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ABSTRACT. Using the Salagean derivative, we introduce and study a class of Goodman- Ron-
ning type harmonic univalent functions. We obtain coefficient conditions, extreme points, dis-
tortion bounds, convolution conditions, and convex combination for the above class of harmonic
functions.
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1. INTRODUCTION

A continuous complex valued functioh = u + iv defined in a simply connected complex
domainD is said to be harmonic i if both v andv are real harmonic iD. In any simply
connected domai® we can writef = h + g, whereh andg are analytic inD. A necessary
and sufficient condition fof to be locally univalent and sense preservingis that|h'(z)| >
9'(2)], z € D.

Denote bySy the class of functiong = h+ g that are harmonic univalent and sense preserv-
ing inthe unitdiskJ = {z : |z| < 1} forwhich f(0) = f.(0)—1 = 0. Thenforf = h+g € Sy
we may express the analytic functiohsindg as

(1.2) h(z) =z + Zanz”, g(z) = anz”, |by| < 1.
n=2 n=1

In 1984 Clunie and Sheil-Smalll[1] investigated the cléigsas well as its geometric subclasses

and obtained some coefficient bounds. Since then, there have been several related papers on
and its subclasses. Jahangiri et @l. [3] make use of the Alexander integral transforms of certain
analytic functions (which are starlike or convex of positive order) with a view to investigating
the construction of sense-preserving, univalent, and close to convex harmonic functions.
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Definition 1.1. Recently, Rosy et al.[ [4], defined the subcléss(y) C Sy consisting of
harmonic univalent functiong(z) satisfying the following condition

/
1.2 Re{(l—i—em)w—em} >, 0<~v<l1, aeR
f(z)
They proved that iff = h + g is given by [(1.1) and if
“[2n—-1—~ 2n+1+7v
_ . = ! < <
(13 > [P el + 2 T <20 0 <,

n=1

then f is a Goodman-Ronning type harmonic univalent functiofyirirhis condition is proved
to be also necessary/ifandg are of the form

o0 [ee]

(1.4) h(z)=2=Y lalz",  g(z) =Y |bal2".

n=2 n=1

Jahangiri et al. [[2] has introduced the modified Salagean operator of harmonic univalent
function f as

(1.5) DFf(2) = D*h(z) + (—1)*Dkg(2), k€N,

where

D¥h(z) = z + ananz" and DFg(z) = anbnz".
n=2 n=1

We let RSy (k,~) denote the family of harmonic functiorfsof the form [1.1) such that
D f(2)
DFf(z)

whereD* f is defined by[(15).
Also, we let the subclasB S (k, ) consist of harmonic function, = h+ gi in RSy (k,~)

so thath andg, are of the form

(1.6) Re{(1+ei°‘) —em} >, 0<v<1, a€eR,

@.7) h(z)=2z— Z la,|2", gr(2) = (=1)F Z |b,,| 2"

In this paper, the coefficient condition givenin [4] for the cl&5s() is extended to the class
RSp(k,~) of the form [1.6). Furthermore, we determine extreme points, a distortion theorem,
convolution conditions and convex combinations for the functionssi; (&, ).

2. MAIN RESULTS

In our first theorem, we introduce a sufficient coefficient bound for harmonic functions in
RSH(k> P)/)

Theorem 2.1.Let f = h + g be given by[(1]1). If

(2.1) Y020 =1 =7)lag + 20+ 1+7)b[] < 2(1 - ),

n=1

wherea; = 1 and0 < v < 1, then f is sense preserving, harmonic univalentlin and
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Proof. If the inequality [2.1L) holds for the coefficients ¢f= h + g, then by [(1.B).f is sense
preserving and harmonic univalentlih According to the conditior (I]5) we only need to show
that if (2.1) holds then

DkJrlf(Z) o eia}
D f(2)

= Re {(1 + €')

Re {(1 + e')

DEUE) = (DM al
DFER(z) 4 (—1)*DFg(z) o

where(0 <~ < 1.
Using the fact thaRe w > ~ if and only if |1 — v 4+ w| > |1 4+~ — w/, it suffices to show that

(2.2) |(1—)D"f(2) + (1 + ™) DF f(2) — mpkf(z)|
} + YD f(2) — (1 + ) DF 1 f(2) + ekaf(z)| > ().

