FOURIER RESTRICTION ESTIMATES TO MIXED HOMOGENEOUS SURFACES

E. FERREYRA AND M. URCIUOLO
FAMAF - CIEM (Universidad Nacional de Córdoba - Conicet). Medina Allende s/n, Ciudad Universitaria, 5000 Córdoba. eferrey@mate.uncor.edu
urciuolo@gmail.com

Received 17 September, 2008; accepted 13 February, 2009
Communicated by L. Pick

Abstract

Let a, b be real numbers such that $2 \leq a<b$, and let $\varphi: \mathbb{R}^{2} \rightarrow \mathbb{R}$ a mixed homogeneous function. We consider polynomial functions φ and also functions of the type $\varphi\left(x_{1}, x_{2}\right)=A\left|x_{1}\right|^{a}+B\left|x_{2}\right|^{b}$. Let $\Sigma=\{(x, \varphi(x)): x \in B\}$ with the Lebesgue induced measure. For $f \in S\left(\mathbb{R}^{3}\right)$ and $x \in B$, let $(\mathcal{R} f)(x, \varphi(x))=\widehat{f}(x, \varphi(x))$, where \widehat{f} denotes the usual Fourier transform.

For a large class of functions φ and for $1 \leq p<\frac{4}{3}$ we characterize, up to endpoints, the pairs (p, q) such that \mathcal{R} is a bounded operator from $L^{p}\left(\mathbb{R}^{3}\right)$ on $L^{q}(\Sigma)$. We also give some sharp $L^{p} \rightarrow L^{2}$ estimates.

Key words and phrases: Restriction theorems, Fourier transform.
2000 Mathematics Subject Classification. Primary 42B10, 26D10.

1. Introduction

Let a, b be real numbers such that $2 \leq a<b$, let $\varphi: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a mixed homogeneous function of degree one with respect to the non isotropic dilations $r \cdot\left(x_{1}, x_{2}\right)=\left(r^{\frac{1}{a}} x_{1}, r^{\frac{1}{b}} x_{2}\right)$, i.e.

$$
\begin{equation*}
\varphi\left(r^{\frac{1}{a}} x_{1}, r^{\frac{1}{b}} x_{2}\right)=r \varphi\left(x_{1}, x_{2}\right), \quad r>0 . \tag{1.1}
\end{equation*}
$$

We also suppose φ to be smooth enough. We denote by B the closed unit ball of \mathbb{R}^{2}, by

$$
\Sigma=\{(x, \varphi(x)): x \in B\}
$$

and by σ the induced Lebesgue measure. For $f \in S\left(\mathbb{R}^{3}\right)$, let $\mathcal{R} f: \Sigma \rightarrow \mathbb{C}$ be defined by

$$
\begin{equation*}
(\mathcal{R} f)(x, \varphi(x))=\widehat{f}(x, \varphi(x)), \quad x \in B \tag{1.2}
\end{equation*}
$$

[^0]where \widehat{f} denotes the usual Fourier transform of f. We denote by E the type set associated to \mathcal{R}, given by
$$
E=\left\{\left(\frac{1}{p}, \frac{1}{q}\right) \in[0,1] \times[0,1]:\|\mathcal{R}\|_{L^{p}\left(\mathbb{R}^{3}\right), L^{q}(\Sigma)}<\infty\right\} .
$$

Our aim in this paper is to obtain as much information as possible about the set E, for certain surfaces Σ of the type above described.

In the general n-dimensional case, the $L^{p}\left(\mathbb{R}^{n+1}\right)-L^{q}(\Sigma)$ boundedness properties of the restriction operator \mathcal{R} have been studied by different authors. A very interesting survey about recent progress in this research area can be found in [11]. The $L^{p}\left(\mathbb{R}^{n+1}\right)-L^{2}(\Sigma)$ restriction theorems for the sphere were proved by E. Stein in 1967, for $\frac{3 n+4}{4 n+4}<\frac{1}{p} \leq 1$; for $\frac{n+4}{2 n+4}<$ $\frac{1}{p} \leq 1$ by P. Tomas in [12] and then in the same year by Stein for $\frac{n+4}{2 n+4} \leq \frac{1}{p} \leq 1$. The last argument has been used in several related contexts by R. Strichartz in [9] and by A. Greenleaf in [6]. This method provides a general tool to obtain, from suitable estimates for $\widehat{\sigma}, L^{p}\left(\mathbb{R}^{n+1}\right)-$ $L^{2}(\Sigma)$ estimates for \mathcal{R}. Moreover, a general theorem, due to Stein, holds for smooth enough hypersurfaces with never vanishing Gaussian curvature ([8], pp.386). There it is shown that in this case, $\left(\frac{1}{p}, \frac{1}{q}\right) \in E$ if $\frac{n+4}{2 n+4} \leq \frac{1}{p} \leq 1$ and $-\frac{n+2}{n} \frac{1}{p}+\frac{n+2}{n} \leq \frac{1}{q} \leq 1$, also that this last relation is the best possible and that no restriction theorem of any kind can hold for $f \in L^{p}\left(\mathbb{R}^{n+1}\right)$ when $\frac{1}{p} \leq \frac{n+2}{2 n+2}$ ([8, pp.388]). The cases $\frac{n+2}{2 n+2}<\frac{1}{p}<\frac{n+4}{2 n+4}$ are not completely solved. The best results for surfaces with non vanishing curvature like the paraboloid and the sphere are due to T. Tao [10]. Restriction theorems for the Fourier transform to homogeneous polynomial surfaces in \mathbb{R}^{3} are obtained in [4]. Also, in [1] the authors obtain sharp $L^{p}\left(\mathbb{R}^{n+l}\right)-L^{2}(\Sigma)$ estimates for certain homogeneous surfaces Σ of codimension l in \mathbb{R}^{n+l}.

In Section 2 we give some preliminary results.
In Section 3 we consider $\varphi\left(x_{1}, x_{2}\right)=A\left|x_{1}\right|^{a}+B\left|x_{2}\right|^{b}, A \neq 0, B \neq 0$. We describe completely, up to endpoints, the pairs $\left(\frac{1}{p}, \frac{1}{q}\right) \in E$ with $\frac{1}{p}>\frac{3}{4}$. A fundamental tool we use is Theorem 2.1 of [2].

In Section 4 we deal with polynomial functions φ. Under certain hypothesis about φ we can prove that if $\frac{3}{4}<\frac{1}{p} \leq 1$ and the pair $\left(\frac{1}{p}, \frac{1}{q}\right)$ satisfies some sharp conditions, then $\left(\frac{1}{p}, \frac{1}{q}\right) \in E$. Finally we obtain some $L^{\frac{4}{3}}-L^{q}$ estimates and also some sharp $L^{p}-L^{2}$ estimates.

