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Abstract: Let a, b be real numbers such that2 ≤ a < b, and letϕ : R2 → R a mixed
homogeneous function. We consider polynomial functionsϕ and also functions
of the typeϕ (x1, x2) = A |x1|a + B |x2|b . Let Σ = {(x, ϕ (x)) : x ∈ B}
with the Lebesgue induced measure. Forf ∈ S

(
R3

)
and x ∈ B, let

(Rf) (x, ϕ (x)) = f̂ (x, ϕ (x)) , wheref̂ denotes the usual Fourier transform.
For a large class of functionsϕ and for 1 ≤ p < 4

3
we characterize, up to

endpoints, the pairs(p, q) such thatR is a bounded operator fromLp
(
R3

)
on

Lq (Σ) . We also give some sharpLp → L2 estimates.
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1. Introduction

Let a, b be real numbers such that2 ≤ a < b, let ϕ : R2 → R be a mixed
homogeneous function of degree one with respect to the non isotropic dilations

r · (x1, x2) =
(
r

1
ax1, r

1
bx2

)
, i.e.

(1.1) ϕ
(
r

1
ax1, r

1
bx2

)
= rϕ (x1, x2) , r > 0.

We also supposeϕ to be smooth enough. We denote byB the closed unit ball of
R2, by

Σ = {(x, ϕ (x)) : x ∈ B}
and byσ the induced Lebesgue measure. Forf ∈ S (R3) , let Rf : Σ → C be
defined by

(1.2) (Rf) (x, ϕ (x)) = f̂ (x, ϕ (x)) , x ∈ B,

where f̂ denotes the usual Fourier transform off. We denote byE the type set
associated toR, given by

E =

{(
1

p
,
1

q

)
∈ [0, 1]× [0, 1] : ‖R‖Lp(R3),Lq(Σ) <∞

}
.

Our aim in this paper is to obtain as much information as possible about the setE,
for certain surfacesΣ of the type above described.

In the generaln-dimensional case, theLp (Rn+1)−Lq (Σ) boundedness properties
of the restriction operatorR have been studied by different authors. A very inter-
esting survey about recent progress in this research area can be found in [11]. The
Lp (Rn+1) − L2 (Σ) restriction theorems for the sphere were proved by E. Stein in
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1967, for3n+4
4n+4

< 1
p
≤ 1; for n+4

2n+4
< 1

p
≤ 1 by P. Tomas in [12] and then in the same

year by Stein forn+4
2n+4

≤ 1
p
≤ 1. The last argument has been used in several related

contexts by R. Strichartz in [9] and by A. Greenleaf in [6]. This method provides a
general tool to obtain, from suitable estimates forσ̂, Lp (Rn+1) − L2 (Σ) estimates
for R. Moreover, a general theorem, due to Stein, holds for smooth enough hyper-
surfaces with never vanishing Gaussian curvature ([8], pp.386). There it is shown

that in this case,
(

1
p
, 1
q

)
∈ E if n+4

2n+4
≤ 1

p
≤ 1 and−n+2

n
1
p

+ n+2
n
≤ 1

q
≤ 1, also that

this last relation is the best possible and that no restriction theorem of any kind can
hold for f ∈ Lp (Rn+1) when 1

p
≤ n+2

2n+2
([8, pp.388]). The casesn+2

2n+2
< 1

p
< n+4

2n+4
are not completely solved. The best results for surfaces with non vanishing curva-
ture like the paraboloid and the sphere are due to T. Tao [10]. Restriction theorems
for the Fourier transform to homogeneous polynomial surfaces inR3 are obtained in
[4]. Also, in [1] the authors obtain sharpLp

(
Rn+l

)
− L2 (Σ) estimates for certain

homogeneous surfacesΣ of codimensionl in Rn+l.
In Section2 we give some preliminary results.
In Section3 we considerϕ (x1, x2) = A |x1|a + B |x2|b , A 6= 0, B 6= 0. We de-

scribe completely, up to endpoints, the pairs
(

1
p
, 1
q

)
∈ E with 1

p
> 3

4
. A fundamental

tool we use is Theorem 2.1 of [2].
In Section4 we deal with polynomial functionsϕ.Under certain hypothesis about

