{U}, with

$$
p(0)=q(0) \quad \text { and } \quad p(\mathbb{U}) \subset \mathcal{C} \text {, }
$$

and

$$
\phi(p(z))+z p^{\prime}(z) \psi(p(z)) \prec \phi(q(z))+z q^{\prime}(z) \psi(q(z))=: h(z) \quad(z \in \mathbb{U}),
$$

then

$$
p(z) \prec q(z) \quad(z \in \mathbb{U})
$$

and $q(z)$ is the best dominant of this subordination.
By making use of Lemma 1.1, Kuroki, Owa and Srivastava [2] have investigated some subordination criteria for the generalized Janowski functions and deduced the following lemma.

Lemma 1.2. Let the function $f(z) \in \mathcal{A}$ be chosen so that $\frac{f(z)}{z} \neq 0 \quad(z \in \mathbb{U})$. Also, let $\alpha(\alpha \neq 0), \beta(-1 \leqq \beta \leqq 1)$, and some complex parameters A and B satisfy one of following conditions:
(i) $|B|<1, A \neq B$, and $\operatorname{Re}(1-A \bar{B}) \geqq|A-B|$ be such that

$$
\frac{\beta(1-\alpha)}{\alpha}+\frac{(1+\beta)\{\operatorname{Re}(1-A \bar{B})-|A-B|\}}{1-|B|^{2}}+\frac{1-\beta}{1+|A|}+\frac{1+\beta}{1+|B|}-1 \geqq 0,
$$

Subordination Criteria

Kazuo Kuroki and Shigeyoshi Owa vol. 10, iss. 2, art. 36, 2009

Title Page

Contents

Page 9 of 23
Go Back
Full Screen

Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
(ii) $|B|=1,|A| \leqq 1, A \neq B$, and $1-A \bar{B}>0$ be such that

$$
\frac{\beta(1-\alpha)}{\alpha}+\frac{(1+\beta)\left(1-|A|^{2}\right)}{2(1-A \bar{B})}+\frac{(1-\beta)(1-|A|)}{2(1+|A|)} \geqq 0 .
$$

If

$$
\begin{equation*}
\left(\frac{z f^{\prime}(z)}{f(z)}\right)^{\beta}\left(1+\alpha \frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right) \prec h(z) \quad(z \in \mathbb{U}) \tag{1.16}
\end{equation*}
$$

where

$$
h(z)=\left(\frac{1+A z}{1+B z}\right)^{\beta-1}\left\{(1-\alpha) \frac{1+A z}{1+B z}+\frac{\alpha(1+A z)^{2}+\alpha(A-B) z}{(1+B z)^{2}}\right\}
$$

then

$$
\frac{z f^{\prime}(z)}{f(z)} \prec \frac{1+A z}{1+B z} \quad(z \in \mathbb{U}) .
$$

Subordination Criteria

Kazuo Kuroki and Shigeyoshi Owa vol. 10, iss. 2, art. 36, 2009

Title Page
Contents

Page 10 of 23
Go Back
Full Screen

Close

journal of inequalities in pure and applied mathematics
issn: 1443-575b

2. Subordinations for the Class Defined by the Sǎlǎgean Operator

First of all, by applying the Sǎlǎgean operator for $f(z) \in \mathcal{A}$, we consider the following subordination criterion in the class $\mathcal{P}_{j}^{k}(A, B)$ for some complex parameters A and B.

Theorem 2.1. Let the function $f(z) \in \mathcal{A}$ be chosen so that $\frac{D^{j} f(z)}{z} \neq 0 \quad(z \in \mathbb{U})$. Also, let $\alpha(\alpha \neq 0), \beta(-1 \leqq \beta \leqq 1)$, and some complex parameters A and B satisfy one of following conditions:
(i) $|B|<1, A \neq B$, and $\operatorname{Re}(1-A \bar{B}) \geqq|A-B|$ be so that

$$
\frac{\beta(1-\alpha)}{\alpha}+\frac{(1+\beta)\{\operatorname{Re}(1-A \bar{B})-|A-B|\}}{1-|B|^{2}}+\frac{1-\beta}{1+|A|}+\frac{1+\beta}{1+|B|}-1 \geqq 0
$$

Subordination Criteria
Kazuo Kuroki and Shigeyoshi Owa vol. 10, iss. 2, art. 36, 2009