Substituting forD* f and D*+! f in (2.2) yields

|(L=)D"f(2) + (1 + €)D"' f(2) — D" f(2)]
—|(L+9)D"f(z) = (L+ ) D*' f(z) 4+ € D* f(2)]

={2—7)z+ Z(l — 5 — € 4 n + ne)nka, "
n=2

—(=1)k Z(n +ne' — 14+ )b, 2"
1

— |z — Z(n +ne — 1 —v —e*)n*a,z"
n=2

DR (n+ne™ + 1+ + )b,z
n=1
> (2= )|zl = Y0 @n = lanllz]" = Y nF(@2n+7)[bal|2]"
n=2 n=1

—lel = Y nf@2n =y = 2lagllz[" = Y 0 @0+ v+ 2)|ball["

n=2 n=1
=2(1—9)|z| —2) _n*@2n -y = Dlas|lz[" =2 0 @n+ v+ 1)b,||2]"
n=2 n=1
“nF2n —v—1) n nf2n+y+1) .
=2(1—=9)z[{1 =) janll2" = [bal 2"
n=2 1 -7 n=1 1 -7
“nF@2n—v—1 = nF2n+y+1)
ST PSR b A o) + 32 ) b
n=2 1 -7 n=1 1 -7
This last expression is non-negative py [2.1), and so the proof is complete. O
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The harmonic function
1 - 1 -
(2.3) f&) =24 Tt R : "
n=1

where

D lwal +> lynl =1
n=2 n=1

shows that the coefficient bound given py {2.1) is sharp.
The functions of the fornj (2|3) are iRSy (k, ) because

= (nF(2n —~—1) nk(2n+~v+1) = =
> (= Bl ) =1+ D e+ 3 ol =2

L=y

n=1 n=2 n=1

In the following theorem, it is shown that the conditipn {2.1) is also necessary for functions
fx = h + gr, whereh andg; are of the form[(1]7).

Theorem 2.2. Let f;, = h + g, be given by[(1]7). Thefi, € RSy (k,~) if and only if

(2.4) > nM(2n =5 = Dlag| + 20+ + 1)[ba]] < 2(1 = ).

n=1

Proof. SinceRSy (k,v) € RSy (k,~), we only need to prove the “only if” part of the theorem.
To this end, for functiong;, of the form [1.T), we notice that the condition (1.6) is equivalent to

Re { (L=7)z = X5y nhln— 7 + (n = Dean]2"
> U (I ETER G ED S LMD
(=) Yo w5+ (0 + De]|b 2"
) > T CEVED Sl nk|bn|zn}
B Re{ e D el (/B V| P
L= oy nhlan [z T+ 21 0, b

n=1

n=1

S e D DRI ED

(=123 nFn 4y + (n+ 1)e]|b, [z }

> 0.

The above condition must hold for all valueszfiz| = » < 1. Upon choosing the values of
on the positive real axis, whete< z = r < 1, we must have

Re { L—y =3 pn(n—)lan|r" ™t = 377, n*(n + ) |ba|r"
L3 0y nklay|rm=t + 3702 kb, [rmt
o 2onen (0 = Dlan|r" ™ + 377 n*(n + 1o }
L=y nFay|rm=t 4+ 3702 n¥[b, [rm—t
SinceRe(—e'*) > —|e'®| = —1, the above inequality reduces to
L=y = Yyt 2n — v Dlau|r ™ = S0, 05 @0ty + Dbl
L= g nFlay|rm=t 4+ 3707 n¥[b, [rm B
If the condition [[2.4) does not hold then the numerator in|(2.5) is negative $oifficiently

close tol. Thus there exists & = o in (0, 1) for which the quotient in[(2]5) is negative. This
contradicts the condition fof € RSy (k,~) and hence the result. O]

> 0.

— €

(2.5)

Next we determine a representation theorem for functiodadp (k, ).

J. Inequal. Pure and Appl. Mat}8(2) (2007), Art. 54, 9 pp. http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

ON THE SUBCLASS OFSALAGEAN-TYPE HARMONIC UNIVALENT FUNCTIONS 5

Theorem 2.3. Let f, be given by[(117). Thefi, € RSy (k,~) if and only if

whereh, (z) = z,
1—7~ n B
fn(2) = 2 - nk(Zn—y—l)Z (n=23...),

X, >0, Y, > 0. In particular, the extreme points @S (k,~) are {h,} and{g, }.

Proof. For functionsf;, of the form [2.6) we have

Je(2) = Z(thn(z) + Yogr, (2))

i
I

(e 9]

1— n
(&ﬁd@z—zgm@n_v_”X%z

[M]¢

n=1
—1)* Y, 2"
+(=1) ;nk@n—i—y—i—l) :
Then
Znf2n —v—1) > nf2n +v+1) = =
P e LTED D el U ED DR TR B
Y L=~
n=2 n=1 n=2 n=1
and sof, € RSy (k,7). -
Conversely, suppose that € RSy (k, ). Setting
Fon —~v—1
Xn:n(n i )an, (n=2,3,...),
L=
k(2 1
y, 2 @y, e,

L =7
where} > (X, +Y,) =1, we obtain

o0

fi(2) = Y (Xaha(2) + Yagi, (2)

n=1

as required. O

The following theorem gives the distortion bounds for function&y; (k, ) which yields
a covering result for this class.