ϕwe can prove that if3
4
< 1

p
≤ 1 and the pair

(
1
p
, 1
q

)
satisfies some sharp conditions,

then
(

1
p
, 1
q

)
∈ E. Finally we obtain someL

4
3 − Lq estimates and also some sharp

Lp − L2 estimates.
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2. Preliminaries

We takeϕ to be a mixed homogeneous and smooth enough function that satisfies
(1.1). If V is a measurable set inR2, we denoteΣV = {(x, ϕ (x)) : x ∈ V } andσV

as the associated surface measure. Also, forf ∈ S (R3) , we defineRV f : ΣV → C
by (

RV f
)
(x, ϕ (x)) = f̂ (x, ϕ (x)) x ∈ V ;

we note thatRB = R, σB = σ andΣB = Σ.
Forx = (x1, x2) letting‖x‖ = |x1|a + |x2|b, we define

A0 =

{
x ∈ R2 :

1

2
≤ ‖x‖ ≤ 1

}
and forj ∈ N,

Aj = 2−j · A0.

ThusB ⊆
⋃

j∈N∪{0}
Aj. A standard homogeneity argument (see, e.g. [5]) gives, for

1 ≤ p, q ≤ ∞,

(2.1)
∥∥RAj

∥∥
Lp(R3),Lq(ΣAj) = 2−j

a+b
ab ( 1

q
−a+b+ab

a+b
+ 1

p
a+b+ab

a+b ) ∥∥RA0
∥∥
Lp(R3),Lq(ΣA0) .

From this we obtain the following remarks.

Remark1. If
(

1
p
, 1
q

)
∈ E then 1

q
≥ −a+b+ab

a+b
1
p

+ a+b+ab
a+b

.

Remark2. If −a+b+ab
a+b

1
p

+ a+b+ab
a+b

< 1
q
≤ 1 and

(2.2)
∥∥RA0

∥∥
Lp(R3),Lq(ΣA0) <∞,

then
(

1
p
, 1
q

)
∈ E.
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We will use a theorem due to Strichartz (see [9]), whose proof relies on the Stein
complex interpolation theorem, which givesLp (R3) − L2

(
ΣV

)
estimates for the

operatorRV depending on the behavior at infinity of̂σV . In [4] we obtained infor-
mation about the size of the constants. There we found the following:

Remark3. If V is a measurable set inR2 of positive measure and if∣∣∣σ̂V (ξ)
∣∣∣ ≤ A (1 + |ξ3|)−τ

for someτ > 0 and for allξ = (ξ1, ξ2, ξ3) ∈ R3, then there exists a positive constant
cτ such that ∥∥RV

∥∥
Lp(R3),L2(ΣV )

≤ cτA
1

2(1+τ)

for p = 2+2τ
2+τ

.

In [2] the authors obtain a result (Theorem 2.1, p.155) from which they also obtain
the following consequence

Remark4 ([2, Corollary 2.2]). Let I, J be two real intervals, and let

M = {(x1, x2, ψ (x1, x2)) : (x1, x2) ∈ I × J} ,

whereψ : I×J → R is a smooth function such that either
∣∣∣∂2ψ
∂x2

1
(x1, x2)

∣∣∣ ≥ c > 0 or∣∣∣∂2ψ
∂x2

2
(x1, x2)

∣∣∣ ≥ c > 0, uniformly onI ×J. If M has the Lebesgue surface measure,

1
q

= 3
(
1− 1

p

)
and 3

4
< 1

p
≤ 1 then there exists a positive constantc such that

(2.3)
∥∥∥f̂ |M ∥∥∥

Lq(M)
≤ c ‖f‖Lp(R3)

for f ∈ S(R3).
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Following the proof of Theorem 2.1 in [2] we can check that if in the last remark

we takeJ =
[
2−k, 2−k+1

]
, k ∈ N in the case that

∣∣∣∂2ψ
∂x2

1
(x1, x2)

∣∣∣ ≥ c > 0 uniformly

onI×J with c independent ofk, or I =
[
2−k, 2−k+1

]
, k ∈ N in the other case, then

we can replace (2.3) by

(2.4)
∥∥∥f̂ |M ∥∥∥

Lq(M)
≤ c′2−k(

1
p
+ 1

q
−1) ‖f‖Lp(R3)

with c′ independent ofk.
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3. The Casesϕ (x1, x2) = A |x1|a +B |x2|b

In this cases we characterize, up to endpoints, the pairs
(

1
p
, 1
q

)
∈ E with 3

4
< 1

p
≤ 1.