Title Page
Contents

Page 11 of 23
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
then

$$
\frac{D^{k} f(z)}{D^{j} f(z)} \prec \frac{1+A z}{1+B z} \quad(z \in \mathbb{U}) .
$$

Proof. If we define the function $p(z)$ by

$$
p(z)=\frac{D^{k} f(z)}{D^{j} f(z)} \quad(z \in \mathbb{U})
$$

then $p(z)$ is analytic in \mathbb{U} with $p(0)=1$. Further, since

$$
z p^{\prime}(z)=\left(\frac{D^{k} f(z)}{D^{j} f(z)}\right)\left(\frac{D^{k+1} f(z)}{D^{k} f(z)}-\frac{D^{j+1} f(z)}{D^{j} f(z)}\right)
$$

the condition (2.1) can be written as follows:

$$
\{p(z)\}^{\beta}\{(1-\alpha)+\alpha p(z)\}+\alpha z p^{\prime}(z)\{p(z)\}^{\beta-1} \prec h(z) \quad(z \in \mathbb{U})
$$

We also set

$$
q(z)=\frac{1+A z}{1+B z}, \quad \phi(z)=z^{\beta}(1-\alpha+\alpha z), \quad \text { and } \quad \psi(z)=\alpha z^{\beta-1}
$$

for $z \in \mathbb{U}$. Then, it is clear that the function $q(z)$ is analytic and univalent in \mathbb{U} and has a positive real part in \mathbb{U} for the conditions (i) and $(i i)$.
Therefore, ϕ and ψ are analytic in a domain \mathcal{C} containing $q(\mathbb{U})$, with

$$
\psi(\omega) \neq 0 \quad(\omega \in q(\mathbb{U}) \subset \mathcal{C})
$$

Also, for the function $Q(z)$ given by

$$
Q(z)=z q^{\prime}(z) \psi(q(z))=\frac{\alpha(A-B) z(1+A z)^{\beta-1}}{(1+B z)^{\beta+1}}
$$

Subordination Criteria

Kazuo Kuroki and Shigeyoshi Owa vol. 10, iss. 2, art. 36, 2009

Title Page
Contents

Page 12 of 23
Go Back
Full Screen

Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
we obtain

$$
\begin{equation*}
\frac{z Q^{\prime}(z)}{Q(z)}=\frac{1-\beta}{1+A z}+\frac{1+\beta}{1+B z}-1 \tag{2.2}
\end{equation*}
$$

Furthermore, we have

$$
\begin{aligned}
h(z) & =\phi(q(z))+Q(z) \\
& =\left(\frac{1+A z}{1+B z}\right)^{\beta}\left(1-\alpha+\alpha \frac{1+A z}{1+B z}\right)+\frac{\alpha(A-B) z(1+A z)^{\beta-1}}{(1+B z)^{\beta+1}}
\end{aligned}
$$

Subordination Criteria
Kazuo Kuroki and Shigeyoshi Owa vol. 10, iss. 2, art. 36, 2009
and

$$
\begin{equation*}
\frac{z h^{\prime}(z)}{Q(z)}=\frac{\beta(1-\alpha)}{\alpha}+(1+\beta) q(z)+\frac{z Q^{\prime}(z)}{Q(z)} \tag{2.3}
\end{equation*}
$$

Hence,

(i) For the complex numbers A and B such that

$$
|B|<1, A \neq B, \quad \text { and } \quad \operatorname{Re}(1-A \bar{B}) \geqq|A-B|
$$

it follows from (2.2) and (2.3) that

$$
\operatorname{Re}\left(\frac{z Q^{\prime}(z)}{Q(z)}\right)>\frac{1-\beta}{1+|A|}+\frac{1+\beta}{1+|B|}-1 \geqq 0
$$

and

$$
\begin{aligned}
& \operatorname{Re}\left(\frac{z h^{\prime}(z)}{Q(z)}\right)>\frac{\beta(1-\alpha)}{\alpha}+\frac{(1+\beta)\{\operatorname{Re}(1-A \bar{B})-|A-B|\}}{1-|B|^{2}} \\
&+\frac{1-\beta}{1+|A|}+\frac{1+\beta}{1+|B|}-1 \geqq 0 \quad(z \in \mathbb{U})
\end{aligned}
$$