2. Preliminaries

We take φ to be a mixed homogeneous and smooth enough function that satisfies (1.1). If V is a measurable set in \mathbb{R}^{2}, we denote $\Sigma^{V}=\{(x, \varphi(x)): x \in V\}$ and σ^{V} as the associated surface measure. Also, for $f \in S\left(\mathbb{R}^{3}\right)$, we define $\mathcal{R}^{V} f: \Sigma^{V} \rightarrow \mathbb{C}$ by

$$
\left(\mathcal{R}^{V} f\right)(x, \varphi(x))=\widehat{f}(x, \varphi(x)) \quad x \in V
$$

we note that $\mathcal{R}^{B}=\mathcal{R}, \sigma^{B}=\sigma$ and $\Sigma^{B}=\Sigma$.
For $x=\left(x_{1}, x_{2}\right)$ letting $\|x\|=\left|x_{1}\right|^{a}+\left|x_{2}\right|^{b}$, we define

$$
A_{0}=\left\{x \in \mathbb{R}^{2}: \frac{1}{2} \leq\|x\| \leq 1\right\}
$$

and for $j \in \mathbb{N}$,

$$
A_{j}=2^{-j} \cdot A_{0}
$$

Thus $B \subseteq \bigcup_{j \in \mathbb{N} \cup\{0\}} A_{j}$. A standard homogeneity argument (see, e.g. [5]) gives, for $1 \leq p, q \leq \infty$,

$$
\begin{equation*}
\left\|\mathcal{R}^{A_{j}}\right\|_{L^{p}\left(\mathbb{R}^{3}\right), L^{q}\left(\Sigma^{A_{j}}\right)}=2^{-j \frac{a+b}{a b}\left(\frac{1}{q}-\frac{a+b+a b}{a+b}+\frac{1}{p} \frac{a+b+a b}{a+b}\right)}\left\|\mathcal{R}^{A_{0}}\right\|_{L^{p}\left(\mathbb{R}^{3}\right), L^{q}\left(\Sigma^{A_{0}}\right)} \tag{2.1}
\end{equation*}
$$

From this we obtain the following remarks.
Remark 1. If $\left(\frac{1}{p}, \frac{1}{q}\right) \in E$ then $\frac{1}{q} \geq-\frac{a+b+a b}{a+b} \frac{1}{p}+\frac{a+b+a b}{a+b}$.
Remark 2. If $-\frac{a+b+a b}{a+b} \frac{1}{p}+\frac{a+b+a b}{a+b}<\frac{1}{q} \leq 1$ and

$$
\begin{equation*}
\left\|\mathcal{R}^{A_{0}}\right\|_{L^{p}\left(\mathbb{R}^{3}\right), L^{q}\left(\Sigma^{A_{0}}\right)}<\infty \tag{2.2}
\end{equation*}
$$

then $\left(\frac{1}{p}, \frac{1}{q}\right) \in E$.
We will use a theorem due to Strichartz (see [9]), whose proof relies on the Stein complex interpolation theorem, which gives $L^{p}\left(\mathbb{R}^{3}\right)-L^{2}\left(\Sigma^{V}\right)$ estimates for the operator \mathcal{R}^{V} depending on the behavior at infinity of $\widehat{\sigma^{V}}$. In [4] we obtained information about the size of the constants. There we found the following:
Remark 3. If V is a measurable set in \mathbb{R}^{2} of positive measure and if

$$
\left|\widehat{\sigma^{v}}(\xi)\right| \leq A\left(1+\left|\xi_{3}\right|\right)^{-\tau}
$$

for some $\tau>0$ and for all $\xi=\left(\xi_{1}, \xi_{2}, \xi_{3}\right) \in \mathbb{R}^{3}$, then there exists a positive constant c_{τ} such that

$$
\left\|\mathcal{R}^{V}\right\|_{L^{p}\left(\mathbb{R}^{3}\right), L^{2}\left(\Sigma^{V}\right)} \leq c_{\tau} A^{\frac{1}{2(1+\tau)}}
$$

for $p=\frac{2+2 \tau}{2+\tau}$.
In [2] the authors obtain a result (Theorem 2.1, p.155) from which they also obtain the following consequence

Remark 4 ([2, Corollary 2.2]). Let I, J be two real intervals, and let

$$
M=\left\{\left(x_{1}, x_{2}, \psi\left(x_{1}, x_{2}\right)\right):\left(x_{1}, x_{2}\right) \in I \times J\right\}
$$

where $\psi: I \times J \rightarrow \mathbb{R}$ is a smooth function such that either $\left|\frac{\partial^{2} \psi}{\partial x_{1}^{2}}\left(x_{1}, x_{2}\right)\right| \geq c>0$ or $\left|\frac{\partial^{2} \psi}{\partial x_{2}^{2}}\left(x_{1}, x_{2}\right)\right| \geq c>0$, uniformly on $I \times J$. If M has the Lebesgue surface measure, $\frac{1}{q}=$ $3\left(1-\frac{1}{p}\right)$ and $\frac{3}{4}<\frac{1}{p} \leq 1$ then there exists a positive constant c such that

$$
\begin{equation*}
\left\|\left.\widehat{f}\right|_{M}\right\|_{L^{q}(M)} \leq c\|f\|_{L^{p}\left(\mathbb{R}^{3}\right)} \tag{2.3}
\end{equation*}
$$

for $f \in S\left(\mathbb{R}^{3}\right)$.
Following the proof of Theorem 2.1 in [2] we can check that if in the last remark we take $J=\left[2^{-k}, 2^{-k+1}\right], k \in \mathbb{N}$ in the case that $\left|\frac{\partial^{2} \psi}{\partial x_{1}^{2}}\left(x_{1}, x_{2}\right)\right| \geq c>0$ uniformly on $I \times J$ with c independent of k, or $I=\left[2^{-k}, 2^{-k+1}\right], k \in \mathbb{N}$ in the other case, then we can replace 2.3) by

$$
\begin{equation*}
\left\|\left.\widehat{f}\right|_{M}\right\|_{L^{q}(M)} \leq c^{\prime} 2^{-k\left(\frac{1}{p}+\frac{1}{q}-1\right)}\|f\|_{L^{p}\left(\mathbb{R}^{3}\right)} \tag{2.4}
\end{equation*}
$$

with c^{\prime} independent of k.
3. The Cases $\varphi\left(x_{1}, x_{2}\right)=A\left|x_{1}\right|^{a}+B\left|x_{2}\right|^{b}$

In this cases we characterize, up to endpoints, the pairs $\left(\frac{1}{p}, \frac{1}{q}\right) \in E$ with $\frac{3}{4}<\frac{1}{p} \leq 1$. We also obtain some border segments. If either $A=0$ or $B=0, \varphi$ becomes homogeneous and these cases are treated in [4]. For the remainder situation we obtain the following