We also obtain some border segments. If eitherA = 0 or B = 0, ϕ becomes
homogeneous and these cases are treated in [4]. For the remainder situation we
obtain the following

Theorem 3.1. Let a, b, A,B ∈ R with 2 ≤ a ≤ b, A 6= 0, B 6= 0, let ϕ (x1, x2) =

A |x1|a + B |x2|b and letE be the type set associated toϕ. If 3
4
< 1

p
≤ 1 and

−a+b+ab
a+b

1
p

+ a+b+ab
a+b

< 1
q
≤ 1 then

(
1
p
, 1
q

)
∈ E.

Proof. Suppose3
4
< 1

p
≤ 1 and−a+b+ab

a+b
1
p

+ a+b+ab
a+b

< 1
q
≤ 1. By Remark2 it

is enough to prove (2.2). Now, A0 is contained in the union of the rectanglesQ =
[−1, 1]×

[
1
2
, 1

]
, Q′ =

[
1
2
, 1

]
× [−1, 1] , and its symmetrics with respect to thex1 and

x2 axes. Now we will study
∥∥RQ

∥∥
Lp(R3),Lq(ΣQ)

. We decomposeQ =
⋃
k∈N

Qk with

Qk =
([
−2−k+1,−2−k

]
∪

[
2−k, 2−k+1

])
×

[
1

2
, 1

]
.

Now, as in Theorem 1, (3.2), in [3] we have∣∣∣σ̂Qk (ξ)
∣∣∣ ≤ A2k

a−2
2 (1 + |ξ3|)−1

and then Remark3 implies

(3.1)
∥∥RQk

∥∥
L

4
3 (R3),L2(ΣQk)

≤ c2k
a−2
8 .
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Also, since
∣∣∣∂2ϕ
∂x2

2
(x1, x2)

∣∣∣ ≥ c > 0 uniformly onQk, from (2.4) we obtain∥∥RQk
∥∥
Lp(R3),Lq(ΣQk) ≤ c′2−k(

1
p
+ 1

q
−1)

for 1
q

= 3
(
1− 1

p

)
and 3

4
< 1

p
≤ 1. Applying the Riesz interpolation theorem and

then performing the sum onk ∈ N we obtain∥∥RQ
∥∥
Lp(R3),Lq(ΣQ)

<∞,

for 2+3a
2+a

(
1− 1

p

)
< 1

q
≤ 1 and 3

4
< 1

p
≤ 1. In a similar way we get that∥∥∥RQ′

∥∥∥
Lp(R3),Lq(ΣQ′)

<∞,

for 2+3b
2+b

(
1− 1

p

)
< 1

q
≤ 1 and 3

4
< 1

p
≤ 1. The study for the symmetric rectangles

is analogous. Thus ∥∥RA0
∥∥
Lp(R3),Lq(ΣA0) <∞

for 3
4
< 1

p
≤ 1 and−a+b+ab

a+b
1
p

+ a+b+ab
a+b

< 1
q
≤ 1 and the theorem follows.

Remark5.

i) If b+2
8
< 1

q
≤ 1 then

(
3
4
, 1
q

)
∈ E.

ii) The point
(
a+b+2ab

2a+2b+2ab
, 1

2

)
∈ E.
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From (3.1) and the Hölder inequality we obtain that∥∥RQk
∥∥
L

4
3 (R3),Lq(ΣQk)

≤ c2k(
a−2
8
− 2−q

2q )

for 1
2
≤ 1

q
≤ 1. Then if a+2

8
< 1

q
≤ 1 we perform the sum overk ∈ N to get∥∥RQ
∥∥
L

4
3 (R3),Lq(ΣQ)

<∞,

for theseq’s. Analogously, ifb+2
8
< 1

q
≤ 1 we get∥∥∥RQ′

∥∥∥
L

4
3 (R3),Lq(ΣQ′)

<∞,

thus sincea ≤ b, if b+2
8
< 1

q
≤ 1,∥∥RA0

∥∥
L

4
3 (R3),Lq(ΣA0)

<∞,

andi) follows from Remark2.
Assertionii) follows from Remark3, since from Lemma 3 in [3] we have that

|σ̂ (ξ)| ≤ c (1 + |ξ3|)−
1
a
− 1

b .
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4. The Polynomial Cases

In this section we deal with mixed homogeneous polynomial functionsϕ satisfying
(1.1). The following result is sharp (up to the endpoints) for3

4
< 1

p
≤ 1, as a

consequence of Remark1.