Page 13 of 23
Go Back
Full Screen

Close

journal of inequalities in pure and applied mathematics
issn: 1443-575b
(ii) For the complex numbers A and B such that

$$
|B|=1,|A| \leqq 1, A \neq B, \quad \text { and } \quad 1-A \bar{B}>0
$$

from (2.2) and (2.3), we get

$$
\operatorname{Re}\left(\frac{z Q^{\prime}(z)}{Q(z)}\right)>\frac{1-\beta}{1+|A|}+\frac{1}{2}(1+\beta)-1=\frac{(1-\beta)(1-|A|)}{2(1+|A|)} \geqq 0
$$

and

$$
\operatorname{Re}\left(\frac{z h^{\prime}(z)}{Q(z)}\right)>\frac{\beta(1-\alpha)}{\alpha}+\frac{(1+\beta)\left(1-|A|^{2}\right)}{2(1-A \bar{B})}+\frac{(1-\beta)(1-|A|)}{2(1+|A|)} \geqq 0 \quad(z \in \mathbb{U})
$$

Since all the conditions of Lemma 1.1 are satisfied, we conclude that

$$
\frac{D^{k} f(z)}{D^{j} f(z)} \prec \frac{1+A z}{1+B z} \quad(z \in \mathbb{U})
$$

which completes the proof of Theorem 2.1.
Remark 4. We know that a function $f(z)$ satisfying the conditions in Theorem 2.1 belongs to the class $\mathcal{P}_{j}^{k}(A, B)$.

Letting $k=j+1$ in Theorem 2.1, we obtain the following theorem.
Theorem 2.2. Let the function $f(z) \in \mathcal{A}$ be chosen so that $\frac{D^{j} f(z)}{z} \neq 0 \quad(z \in \mathbb{U})$. Also, let $\alpha(\alpha \neq 0), \beta(-1 \leqq \beta \leqq 1)$, and some complex parameters A and B satisfy one of following conditions
(i) $|B|<1, A \neq B$, and $\operatorname{Re}(1-A \bar{B}) \geqq|A-B|$ be so that

$$
\frac{\beta(1-\alpha)}{\alpha}+\frac{(1+\beta)\{\operatorname{Re}(1-A \bar{B})-|A-B|\}}{1-|B|^{2}}+\frac{1-\beta}{1+|A|}+\frac{1+\beta}{1+|B|}-1 \geqq 0
$$

Subordination Criteria

Kazuo Kuroki and Shigeyoshi Owa vol. 10, iss. 2, art. 36, 2009

> Title Page

Contents

Page 14 of 23
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
(ii) $|B|=1,|A| \leqq 1, A \neq B$, and $1-A \bar{B}>0$ be so that

$$
\frac{\beta(1-\alpha)}{\alpha}+\frac{(1+\beta)\left(1-|A|^{2}\right)}{2(1-A \bar{B})}+\frac{(1-\beta)(1-|A|)}{2(1+|A|)} \geqq 0 .
$$

If

$$
\begin{equation*}
\left(\frac{D^{j+1} f(z)}{D^{j} f(z)}\right)^{\beta}\left(1-\alpha+\alpha \frac{D^{j+2} f(z)}{D^{j+1} f(z)}\right) \prec h(z), \tag{2.4}
\end{equation*}
$$

where

$$
h(z)=\left(\frac{1+A z}{1+B z}\right)^{\beta-1}\left\{(1-\alpha) \frac{1+A z}{1+B z}+\frac{\alpha(1+A z)^{2}+\alpha(A-B) z}{(1+B z)^{2}}\right\}
$$

then

$$
\frac{D^{j+1} f(z)}{D^{j} f(z)} \prec \frac{1+A z}{1+B z} \quad(z \in \mathbb{U}) .
$$

Remark 5. A function $f(z)$ satisfying the conditions in Theorem 2.2 belongs to the class $\mathcal{P}_{j}^{j+1}(A, B)$. Setting $j=0$ in Theorem 2.2, we obtain Lemma 1.2 proven by Kuroki, Owa and Srivastava [2].