Theorem 3.1. Let $a, b, A, B \in \mathbb{R}$ with $2 \leq a \leq b, A \neq 0, B \neq 0$, let $\varphi\left(x_{1}, x_{2}\right)=A\left|x_{1}\right|^{a}+$ $B\left|x_{2}\right|^{b}$ and let E be the type set associated to φ. If $\frac{3}{4}<\frac{1}{p} \leq 1$ and $-\frac{a+b+a b}{a+b} \frac{1}{p}+\frac{a+b+a b}{a+b}<\frac{1}{q} \leq 1$ then $\left(\frac{1}{p}, \frac{1}{q}\right) \in E$.
Proof. Suppose $\frac{3}{4}<\frac{1}{p} \leq 1$ and $-\frac{a+b+a b}{a+b} \frac{1}{p}+\frac{a+b+a b}{a+b}<\frac{1}{q} \leq 1$. By Remark 2 it is enough to prove 2.2. Now, A_{0} is contained in the union of the rectangles $Q=[-1,1] \times\left[\frac{1}{2}, 1\right]$, $Q^{\prime}=\left[\frac{1}{2}, 1\right] \times[-1,1]$, and its symmetrics with respect to the x_{1} and x_{2} axes. Now we will study $\left\|\mathcal{R}^{Q}\right\|_{L^{p}\left(\mathbb{R}^{3}\right), L^{q}\left(\Sigma^{Q}\right)}$. We decompose $Q=\bigcup_{k \in N} Q_{k}$ with

$$
Q_{k}=\left(\left[-2^{-k+1},-2^{-k}\right] \cup\left[2^{-k}, 2^{-k+1}\right]\right) \times\left[\frac{1}{2}, 1\right]
$$

Now, as in Theorem 1, (3.2), in [3] we have

$$
\left|\widehat{\sigma^{Q_{k}}}(\xi)\right| \leq A 2^{k \frac{a-2}{2}}\left(1+\left|\xi_{3}\right|\right)^{-1}
$$

and then Remark 3 implies

$$
\begin{equation*}
\left\|\mathcal{R}^{Q_{k}}\right\|_{L^{\frac{4}{3}}\left(\mathbb{R}^{3}\right), L^{2}\left(\Sigma^{Q_{k}}\right)} \leq c 2^{k \frac{a-2}{8}} . \tag{3.1}
\end{equation*}
$$

Also, since $\left|\frac{\partial^{2} \varphi}{\partial x_{2}^{2}}\left(x_{1}, x_{2}\right)\right| \geq c>0$ uniformly on Q_{k}, from 2.4 we obtain

$$
\left\|\mathcal{R}^{Q_{k}}\right\|_{L^{p}\left(\mathbb{R}^{3}\right), L^{q}\left(\Sigma^{Q_{k}}\right)} \leq c^{\prime} 2^{-k\left(\frac{1}{p}+\frac{1}{q}-1\right)}
$$

for $\frac{1}{q}=3\left(1-\frac{1}{p}\right)$ and $\frac{3}{4}<\frac{1}{p} \leq 1$. Applying the Riesz interpolation theorem and then performing the sum on $k \in \mathbb{N}$ we obtain

$$
\left\|\mathcal{R}^{Q}\right\|_{L^{p}\left(\mathbb{R}^{3}\right), L^{q}\left(\Sigma^{Q}\right)}<\infty
$$

for $\frac{2+3 a}{2+a}\left(1-\frac{1}{p}\right)<\frac{1}{q} \leq 1$ and $\frac{3}{4}<\frac{1}{p} \leq 1$. In a similar way we get that

$$
\left\|\mathcal{R}^{Q^{\prime}}\right\|_{L^{p}\left(\mathbb{R}^{3}\right), L^{q}\left(\Sigma^{Q^{\prime}}\right)}<\infty
$$

for $\frac{2+3 b}{2+b}\left(1-\frac{1}{p}\right)<\frac{1}{q} \leq 1$ and $\frac{3}{4}<\frac{1}{p} \leq 1$. The study for the symmetric rectangles is analogous. Thus

$$
\left\|\mathcal{R}^{A_{0}}\right\|_{L^{p}\left(\mathbb{R}^{3}\right), L^{q}\left(\Sigma^{A_{0}}\right)}<\infty
$$

for $\frac{3}{4}<\frac{1}{p} \leq 1$ and $-\frac{a+b+a b}{a+b} \frac{1}{p}+\frac{a+b+a b}{a+b}<\frac{1}{q} \leq 1$ and the theorem follows.

Remark 5.

i) If $\frac{b+2}{8}<\frac{1}{q} \leq 1$ then $\left(\frac{3}{4}, \frac{1}{q}\right) \in E$.
ii) The point $\left(\frac{a+b+2 a b}{2 a+2 b+2 a b}, \frac{1}{2}\right) \in E$.

From (3.1) and the Hölder inequality we obtain that

$$
\left\|\mathcal{R}^{Q_{k}}\right\|_{L^{\frac{4}{3}\left(\mathbb{R}^{3}\right), L^{q}\left(\Sigma^{Q_{k}}\right)}} \leq c 2^{k\left(\frac{a-2}{8}-\frac{2-q}{2 q}\right)}
$$

for $\frac{1}{2} \leq \frac{1}{q} \leq 1$. Then if $\frac{a+2}{8}<\frac{1}{q} \leq 1$ we perform the sum over $k \in \mathbb{N}$ to get

$$
\left\|\mathcal{R}^{Q}\right\|_{L^{\frac{4}{3}}\left(\mathbb{R}^{3}\right), L^{q}\left(\Sigma^{Q}\right)}<\infty
$$

for these q 's. Analogously, if $\frac{b+2}{8}<\frac{1}{q} \leq 1$ we get

$$
\left\|\mathcal{R}^{Q^{\prime}}\right\|_{L^{\frac{4}{3}}\left(\mathbb{R}^{3}\right), L^{q}\left(\Sigma^{Q^{\prime}}\right)}<\infty
$$

thus since $a \leq b$, if $\frac{b+2}{8}<\frac{1}{q} \leq 1$,

$$
\left\|\mathcal{R}^{A_{0}}\right\|_{L^{\frac{4}{3}}\left(\mathbb{R}^{3}\right), L^{q}\left(\Sigma^{A_{0}}\right)}<\infty
$$

and i) follows from Remark 2
Assertion $i i$) follows from Remark 3, since from Lemma 3 in [3] we have that

$$
|\widehat{\sigma}(\xi)| \leq c\left(1+\left|\xi_{3}\right|\right)^{-\frac{1}{a}-\frac{1}{b}}
$$

4. The Polynomial Cases

In this section we deal with mixed homogeneous polynomial functions φ satisfying (1.1). The following result is sharp (up to the endpoints) for $\frac{3}{4}<\frac{1}{p} \leq 1$, as a consequence of Remark 1.