Theorem 4.1. Letϕ be a mixed homogeneous polynomial function satisfying (1.1).
Suppose that the gaussian curvature ofΣ does not vanish identically and that at
each point ofΣB−{0} with vanishing curvature, at least one principal curvature is
different from zero. If(a, b) 6= (2, 4) , 3

4
< 1

p
≤ 1 and−a+b+ab

a+b
1
p

+ a+b+ab
a+b

< 1
q
≤ 1

then
(

1
p
, 1
q

)
∈ E.

Proof. We first study the operatorRA0 . Let (x0
1, x

0
2) ∈ A0. If Hessϕ (x0

1, x
0
2) 6= 0

there exists a neighborhoodU of (x0
1, x

0
2) such thatHessϕ (x1, x2) 6= 0 for (x1, x2) ∈

U. From the proposition in [8, pp. 386], it follows that

(4.1)
∥∥RU

∥∥
Lp(R3),Lq(ΣU )

<∞

for 1
q

= 2
(
1− 1

p

)
and 3

4
≤ 1

p
≤ 1. Suppose now thatHessϕ (x0

1, x
0
2) = 0 and that

either ∂
2ϕ
∂x2

1
(x0

1, x
0
2) 6= 0 or ∂2ϕ

∂x2
2
(x0

1, x
0
2) 6= 0. Then there exists a neighborhoodV =

I × J of (x0
1, x

0
2) such that either

∣∣∣∂2ϕ
∂x2

1
(x1, x2)

∣∣∣ ≥ c > 0 or
∣∣∣∂2ϕ
∂x2

2
(x1, x2)

∣∣∣ ≥ c > 0

uniformly onV. So from Remark4 we obtain that

(4.2)
∥∥RV

∥∥
Lp(R3),Lq(ΣV )

<∞

for 1
q

= 3
(
1− 1

p

)
and 3

4
< 1

p
≤ 1. From (4.1), (4.2) and Hölder´s inequality, it

follows that

(4.3)
∥∥RA0

∥∥
Lp(R3),Lq(ΣA0) <∞
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for 1
q
≥ 3

(
1− 1

p

)
and 3

4
< 1

p
≤ 1. So, if a+b+ab

a+b
≥ 3, the theorem follows from

Remark2. The only cases left are(a, b) = (3, 4) , (a, b) = (3, 5) , (a, b) = (4, 5)
and (a, b) = (2, b) , b > 2. If (a, b) = (3, 4) andϕ has a monomial of the form
ai,jx

iyj, with aij 6= 0, then i
3
+ j

4
= 1 so4i+3j = 12 and so either(i, j) = (0, 4) or

(i, j) = (3, 0). Soϕ (x1, x2) = a3,0x
3
1 + a0,4x

4
2. The hypothesis about the derivatives

of ϕ imply that a3,0 6= 0 and a0,4 6= 0 and the theorem follows using Theorem
3.1 in each quadrant. The cases(a, b) = (3, 5) , or (a, b) = (4, 5) are completely
analogous.

Now we deal with the cases(a, b) = (2, b) , b > 2. We note that

(4.4) ϕ (x1, x2) = Ax2
1 +Bx1x

b
2
2 + Cxb2

whereB = 0 for b odd. The hypothesis aboutϕ implies A 6= 0. For b odd,
ϕ (x1, x2) = Ax2

1 +Cxb2 and sinceC 6= 0 (on the contraryHessϕ (x1, x2) ≡ 0), the
theorem follows using Theorem3.1as before. Now we considerb even andϕ given
by (4.4). If B = 0 the theorem follows as above, so we supposeB 6= 0.

(4.5) Hessϕ (x1, x2)

= −x
b
2
−2

2

4

((
B2b2 + 8ACb− 8ACb2

)
x

b
2
2 − 2(b− 2)ABbx1

)
.