Also, if we assume that

$$
\alpha=1, \beta=A=0, \quad \text { and } \quad B=\frac{1-\mu}{1+\mu} e^{i \theta} \quad(0 \leqq \mu<1,0 \leqq \theta<2 \pi),
$$

Theorem 2.2 becomes the following corollary.
Corollary 2.3. If $f(z) \in \mathcal{A}\left(\frac{D^{j} f(z)}{z} \neq 0\right.$ in $\left.\mathbb{U}\right)$ satisfies

$$
\frac{D^{j+2} f(z)}{D^{j+1} f(z)} \prec \frac{1+\mu-(1-\mu) e^{i \theta} z}{1+\mu+(1-\mu) e^{i \theta} z} \quad(z \in \mathbb{U} ; 0 \leqq \theta<2 \pi)
$$

Subordination Criteria

Kazuo Kuroki and Shigeyoshi Owa vol. 10, iss. 2, art. 36, 2009

Title Page
Contents

Page 15 of 23
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
for some $\mu(0 \leqq \mu<1)$, then

$$
\frac{D^{j+1} f(z)}{D^{j} f(z)} \prec \frac{1+\mu}{1+\mu+(1-\mu) e^{i \theta} z} \quad(z \in \mathbb{U}) .
$$

From the above corollary, we have

$$
\operatorname{Re}\left(\frac{D^{j+2} f(z)}{D^{j+1} f(z)}\right)>\mu \quad \Longrightarrow \quad \operatorname{Re}\left(\frac{D^{j+1} f(z)}{D^{j} f(z)}\right)>\frac{1+\mu}{2} \quad(z \in \mathbb{U} ; 0 \leqq \mu<1)
$$

In particular, making $j=0$, we get

$$
\operatorname{Re}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)>\mu \quad \Longrightarrow \quad \operatorname{Re}\left(\frac{z f^{\prime}(z)}{f(z)}\right)>\frac{1+\mu}{2} \quad(z \in \mathbb{U} ; 0 \leqq \mu<1)
$$

namely

$$
f(z) \in \mathcal{K}(\mu) \quad \Longrightarrow \quad f(z) \in \mathcal{S}^{*}\left(\frac{1+\mu}{2}\right) \quad(z \in \mathbb{U} ; 0 \leqq \mu<1)
$$

And, taking $\mu=0$, we find that every convex function is starlike of order $\frac{1}{2}$. This fact is well-known as the Marx-Strohhäcker theorem in Univalent Function Theory (cf. [4, 9]).

Subordination Criteria
Kazuo Kuroki and Shigeyoshi Owa vol. 10, iss. 2, art. 36, 2009

Title Page
Contents

Page 16 of 23
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

3. Subordination Criteria for Other Analytic Functions

In this section, by making use of Lemma 1.1, we consider some subordination criteria concerning the analytic function $\frac{D^{j} f(z)}{z}$ for $f(z) \in \mathcal{A}$.

Theorem 3.1. Let $\alpha(\alpha \neq 0), \beta(-1 \leqq \beta \leqq 1)$, and some complex parameters A and B which satisfy one of following conditions
(i) $|B|<1, A \neq B$, and $\operatorname{Re}(1-A \bar{B}) \geqq|A-B|$ be so that

$$
\frac{\beta}{\alpha}+\frac{1-\beta}{1+|A|}+\frac{1+\beta}{1+|B|}-1 \geqq 0
$$

Subordination Criteria

Kazuo Kuroki and Shigeyoshi Owa vol. 10, iss. 2, art. 36, 2009

Title Page
Contents

$$
\frac{\beta}{\alpha}+\frac{(1-\beta)(1-|A|)}{2(1+|A|)} \geqq 0 .
$$

If $f(z) \in \mathcal{A}$ satisfies

$$
\begin{equation*}
\left(\frac{D^{j} f(z)}{z}\right)^{\beta}\left(1-\alpha+\alpha \frac{D^{j+1} f(z)}{D^{j} f(z)}\right) \prec h(z), \tag{3.1}
\end{equation*}
$$

Page 17 of 23
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

Proof. If we define the function $p(z)$ by

$$
p(z)=\frac{D^{j} f(z)}{z} \quad(z \in \mathbb{U})
$$

then $p(z)$ is analytic in \mathbb{U} with $p(0)=1$ and the condition (3.1) can be written as follows:

$$
\{p(z)\}^{\beta}+\alpha z p^{\prime}(z)\{p(z)\}^{\beta-1} \prec h(z) \quad(z \in \mathbb{U})
$$