Theorem 4.1. Let φ be a mixed homogeneous polynomial function satisfying (1.1). Suppose that the gaussian curvature of Σ does not vanish identically and that at each point of $\Sigma^{B-\{0\}}$ with vanishing curvature, at least one principal curvature is different from zero. If $(a, b) \neq$ $(2,4), \frac{3}{4}<\frac{1}{p} \leq 1$ and $-\frac{a+b+a b}{a+b} \frac{1}{p}+\frac{a+b+a b}{a+b}<\frac{1}{q} \leq 1$ then $\left(\frac{1}{p}, \frac{1}{q}\right) \in E$.

Proof. We first study the operator $\mathcal{R}^{A_{0}}$. Let $\left(x_{1}^{0}, x_{2}^{0}\right) \in A_{0}$. If $\operatorname{Hess} \varphi\left(x_{1}^{0}, x_{2}^{0}\right) \neq 0$ there exists a neighborhood U of $\left(x_{1}^{0}, x_{2}^{0}\right)$ such that $\operatorname{Hess} \varphi\left(x_{1}, x_{2}\right) \neq 0$ for $\left(x_{1}, x_{2}\right) \in U$. From the proposition in [8, pp. 386], it follows that

$$
\begin{equation*}
\left\|\mathcal{R}^{U}\right\|_{L^{p}\left(\mathbb{R}^{3}\right), L^{q}\left(\Sigma^{U}\right)}<\infty \tag{4.1}
\end{equation*}
$$

for $\frac{1}{q}=2\left(1-\frac{1}{p}\right)$ and $\frac{3}{4} \leq \frac{1}{p} \leq 1$. Suppose now that $\operatorname{Hess} \varphi\left(x_{1}^{0}, x_{2}^{0}\right)=0$ and that either $\frac{\partial^{2} \varphi}{\partial x_{1}^{2}}\left(x_{1}^{0}, x_{2}^{0}\right) \neq 0$ or $\frac{\partial^{2} \varphi}{\partial x_{2}^{2}}\left(x_{1}^{0}, x_{2}^{0}\right) \neq 0$. Then there exists a neighborhood $V=I \times J$ of $\left(x_{1}^{0}, x_{2}^{0}\right)$ such that either $\left|\frac{\partial^{2} \varphi}{\partial x_{1}^{2}}\left(x_{1}, x_{2}\right)\right| \geq c>0$ or $\left|\frac{\partial^{2} \varphi}{\partial x_{2}^{2}}\left(x_{1}, x_{2}\right)\right| \geq c>0$ uniformly on V. So from Remark 4 we obtain that

$$
\begin{equation*}
\left\|\mathcal{R}^{V}\right\|_{L^{p}\left(\mathbb{R}^{3}\right), L^{q}\left(\Sigma^{V}\right)}<\infty \tag{4.2}
\end{equation*}
$$

for $\frac{1}{q}=3\left(1-\frac{1}{p}\right)$ and $\frac{3}{4}<\frac{1}{p} \leq 1$. From 4.1, 4.2 and Hölder's inequality, it follows that

$$
\begin{equation*}
\left\|\mathcal{R}^{A_{0}}\right\|_{L^{p}\left(\mathbb{R}^{3}\right), L^{q}\left(\Sigma^{A_{0}}\right)}<\infty \tag{4.3}
\end{equation*}
$$

for $\frac{1}{q} \geq 3\left(1-\frac{1}{p}\right)$ and $\frac{3}{4}<\frac{1}{p} \leq 1$. So, if $\frac{a+b+a b}{a+b} \geq 3$, the theorem follows from Remark 2 . The only cases left are $(a, b)=(3,4),(a, b)=(3,5),(a, b)=(4,5)$ and $(a, b)=(2, b), b>2$. If $(a, b)=(3,4)$ and φ has a monomial of the form $a_{i, j} x^{i} y^{j}$, with $a_{i j} \neq 0$, then $\frac{i}{3}+\frac{j}{4}=1$ so $4 i+3 j=12$ and so either $(i, j)=(0,4)$ or $(i, j)=(3,0)$. So $\varphi\left(x_{1}, x_{2}\right)=a_{3,0} x_{1}^{3}+a_{0,4} x_{2}^{4}$.

The hypothesis about the derivatives of φ imply that $a_{3,0} \neq 0$ and $a_{0,4} \neq 0$ and the theorem follows using Theorem 3.1 in each quadrant. The cases $(a, b)=(3,5)$, or $(a, b)=(4,5)$ are completely analogous.

Now we deal with the cases $(a, b)=(2, b), b>2$. We note that

$$
\begin{equation*}
\varphi\left(x_{1}, x_{2}\right)=A x_{1}^{2}+B x_{1} x_{2}^{\frac{b}{2}}+C x_{2}^{b} \tag{4.4}
\end{equation*}
$$

where $B=0$ for b odd. The hypothesis about φ implies $A \neq 0$. For b odd, $\varphi\left(x_{1}, x_{2}\right)=$ $A x_{1}^{2}+C x_{2}^{b}$ and since $C \neq 0$ (on the contrary $\operatorname{Hess} \varphi\left(x_{1}, x_{2}\right) \equiv 0$), the theorem follows using Theorem 3.1 as before. Now we consider b even and φ given by (4.4). If $B=0$ the theorem follows as above, so we suppose $B \neq 0$.

$$
\begin{equation*}
\operatorname{Hess} \varphi\left(x_{1}, x_{2}\right)=-\frac{x_{2}^{\frac{b}{2}-2}}{4}\left(\left(B^{2} b^{2}+8 A C b-8 A C b^{2}\right) x_{2}^{\frac{b}{2}}-2(b-2) A B b x_{1}\right) \tag{4.5}
\end{equation*}
$$

So if $\operatorname{Hess} \varphi\left(x_{1}^{0}, x_{2}^{0}\right)=0$ then either $x_{2}^{0}=0$ or

$$
\left(B^{2} b^{2}+8 A C b-8 A C b^{2}\right)\left(x_{2}^{0}\right)^{\frac{b}{2}}-2(b-2) A B b x_{1}^{0}=0
$$

In the first case we have $b>4$. We take a neighborhood $W_{1}=I \times\left[-2^{-k_{0}}, 2^{-k_{0}}\right] \subset A_{0}, k_{0} \in \mathbb{N}$, of the point $\left(x_{1}^{0}, 0\right)$ such that Hess φ vanishes, on W_{1}, only along the x_{1} axes. For $k \in \mathbb{N}$, $k>k_{0}$, we take $U_{k}=I \times J_{k}$ where $J_{k}=\left[-2^{-k+1},-2^{-k}\right] \cup\left[2^{-k}, 2^{-k+1}\right]$. So $W_{1}=\overline{\cup U_{k}}$. For $\left(x_{1}, x_{2}\right) \in U_{k}$, it follows from (4.5) that

$$
\left|\operatorname{Hess} \varphi\left(x_{1}, x_{2}\right)\right| \geq c 2^{-k\left(\frac{b}{2}-2\right)}
$$

so for $\xi=\left(\xi_{1}, \xi_{2}, \xi_{3}\right) \in \mathbb{R}^{3}$,

$$
\left|\widehat{\sigma^{U_{k}}}(\xi)\right| \leq c 2^{k \frac{b-4}{4}}\left(1+\left|\xi_{3}\right|\right)^{-1}
$$

and from Remark 3 we get

$$
\begin{equation*}
\left\|\mathcal{R}^{U_{k}}\right\|_{L^{\frac{4}{3}\left(\mathbb{R}^{3}\right), L^{2}\left(\Sigma^{U_{k}}\right)}} \leq c 2^{k \frac{b-4}{16}} \tag{4.6}
\end{equation*}
$$