So ifHessϕ (x0
1, x

0
2) = 0 then eitherx0

2 = 0 or(
B2b2 + 8ACb− 8ACb2

) (
x0

2

) b
2 − 2(b− 2)ABbx0

1 = 0.

In the first case we haveb > 4. We take a neighborhoodW1 = I ×
[
−2−k0 , 2−k0

]
⊂

A0, k0 ∈ N, of the point(x0
1, 0) such thatHessϕ vanishes, onW1, only along the

x1 axes. Fork ∈ N, k > k0, we takeUk = I × Jk whereJk = [−2−k+1,−2−k] ∪
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[2−k, 2−k+1] . SoW1 = ∪Uk. For (x1, x2) ∈ Uk, it follows from (4.5) that

|Hessϕ (x1, x2)| ≥ c2−k(
b
2
−2),

so forξ = (ξ1, ξ2, ξ3) ∈ R3,∣∣∣σ̂Uk (ξ)
∣∣∣ ≤ c2k

b−4
4 (1 + |ξ3|)−1

and from Remark3 we get

(4.6)
∥∥RUk

∥∥
L

4
3 (R3),L2(ΣUk)

≤ c2k
b−4
16 .

Also, since
∣∣∣∂2ϕ
∂x2

1
(x1, x2)

∣∣∣ ≥ c > 0 uniformly onUk, as in (2.4) we obtain

(4.7)
∥∥RUk

∥∥
Lp(R3),Lq(ΣUk) ≤ c2−k(2− 2

p)

for 3
4
< 1

p
≤ 1 and 1

q
= 3

(
1− 1

p

)
. From (4.6), (4.7) and the Riesz Thorin theorem

we obtain

(4.8)
∥∥RUk

∥∥
Lpt (R3),Lqt(ΣUk) ≤ c2k(t

b−4
16

−(1−t)(2− 2
p))

for 1
qt

= t1
2

+ (1− t) 3
(
1− 1

p

)
and 1

pt
= t3

4
+ (1− t) 1

p
.

A simple computation shows that if1
p

= 3
4

then the exponent in (4.8) is negative
for t < t0 = 8

4+b
and that

1

qt0
− 2 + 3b

4 (2 + b)
< 0,
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so for 1
p
> 3

4
andt < t0, both near enough, the exponent is still negative and

1

qt
− 2 + 3b

2 + b

(
1− 1

pt

)
< 0,

thus

(4.9)
∥∥RW1

∥∥
Lp(R3),Lq(ΣW1) <∞

for 3
4
< 1

p
near enough and1

q
= 2+3b

2+b

(
1− 1

p

)
. Finally, if

(
B2b2 + 8ACb− 8ACb2

) (
x0

2

) b
2 − 2(b− 2)ABbx0

1 = 0

then we study the order ofHessϕ (x1, x
0
2) for 2−k−1 ≤ |x1 − x0

1| ≤ 2−k, k ∈ N.

(4.10)

∣∣∣∣∣(x0
2)

b
2
−2

4

((
B2b2 + 8ACb− 8ACb2

) (
x0

2

) b
2 − 2(b− 2)ABbx1

)∣∣∣∣∣
=

∣∣∣∣∣(x0
2)

b
2
−2

2
(b− 2)ABb

(
x1 − x0

1

)∣∣∣∣∣ ≥ c2−k.

We take the following neighborhood of(x0
1, x

0
2) , W2 = ∪k∈NVk, with

Vk =

{(
r

1
2x1, r

1
bx0

2

)
: 2−k−1 ≤

∣∣x1 − x0
1

∣∣ ≤ 2−k,
1

2
≤ r ≤ 2

}
.

From the homogeneity ofϕ and (4.10) we obtain∣∣∣Hessϕ(
r

1
2x1, r

1
bx0

2

)∣∣∣ = r1− 2
b

∣∣Hessϕ (
x1, x

0
2

)∣∣ ≥ c2−k,
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then from Proposition 6 in [8, p. 344], we get forξ = (ξ1, ξ2, ξ3) ∈ R3∣∣∣σ̂Vk (ξ)
∣∣∣ ≤ c2

k
2 (1 + |ξ3|)−1 ,

so from Remark3 ∥∥RVk
∥∥
L

4
3 (R3),L2(ΣVk)

≤ c2
k
8

and by Hölder’s inequality, forq < 2 we have∥∥RVk
∥∥
L

4
3 (R3),Lq(ΣVk)

≤ c2k(
1
8
− 2−q

2q ).