We also set

$$
q(z)=\frac{1+A z}{1+B z}, \quad \phi(z)=z^{\beta}, \quad \text { and } \quad \psi(z)=\alpha z^{\beta-1}
$$

for $z \in \mathbb{U}$. Then, the function $q(z)$ is analytic and univalent in \mathbb{U} and satisfies

$$
\operatorname{Re}(q(z))>0 \quad(z \in \mathbb{U})
$$

for the condition (i) and $(i i)$.
Thus, the functions ϕ and ψ satisfy the conditions required by Lemma 1.1.
Further, for the functions $Q(z)$ and $h(z)$ given by

$$
Q(z)=z q^{\prime}(z) \psi(q(z)) \quad \text { and } \quad h(z)=\phi(q(z))+Q(z)
$$

we have

$$
\frac{z Q^{\prime}(z)}{Q(z)}=\frac{1-\beta}{1+A z}+\frac{1+\beta}{1+B z}-1 \quad \text { and } \quad \frac{z h^{\prime}(z)}{Q(z)}=\frac{\beta}{\alpha}+\frac{z Q^{\prime}(z)}{Q(z)}
$$

Then, similarly to the proof of Theorem 2.1, we see that

$$
\operatorname{Re}\left(\frac{z Q^{\prime}(z)}{Q(z)}\right)>0 \quad \text { and } \quad \operatorname{Re}\left(\frac{z h^{\prime}(z)}{Q(z)}\right)>0 \quad(z \in \mathbb{U})
$$

Subordination Criteria
Kazuo Kuroki and Shigeyoshi Owa vol. 10, iss. 2, art. 36, 2009

Title Page

Contents

Page 18 of 23
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
for the conditions (i) and (ii).
Thus, by applying Lemma 1.1, we conclude that $p(z) \prec q(z) \quad(z \in \mathbb{U})$. The proof of the theorem is completed.

Letting $j=0$ in Theorem 3.1, we obtain the following theorem.
Theorem 3.2. Let $\alpha(\alpha \neq 0), \beta(-1 \leqq \beta \leqq 1)$, and some complex parameters A and B satisfy one of following conditions:
(i) $|B|<1, A \neq B$, and $\operatorname{Re}(1-A \bar{B}) \geqq|A-B|$ be so that

$$
\frac{\beta}{\alpha}+\frac{1-\beta}{1+|A|}+\frac{1+\beta}{1+|B|}-1 \geqq 0
$$

(ii) $|B|=1,|A| \leqq 1, A \neq B$, and $1-A \bar{B}>0$ be so that

$$
\frac{\beta}{\alpha}+\frac{(1-\beta)(1-|A|)}{2(1+|A|)} \geqq 0
$$

If $f(z) \in \mathcal{A}$ satisfies
(3.2) $\left(\frac{f(z)}{z}\right)^{\beta-1}\left\{(1-\alpha) \frac{f(z)}{z}+\alpha f^{\prime}(z)\right\}$

$$
\prec\left(\frac{1+A z}{1+B z}\right)^{\beta}+\frac{\alpha(A-B) z(1+A z)^{\beta-1}}{(1+B z)^{\beta+1}},
$$

then

$$
\frac{f(z)}{z} \prec \frac{1+A z}{1+B z} \quad(z \in \mathbb{U}) .
$$

Subordination Criteria
Kazuo Kuroki and Shigeyoshi Owa vol. 10, iss. 2, art. 36, 2009

Title Page
Contents

Page 19 of 23
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

Also, taking

$$
\alpha=1, \beta=A=0, \quad \text { and } \quad B=\frac{1-\nu}{\nu} e^{i \theta} \quad\left(\frac{1}{2} \leqq \nu<1,0 \leqq \theta<2 \pi\right)
$$

in Theorem 3.2, we have
Corollary 3.3. If $f(z) \in \mathcal{A}$ satisfies

$$
\frac{z f^{\prime}(z)}{f(z)} \prec \frac{\nu}{\nu+(1-\nu) e^{i \theta} z} \quad(z \in \mathbb{U} ; 0 \leqq \theta<2 \pi)
$$

for some $\nu\left(\frac{1}{2} \leqq \nu<1\right)$, then

$$
\frac{f(z)}{z} \prec \frac{\nu}{\nu+(1-\nu) e^{i \theta} z} \quad(z \in \mathbb{U}) .
$$

Further, making

$$
\alpha=\beta=1, A=0, \quad \text { and } \quad B=\frac{1-\nu}{\nu} e^{i \theta} \quad\left(\frac{1}{2} \leqq \nu<1,0 \leqq \theta<2 \pi\right)
$$

Subordination Criteria
Kazuo Kuroki and Shigeyoshi Owa vol. 10, iss. 2, art. 36, 2009