Also, since $\left|\frac{\partial^{2} \varphi}{\partial x_{1}^{2}}\left(x_{1}, x_{2}\right)\right| \geq c>0$ uniformly on U_{k}, as in 2.4) we obtain

$$
\begin{equation*}
\left\|\mathcal{R}^{U_{k}}\right\|_{L^{p}\left(\mathbb{R}^{3}\right), L^{q}\left(\Sigma^{U_{k}}\right)} \leq c 2^{-k\left(2-\frac{2}{p}\right)} \tag{4.7}
\end{equation*}
$$

for $\frac{3}{4}<\frac{1}{p} \leq 1$ and $\frac{1}{q}=3\left(1-\frac{1}{p}\right)$. From 4.6, 4.7 and the Riesz Thorin theorem we obtain

$$
\begin{equation*}
\left\|\mathcal{R}^{U_{k}}\right\|_{L^{p_{t}}\left(\mathbb{R}^{3}\right), L^{q_{t}}\left(\Sigma^{U_{k}}\right)} \leq c 2^{k\left(\frac{b-4}{16}-(1-t)\left(2-\frac{2}{p}\right)\right)} \tag{4.8}
\end{equation*}
$$

for $\frac{1}{q_{t}}=t \frac{1}{2}+(1-t) 3\left(1-\frac{1}{p}\right)$ and $\frac{1}{p_{t}}=t \frac{3}{4}+(1-t) \frac{1}{p}$.
A simple computation shows that if $\frac{1}{p}=\frac{3}{4}$ then the exponent in 4.8 is negative for $t<t_{0}=$ $\frac{8}{4+b}$ and that

$$
\frac{1}{q_{t_{0}}}-\frac{2+3 b}{4(2+b)}<0
$$

so for $\frac{1}{p}>\frac{3}{4}$ and $t<t_{0}$, both near enough, the exponent is still negative and

$$
\frac{1}{q_{t}}-\frac{2+3 b}{2+b}\left(1-\frac{1}{p_{t}}\right)<0
$$

thus

$$
\begin{equation*}
\left\|\mathcal{R}^{W_{1}}\right\|_{L^{p}\left(\mathbb{R}^{3}\right), L^{a}\left(\Sigma^{W_{1}}\right)}<\infty \tag{4.9}
\end{equation*}
$$

for $\frac{3}{4}<\frac{1}{p}$ near enough and $\frac{1}{q}=\frac{2+3 b}{2+b}\left(1-\frac{1}{p}\right)$. Finally, if

$$
\left(B^{2} b^{2}+8 A C b-8 A C b^{2}\right)\left(x_{2}^{0}\right)^{\frac{b}{2}}-2(b-2) A B b x_{1}^{0}=0
$$

then we study the order of $\operatorname{Hess} \varphi\left(x_{1}, x_{2}^{0}\right)$ for $2^{-k-1} \leq\left|x_{1}-x_{1}^{0}\right| \leq 2^{-k}, k \in \mathbb{N}$.

$$
\begin{align*}
\left\lvert\, \frac{\left(x_{2}^{0}\right)^{\frac{b}{2}-2}}{4}\left(\left(B^{2} b^{2}+8 A C b-8 A C b^{2}\right)\right.\right. & \left.\left(x_{2}^{0}\right)^{\frac{b}{2}}-2(b-2) A B b x_{1}\right) \mid \tag{4.10}\\
& =\left|\frac{\left(x_{2}^{0}\right)^{\frac{b}{2}-2}}{2}(b-2) A B b\left(x_{1}-x_{1}^{0}\right)\right| \geq c 2^{-k}
\end{align*}
$$

We take the following neighborhood of $\left(x_{1}^{0}, x_{2}^{0}\right), W_{2}=\overline{\bigcup_{k \in \mathbb{N}} V_{k}}$, with

$$
V_{k}=\left\{\left(r^{\frac{1}{2}} x_{1}, r^{\frac{1}{b}} x_{2}^{0}\right): 2^{-k-1} \leq\left|x_{1}-x_{1}^{0}\right| \leq 2^{-k}, \frac{1}{2} \leq r \leq 2\right\}
$$

From the homogeneity of φ and (4.10) we obtain

$$
\left|\operatorname{Hess} \varphi\left(r^{\frac{1}{2}} x_{1}, r^{\frac{1}{b}} x_{2}^{0}\right)\right|=r^{1-\frac{2}{b}}\left|\operatorname{Hess} \varphi\left(x_{1}, x_{2}^{0}\right)\right| \geq c 2^{-k}
$$

then from Proposition 6 in [8, p. 344], we get for $\xi=\left(\xi_{1}, \xi_{2}, \xi_{3}\right) \in \mathbb{R}^{3}$

$$
\left|\widehat{\sigma^{V_{k}}}(\xi)\right| \leq c 2^{\frac{k}{2}}\left(1+\left|\xi_{3}\right|\right)^{-1}
$$

so from Remark 3

$$
\left\|\mathcal{R}^{V_{k}}\right\|_{L^{\frac{4}{3}}\left(\mathbb{R}^{3}\right), L^{2}\left(\Sigma^{V_{k}}\right)} \leq c 2^{\frac{k}{8}}
$$

and by Hölder's inequality, for $q<2$ we have

$$
\left\|\mathcal{R}^{V_{k}}\right\|_{L^{\frac{4}{3}\left(\mathbb{R}^{3}\right), L^{q}\left(\Sigma^{V_{k}}\right)}} \leq c 2^{k\left(\frac{1}{8}-\frac{2-q}{2 q}\right)} .
$$