Theorem 2.4.Let f, € RSy (k,v). Then for|z| = » < 1 we have

1 (11—~ 347y 9
< (1+1|b — [ — — b
A < 0 b+ g (322 - 552l )
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and

1 (1=~ 3+7v 9
RN = 0= b = g (322 = 552l )

Proof. We only prove the right hand inequality. The proof for the left hand inequality is similar
and will be omitted. Lelf, € RSy(k,~). Taking the absolute value ¢gf we obtain

e < A+ (bl + D (an] + [ba )"

n=2
< 1+ [bu))r + > (lan| + [ba])r
n=2
1-7 28— 2
< (1+1b nl 4 [bn
1—7 <= [n*f2n—~-1) n*(2n 4+~ +1) 5
<(1+1p n b
et gy S (el O )
1—

The following covering result follows from the left hand inequality in Theofen 2.4.
Corollary 2.5. Let f;, of the form|(1.]7) be so thaf, € RSy (k,~). Then

" 328 —1-(2F-1)y 32*-1)-(2"+1)y

For our next theorem, we need to define the convolution of two harmonic functions. For
harmonic functions of the form

—Z—Z|an|z—|— Z|b |Z"

and

—z—Z]A|z—|— Z]B\

we define the convolution of; andFk as

=z - Z |an|[An]2" + (_1>k Z |bn| | Bp| 2"

Theorem 2.6.For 0 < 3 < v < 1, let f, € RSy(k,~) and F;, € RSy(k,3). Then the
convolution

fr * Fi, € RSy(k,v) C RSu(k, B).
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Proof. Then the convolutiorf « F}, is given by [2.F). We wish to show that the coefficients of
fr * F}, satisfy the required condition given in Theor.2 2. Fpre RSy (k, ) we note that
|A,,| < 1and|B,| < 1. Now, for the convolution functiorf;, * Fj, we obtain

= nf2n—-p3-1 = nk(2 1
n=2

n=1 1_5
“n*f2n—3-1) “nf2n+B+1)
<> anl + > |0,
1-p 1-p
n=2 n=1
= nf2n —v—1) = nf2n+7y+1)
< 3 T+ 3 <1
—2

sinced < 8 < v < landf, € RSy(k,~). Thereforefy, « F, € RSy (k,v) C RSu(k,B). O
Next we discuss the convex combinations of the claSg (k, ).
Theorem 2.7. The familyR S (k, v) is closed under convex combination.

Proof. Fori = 1,2, ..., suppose thaf,, € RSy (k, ), where
_Z_Z|a2n|z + Z|b7fn|
Then by Theorerp 2|2,

b.

in

<1.

> nkon—~—1
(2.8) S (1_1 o,

n=2 n=1

ink(Qn—i-’y—i-l)
=1

Forzg’i1 t; =1, 0 <t; <1, the convex combination of,, may be written as

Ztifki(z) =z-> <Z ti\ain|> (=) (Z ti\bin\> z

n=2 \i=1 =
Then by [2.8),
Znf2n -y —1) [
tilai, |
; 1 -7 Z ’ n=1

and therefore
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Following Ruscheweyh [5], we call the-neighborhood of the set

Ns(fi) = {Fk _Z_Z|A 12" + ( Z|B |z and

> n(lan = Aul + by — Bal) + b1 = Bi| < 5} .

n=2

Theorem 2.8. Assume that

—z—Z]an]z—i— Z|b|

belongs taRSy (k,v). If

thenN(;(fk) C m[{(o,”}/)
Proof. Let

_z—ZyA|z+ ZyB|

belong toNs( f). We have

OO271—7—1 O02714—74—1
—|A, —|B,

n=2 7

“2n—y—1 2n+y+1
SZﬁmn—AH%—Z?wn—B&
n=2

n=1

. n—y—1 o +y+1
+Z—1_7 |an|+z—1_7 b
n=2

n=1

3 o0
S — Zn(|an — Ap| +|bp = Bal) +

1 = nf2n—v—1) I =nf2n—v-1) 3—1—7
e e M e
30 ~ 1 347 3+
< — b — | 1- b b| < 1.
< 2 g (1- 2 )+ 2y
ThusF, € RSy(0,7) for

5§%{(1—7) (1_2_1) - <3+27_21k(3+7)) \blq.
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