Title Page
Contents

Page 20 of 23
Go Back
Full Screen

Close

journal of inequalities in pure and applied mathematics
issn: 1443-575b

The above corollaries give:
(3.3) $\operatorname{Re}\left(\frac{z f^{\prime}(z)}{f(z)}\right)>\nu \quad \Longrightarrow \quad \operatorname{Re}\left(\frac{f(z)}{z}\right)>\nu \quad\left(z \in \mathbb{U} ; \frac{1}{2} \leqq \nu<1\right)$,
and
(3.4) $\operatorname{Re} \sqrt{f^{\prime}(z)}>\nu \quad \Longrightarrow \quad \operatorname{Re}\left(\frac{f(z)}{z}\right)>\nu \quad\left(z \in \mathbb{U} ; \frac{1}{2} \leqq \nu<1\right)$.

Here, taking $\nu=\frac{1}{2}$, we find some results that are known as the Marx-Strohhäcker theorem in Univalent Function Theory (cf. [4], [9]).

Setting $j=1$ in Theorem 3.1, we obtain the following theorem.
Theorem 3.5. Let $\alpha(\alpha \neq 0), \beta(-1 \leqq \beta \leqq 1)$, and some complex parameters A and B satisfy one of following conditions
(i) $|B|<1, A \neq B$, and $\operatorname{Re}(1-A \bar{B}) \geqq|A-B|$ be so that

$$
\frac{\beta}{\alpha}+\frac{1-\beta}{1+|A|}+\frac{1+\beta}{1+|B|}-1 \geqq 0
$$

Subordination Criteria

Kazuo Kuroki and Shigeyoshi Owa vol. 10, iss. 2, art. 36, 2009

Title Page
Contents

Page 21 of 23
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
then

$$
f^{\prime}(z) \prec \frac{1+A z}{1+B z} \quad(z \in \mathbb{U})
$$

Here, making

$$
\alpha=1, \beta=A=0, \quad \text { and } \quad B=\frac{1-\nu}{\nu} e^{i \theta} \quad\left(\frac{1}{2} \leqq \nu<1,0 \leqq \theta<2 \pi\right)
$$

in Theorem 3.5, we have:
Corollary 3.6. If $f(z) \in \mathcal{A}$ satisfies

$$
1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)} \prec \frac{\nu}{\nu+(1-\nu) e^{i \theta} z} \quad(z \in \mathbb{U} ; 0 \leqq \theta<2 \pi)
$$

for some $\nu\left(\frac{1}{2} \leqq \nu<1\right)$, then

$$
f^{\prime}(z) \prec \frac{\nu}{\nu+(1-\nu) e^{i \theta} z} \quad(z \in \mathbb{U}) .
$$

Subordination Criteria
Kazuo Kuroki and Shigeyoshi Owa vol. 10, iss. 2, art. 36, 2009

Title Page
Contents

Page 22 of 23
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

References

[1] P.L. DUREM, Univalent Functions, Springer-Verlag, New York, Berlin, Heidelberg, Tokyo, 1983.
[2] K. KUROKI, S. OWA and H.M. SRIVASTAVA, Some subordination criteria for analytic functions, Bull. Soc. Sci. Lett. Lodz, Vol., 52 (2007), 27-36.
[3] W. JANOWSKI, Extremal problem for a family of functions with positive real part and for some related families, Ann. Polon. Math., 23 (1970), 159-177.
[4] A. MARX, Untersuchungen uber schlichte Abbildungen, Math. Ann., 107 (1932/33), 40-67.
[5] S.S. MILLER and P.T. MOCANU, On some classes of first-order differential subordinations, Michigan Math. J., 32 (1985), 185-195.
[6] S.S. MILLER and P.T. MOCANU, Differential Subordinations, Pure and Applied Mathematics 225, Marcel Dekker, 2000.
[7] M.S. ROBERTSON, On the theory of univalent functions, Ann. Math., 37 (1936), 374-408.
[8] G.S. SǍLǍGEAN, Subclass of univalent functions, Complex Analysis-Fifth Romanian-Finnish Seminar, Part 1(Bucharest, 1981), Lecture Notes in Math., vol. 1013, Springer, Berlin, 1983, pp. 362-372.
[9] E. STROHHÄCKER, Beitrage zur Theorie der schlichten Funktionen, Math. Z., 37 (1933), 356-380.

Subordination Criteria

Kazuo Kuroki and Shigeyoshi Owa vol. 10, iss. 2, art. 36, 2009

Title Page
Contents

Page 23 of 23
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