This exponent is negative for $\frac{1}{q}>\frac{5}{8}$ and so we sum on k to obtain

$$
\begin{equation*}
\left\|\mathcal{R}^{W_{2}}\right\|_{L^{\frac{4}{3}}\left(\mathbb{R}^{3}\right), L^{q}\left(\Sigma^{W_{2}}\right)}<\infty \tag{4.11}
\end{equation*}
$$

for $\frac{5}{8}<\frac{1}{q} \leq 1$. Since $b \geq 6, \frac{5}{8} \leq \frac{2+3 b}{4(2+b)}$ and then from 4.1, 4.9 and 4.11), we get

$$
\left\|\mathcal{R}^{A_{0}}\right\|_{L^{p}\left(\mathbb{R}^{3}\right), L^{q}\left(\Sigma^{A_{0}}\right)}<\infty,
$$

for $\frac{3}{4}<\frac{1}{p}$ near enough and $\frac{1}{q}>\frac{2+3 b}{2+b}\left(1-\frac{1}{p}\right)$ and the theorem follows from standard considerations involving Hölder's inequality, the Riesz Thorin theorem and from Remark 2.
Remark 6. In the case $(a, b)=(2, b), b>2$, we have 4.11). In a similar way we get, from (4.6) and Hölder's inequality,

$$
\left\|\mathcal{R}^{W_{1}}\right\|_{L^{\frac{4}{3}}\left(\mathbb{R}^{3}\right), L^{q}\left(\Sigma^{W_{1}}\right)}<\infty
$$

for $\frac{b+4}{16}<\frac{1}{q} \leq 1$. So

$$
\|\mathcal{R}\|_{L^{\frac{4}{3}}\left(\mathbb{R}^{3}\right), L^{q}(\Sigma)}<\infty
$$

for $\max \left\{\frac{5}{8}, \frac{b+4}{16}, \frac{2+3 b}{8+4 b}\right\}<\frac{1}{q} \leq 1$. We observe that if $b=6$ then $\frac{5}{8}=\frac{b+4}{16}=\frac{2+3 b}{8+4 b}$, thus from Remark 1 we see that, in this case, this condition for $\frac{1}{q}$ is sharp, up to the end point.

Now we will show some examples of functions φ not satisfying the hypothesis of the previous theorem, for which we obtain that the portion of the type set E in the region $\frac{3}{4}<\frac{1}{p} \leq 1$ is smaller than the region

$$
E_{a, b}=\left\{\left(\frac{1}{p}, \frac{1}{q}\right): \frac{3}{4}<\frac{1}{p} \leq 1, \frac{a+b+a b}{a+b}\left(1-\frac{1}{p}\right)<\frac{1}{q} \leq 1\right\}
$$

stated in Theorem 4.1.
We consider $\varphi\left(x_{1}, x_{2}\right)=x_{1}^{2}$, which is a mixed homogeneous function satisfying (1.1) for any $b>2$. In this case $\varphi_{x_{1} x_{1}} \equiv 2$ but Hess $\varphi \equiv 0$. From Remark 2.8 in [4] and Remark 4]we obtain that the corresponding type set is the region $\frac{1}{q} \geq 3\left(1-\frac{1}{p}\right), \frac{3}{4}<\frac{1}{p} \leq 1$ which is smaller than the region $E_{a, b}$.

We consider now a mixed homogeneous function φ satisfying (1.1), of the form

$$
\begin{equation*}
\varphi\left(x_{1}, x_{2}\right)=x_{2}^{l} P\left(x_{1}, x_{2}\right) \tag{4.12}
\end{equation*}
$$

with $P\left(x_{1}, 0\right) \neq 0$ for $x_{1} \neq 0$. Since $a<b$ it can be checked that $l \geq 2$ and that for $l>2$, $\varphi_{x_{1} x_{1}}\left(x_{1}, 0\right)=\varphi_{x_{2} x_{2}}\left(x_{1}, 0\right)=0$. Moreover

$$
\begin{equation*}
\text { Hess } \varphi=x_{2}^{2 l-2}\left(P_{x_{1} x_{1}}\left(l(l-1) P+2 l x_{2} P_{x_{2}}+x_{2}^{2} P_{x_{2} x_{2}}\right)-\left(l P_{x_{1}}+x_{2} P_{x_{1} x_{2}}\right)^{2}\right) \tag{4.13}
\end{equation*}
$$

which vanishes at $\left(x_{1}, 0\right)$. A computation shows that the second factor is different from zero at a point of the form $\left(x_{1}, 0\right)$. So Hess φ does not vanish identically.
Proposition 4.2. Let φ be a mixed homogeneous function satisfying 1.1 and 4.12 . If $\left(\frac{1}{p}, \frac{1}{q}\right) \in$ Ethen $\frac{1}{q} \geq(l+1)\left(1-\frac{1}{p}\right)$.
Proof. Let $f \varepsilon=\chi_{K_{\varepsilon}}$ the characteristic function of the set $K_{\varepsilon}=\left[0, \frac{1}{3}\right] \times\left[0, \frac{\varepsilon^{-1}}{3}\right] \times\left[0, \frac{\varepsilon^{-l}}{3 M}\right]$, with $M=\max _{\left(x_{1}, x_{2}\right) \in[0,1] \times[0,1]} P\left(x_{1}, x_{2}\right)$. If $\left(\frac{1}{p}, \frac{1}{q}\right) \in E$ then

$$
\begin{equation*}
\left\|\mathcal{R} f_{\varepsilon}\right\|_{L^{q}(\Sigma)} \leq c\left\|f_{\varepsilon}\right\|_{L^{p}\left(\mathbb{R}^{3}\right)}=c \varepsilon^{-\frac{1+l}{p}} \tag{4.14}
\end{equation*}
$$

By the other side,

$$
\left\|\mathcal{R} f_{\varepsilon}\right\|_{L^{q}(\Sigma)} \geq\left(\int_{W \varepsilon}\left|\widehat{f}_{\varepsilon}\left(x_{1}, x_{2}, \varphi\left(x_{1}, x_{2}\right)\right)\right|^{q} d x_{1} d x_{2}\right)^{\frac{1}{q}}
$$

where $W_{\varepsilon}=\left[\frac{1}{2}, 1\right] \times[0, \varepsilon]$. Now, for $\left(x_{1}, x_{2}\right) \in W_{\varepsilon}$ and $\left(y_{1}, y_{2}, y_{3}\right) \in K_{\varepsilon}$,

$$
\left|x_{1} y_{1}+x_{2} y_{2}+\varphi\left(x_{1}, x_{2}\right) y_{3}\right| \leq 1
$$

so

$$
\begin{aligned}
& \mid \widehat{f}_{\varepsilon}\left(x_{1}, x_{2},\right. \\
& \quad=\mid \int_{K_{\varepsilon}} e^{\left.-i\left(x_{1}, x_{1}\right)\right) \mid} \\
& \quad \geq \int_{K_{\varepsilon}} \cos \left(x_{1} y_{1}+x_{2} y_{2}+\varphi\left(x_{1}, x_{2}\right) y_{3}\right) d y_{1} d y_{2} d y_{3} \mid \\
&
\end{aligned}
$$

Thus

$$
\begin{equation*}
\left\|\mathcal{R} f_{\varepsilon}\right\|_{L^{q}(\Sigma)} \geq c \varepsilon^{-1-l+\frac{1}{q}} \tag{4.15}
\end{equation*}
$$

The proposition follows from (4.14) and (4.15).
We note that in the case that $(a+b) l>a b$ (for example $\varphi\left(x_{1}, x_{2}\right)=x_{2}^{4}\left(x_{1}^{2}+x_{2}^{4}\right)$) the portion of the type set corresponding to $\frac{3}{4}<\frac{1}{p} \leq 1$ will be smaller than the region $E_{a, b}$.

Also, $\varphi\left(x_{1}, x_{2}\right)=x_{2}^{2}\left(x_{1}+x_{2}^{2}\right)$ is an example where $a=2, b=4, \operatorname{Hess} \varphi\left(x_{1}, x_{2}\right)=-4 x_{2}^{2}$ and if $x_{2}=0$ and $x_{1} \neq 0, \varphi_{x_{2} x_{2}}\left(x_{1}, x_{2}\right)=2 x_{1} \neq 0$. Again, since $12=(a+b) l>a b=8$, we get that the portion of the type set corresponding to $\frac{3}{4}<\frac{1}{p} \leq 1$ will be smaller than the region $E_{a, b}$.
Proposition 4.3. Let φ be a mixed homogeneous function satisfying (1.1) and (4.12) with $l \geq \frac{b}{2}$. If $\frac{3}{4} \leq \frac{1}{p} \leq 1$ and $\frac{1}{q}>(l+1)\left(1-\frac{1}{p}\right)$, then

$$
\left\|\mathcal{R}^{A_{0}}\right\|_{L^{p}\left(\mathbb{R}^{3}\right), L^{q}\left(\Sigma^{A_{0}}\right)} \leq c .
$$

Proof. Let $\left(x_{1}^{0}, x_{2}^{0}\right) \in A_{0}$, if $\operatorname{Hess} \varphi\left(x_{1}^{0}, x_{2}^{0}\right) \neq 0$, as in the proof of Theorem 4.1 we find a neighborhood U of $\left(x_{1}^{0}, x_{2}^{0}\right)$ such that (4.1) holds. If $\operatorname{Hess} \varphi\left(x_{1}^{0}, x_{2}^{0}\right)=0$, by (4.13), either $x_{2}^{0}=$ 0 or the polynomial Q given by $P_{x_{1} x_{1}}\left(l(l-1) P+2 l x_{2} P_{x_{2}}+x_{2}^{2} P_{x_{2} x_{2}}\right)-\left(l P_{x_{1}}+x_{2} P_{x_{1} x_{2}}\right)^{2}$ vanishes at $\left(x_{1}^{0}, x_{2}^{0}\right)$. In the first case, using the fact that $P\left(x_{1}, 0\right) \neq 0$ for $x_{1} \neq 0$, we get that

$$
\left(P_{x_{1} x_{1}} l(l-1) P-l^{2} P_{x_{1}}^{2}\right)\left(x_{1}^{0}, 0\right) \neq 0
$$

We take a neighborhood W_{1} of the point $\left(x_{1}^{0}, 0\right)$ and U_{k} as in the proof of Theorem 4.1. So for $\left(x_{1}, x_{2}\right) \in U_{k}$,

$$
\left|\operatorname{Hess} \varphi\left(x_{1}, x_{2}\right)\right| \geq c 2^{-k(2 l-2)}
$$

and so

$$
\left|\widehat{\sigma^{U_{k}}}\left(\xi_{1}, \xi_{2}, \xi_{3}\right)\right| \leq \frac{2^{k(l-1)}}{1+\left|\xi_{3}\right|}
$$

By the other side,

$$
\left|\widehat{\sigma^{U_{k}}}\left(\xi_{1}, \xi_{2}, \xi_{3}\right)\right| \leq 2^{-k}
$$

so for $0 \leq \tau \leq 1$,

$$
\left|\widehat{\sigma^{U_{k}}}\left(\xi_{1}, \xi_{2}, \xi_{3}\right)\right| \leq \frac{2^{k(\tau l-1)}}{\left(1+\left|\xi_{3}\right|\right)^{\tau}}
$$

and by Remark 3

$$
\left\|\mathcal{R}^{U_{k}}\right\|_{L^{p}\left(\mathbb{R}^{3}\right), L^{2}\left(\Sigma^{U_{k}}\right)} \leq c_{\tau} 2^{\frac{k(\tau l-1)}{2(1+\tau)}}
$$

for $p=\frac{2(1+\tau)}{2+\tau}$ and so Hölder's inequality implies, for $1 \leq q<2$,

$$
\left\|\mathcal{R}^{U_{k}}\right\|_{L^{p}\left(\mathbb{R}^{3}\right), L^{q}\left(\Sigma^{U_{k}}\right)} \leq c_{\tau} 2^{k\left(\frac{\tau l-1}{2(1+\tau)}-\frac{2-q}{2 q}\right)}
$$

and a computation shows that this exponent is negative for $\frac{1}{q}>(l+1)\left(1-\frac{1}{p}\right)$. Thus

$$
\begin{equation*}
\left\|\mathcal{R}^{W_{1}}\right\|_{L^{p}\left(\mathbb{R}^{3}\right), L^{q}\left(\Sigma^{W_{1}}\right)}<\infty \tag{4.16}
\end{equation*}
$$

for $\frac{3}{4} \leq \frac{1}{p} \leq 1$ and $(l+1)\left(1-\frac{1}{p}\right)<\frac{1}{q} \leq 1$. Now we suppose $Q\left(x_{1}^{0}, x_{2}^{0}\right)=0$. We observe that

$$
\operatorname{deg} Q \leq 2 \operatorname{deg} P-2 \leq 2(b-l)-2 \leq 2 l-2
$$

and so $\operatorname{Hess} \varphi\left(x_{1}, x_{2}^{0}\right)$ vanishes at x_{1}^{0} with order at most $2 l-2$. Then defining W_{2} and V_{k} as in the proof of Theorem 4.1, we have

$$
\left|\operatorname{Hess} \varphi\left(x_{1}, x_{2}^{0}\right)\right| \geq 2^{-k(2 l-2)}
$$

and as in the previous case we obtain

$$
\begin{equation*}
\left\|\mathcal{R}^{W_{2}}\right\|_{L^{p}\left(\mathbb{R}^{3}\right), L^{q}\left(\Sigma^{W_{2}}\right)}<\infty \tag{4.17}
\end{equation*}
$$

for $\frac{3}{4} \leq \frac{1}{p} \leq 1$ and $\frac{1}{q}>(l+1)\left(1-\frac{1}{p}\right)$. The proposition follows from 4.16, 4.17, and (4.1).

From Proposition 4.3 and Remark 2 we obtain the following result, sharp up to the end points, for $\frac{3}{4} \leq \frac{1}{p} \leq 1$.

Theorem 4.4. Let φ be a mixed homogeneous function satisfying (1.1) and (4.12) with $l \geq \frac{b}{2}$. If $m=\max \left\{l+1, \frac{a+b+a b}{a+b}\right\}, \frac{3}{4} \leq \frac{1}{p} \leq 1$ and $\frac{1}{q}>m\left(1-\frac{1}{p}\right)$, then $\left(\frac{1}{p}, \frac{1}{q}\right) \in E$.
4.1. Sharp $L^{p}-L^{2}$ Estimates. In [4] we obtain sharp $L^{p}-L^{2}$ estimates for the restriction of the Fourier transform to homogeneous polynomial surfaces in \mathbb{R}^{3}. The principal tools we used there were two Littlewood Paley decompositions. Adapting this proof to the setting of non isotropic dilations we obtain the following results.

Lemma 4.5. Let $\frac{a+b+2 a b}{2 a+2 b+2 a b} \leq \frac{1}{p} \leq 1$. If

$$
\left\|\mathcal{R}^{A_{0}}\right\|_{L^{p}\left(\mathbb{R}^{3}\right), L^{2}\left(\Sigma^{A_{0}}\right)}<\infty
$$

then $\left(\frac{1}{p}, \frac{1}{2}\right) \in E$.
Proof. From (2.1), the lemma follows from a process analogous to the proof of Lemma 4.3 in [4].

Theorem 4.6.

i) If φ is a mixed homogeneous polynomial function satisfying the hypothesis of Theorem 4.1 then $\left(\frac{a+b+2 a b}{2 a+2 b+2 a b}, \frac{1}{2}\right) \in E$.
ii) Let $\frac{1}{p_{0}}=\max \left\{\frac{a+b+2 a b}{2 a+2 b+2 a b}, \frac{2 l+1}{2 l+2}\right\}$. If φ is a mixed homogeneous polynomial function satisfying the hypothesis of Theorem 4.4 then $\left(\frac{1}{p_{0}}, \frac{1}{2}\right) \in E$.
Proof. i) If $\frac{a+b+a b}{a+b} \geq 3, i$) follows from 4.3) and Lemma 4.5. The cases $(a, b)=(3,4)$, $(a, b)=(3,5)$ and $(a, b)=(4,5)$ are solved in Remark 5, part ii). The cases $(a, b)=(2, b)$ with b odd or $B=0$ are also included in Remark 5 , part $i i)$. For the remainder cases $(2, b)$, we observe that, if $b>6$, from the proof of Theorem 4.1 we obtain

$$
\begin{equation*}
\left\|\mathcal{R}^{A_{0}}\right\|_{L^{p}\left(\mathbb{R}^{3}\right), L^{2}\left(\Sigma^{A_{0}}\right)}<\infty \tag{4.18}
\end{equation*}
$$

for $\frac{1}{p}=\frac{a+b+2 a b}{2 a+2 b+2 a b}$, so i) follows from Lemma 4.5 . For $b=6$, as before we get

$$
\left\|\mathcal{R}^{W_{1}}\right\|_{L^{p}\left(\mathbb{R}^{3}\right), L^{2}\left(\Sigma^{W_{1}}\right)}<\infty
$$

and

$$
\left\|\mathcal{R}^{V_{k}}\right\|_{L^{p}\left(\mathbb{R}^{3}\right), L^{2}\left(\Sigma^{V_{k}}\right)}<\infty
$$

for $k \in \mathbb{N}, \frac{1}{p}=\frac{a+b+2 a b}{2 a+2 b+2 a b}$. In a similar way to Lemma 4.3 of [4], we use a uni-dimensional Littlewood Paley decomposition to obtain

$$
\left\|\mathcal{R}^{W_{2}}\right\|_{L^{p}\left(\mathbb{R}^{3}\right), L^{2}\left(\Sigma^{W_{2}}\right)}<\infty
$$

and then we have 4.18 for $\frac{1}{p}=\frac{a+b+2 a b}{2 a+2 b+2 a b}$. So i) follows from Lemma 4.5 .
ii) From the proof of Proposition 4.3 , we use a uni-dimensional Littlewood Paley decomposition to obtain $\sqrt{4.18}$ for $\frac{1}{p}=\max \left\{\frac{a+b+2 a b}{2 a+2 b+2 a b}, \frac{2 l+1}{2 l+2}\right\}$, and $\left.i i\right)$ follows from Lemma 4.5.
Remark 7. In [7] the authors obtain sharp estimates for the Fourier transform of measures σ associated to surfaces Σ like ours, when φ is a polynomial function satisfiyng (1.1) and the condition that φ and Hess φ do not vanish simultaneously on $B-\{(0,0)\}$. In these cases, part i) of the above theorem follows from Remark 3. We observe that our hypotheses are less restrictive, for example $\varphi\left(x_{1}, x_{2}\right)=x_{1}^{4} x_{2}^{2}+x_{2}^{10}$ satisfies the hypothesis of part i) of the above theorem but φ and Hess φ vanish at any (x_{1}, x_{2}) with $x_{2}=0$.

References

[1] L. DE CARLY and A. IOSEVICH, Some sharp restriction theorems for homogeneous manifolds, The Journal of Fourier Analysis and Applications, 4(1) (1998), 105-128.
[2] S.W. DRURY and K. GUO, Some remarks on the restriction of the Fourier transform to surfaces, Math. Proc. Camb. Phil. Soc., 113 (1993), 153-159.
[3] E. FERREYRA, T. GODOY and M. URCIUOLO, $L^{p}-L^{q}$ estimates for convolution operators with n-dimensional singular measures, The Journal of Fourier Analysis and Applications, 3(4) (1997), 475-484.
[4] E. FERREYRA, T. GODOY and M. URCIUOLO, Restriction theorems for the Fourier transform to homogeneous polynomial surfaces in \mathbb{R}^{3}, Studia Math., 160(3) (2004), 249-265.
[5] E. FERREYRA AND M. URCIUOLO, Restriction theorems for anisotropically homogeneous hypersurfaces of \mathbb{R}^{n+1}, Georgian Math. Journal, 15(4) (2008), 643-651.
[6] A. GREENLEAF, Principal curvature in harmonic analysis, Indiana U. Math. J., 30 (1981), 519537.
[7] A. IOSEVICH AND E. SAWYER, Oscilatory integrals and maximal averages over homogeneous surfaces, Duke Math. J., 82(1) (1996), 103-141.
[8] E.M. STEIN, Harmonic Analysis, Real - Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton University Press, Princeton New Jersey (1993).
[9] R.S. STRICHARTZ, Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations, Duke Math. J., 44 (1977), 705-713.
[10] T. TAO, A sharp bilinear restriction estimate on paraboloids. GAFA, Geom. and Funct. Anal., 13 (2003), 1359-1384.
[11] T. TAO, Some recent progress on the restriction conjecture. Fourier analysis and convexity, Appl. Numer. Harmon. Anal., Birkhaüser Boston, Boston MA (2004), 217-243.
[12] P. TOMAS, A restriction theorem for the Fourier transform, Bull. Amer. Math. Soc., 81 (1975), 477-478.

[^0]: Research partially supported by Secyt-UNC, Agencia Nacional de Promoción Científica y Tecnológica.
 The authors wish to thank Professor Fulvio Ricci for fruitful conversations about this subject.
 254-08