This exponent is negative for1
q
> 5

8
and so we sum onk to obtain

(4.11)
∥∥RW2

∥∥
L

4
3 (R3),Lq(ΣW2)

<∞

for 5
8
< 1

q
≤ 1. Sinceb ≥ 6, 5

8
≤ 2+3b

4(2+b)
and then from (4.1), (4.9) and (4.11), we get∥∥RA0

∥∥
Lp(R3),Lq(ΣA0) <∞,

for 3
4
< 1

p
near enough and1

q
> 2+3b

2+b

(
1− 1

p

)
and the theorem follows from standard

considerations involving Hölder’s inequality, the Riesz Thorin theorem and from
Remark2.

Remark6. In the case(a, b) = (2, b) , b > 2, we have (4.11). In a similar way we
get, from (4.6) and Hölder’s inequality,∥∥RW1

∥∥
L

4
3 (R3),Lq(ΣW1)

<∞
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for b+4
16

< 1
q
≤ 1. So

‖R‖
L

4
3 (R3),Lq(Σ)

<∞

for max
{

5
8
, b+4

16
, 2+3b

8+4b

}
< 1

q
≤ 1. We observe that ifb = 6 then 5

8
= b+4

16
= 2+3b

8+4b
,

thus from Remark1 we see that, in this case, this condition for1
q

is sharp, up to the
end point.

Now we will show some examples of functionsϕ not satisfying the hypothesis of
the previous theorem, for which we obtain that the portion of the type setE in the
region 3

4
< 1

p
≤ 1 is smaller than the region

Ea,b =

{(
1

p
,
1

q

)
:
3

4
<

1

p
≤ 1,

a+ b+ ab

a+ b

(
1− 1

p

)
<

1

q
≤ 1

}
stated in Theorem4.1.

We considerϕ (x1, x2) = x2
1, which is a mixed homogeneous function satisfying

(1.1) for anyb > 2. In this caseϕx1x1 ≡ 2 butHessϕ ≡ 0. From Remark 2.8 in [4]

and Remark4 we obtain that the corresponding type set is the region1
q
≥ 3

(
1− 1

p

)
,

3
4
< 1

p
≤ 1 which is smaller than the regionEa,b.

We consider now a mixed homogeneous functionϕ satisfying (1.1), of the form

(4.12) ϕ (x1, x2) = xl2P (x1, x2) ,

with P (x1, 0) 6= 0 for x1 6= 0. Sincea < b it can be checked thatl ≥ 2 and that for
l > 2, ϕx1x1 (x1, 0) = ϕx2x2 (x1, 0) = 0. Moreover

(4.13) Hessϕ = x2l−2
2

(
Px1x1

(
l (l − 1)P + 2lx2Px2 + x2

2Px2x2

)
− (lPx1 + x2Px1x2)

2 )
,

which vanishes at(x1, 0) . A computation shows that the second factor is different
from zero at a point of the form(x1, 0) . SoHessϕ does not vanish identically.
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Proposition 4.2.Letϕ be a mixed homogeneous function satisfying (1.1) and (4.12).

If
(

1
p
, 1
q

)
∈ E then 1

q
≥ (l + 1)

(
1− 1

p

)
.

Proof. Let fε = χKε the characteristic function of the setKε =
[
0, 1

3

]
×

[
0, ε

−1

3

]
×[

0, ε
−l

3M

]
, with M = max

(x1,x2)∈[0,1]×[0,1]
P (x1, x2) . If

(
1
p
, 1
q

)
∈ E then

(4.14) ‖Rfε‖Lq(Σ) ≤ c ‖fε‖Lp(R3) = cε−
1+l
p .

By the other side,

‖Rfε‖Lq(Σ) ≥
(∫

Wε

∣∣∣f̂ε (x1, x2, ϕ (x1, x2))
∣∣∣q dx1dx2

) 1
q

whereWε =
[

1
2
, 1

]
× [0, ε] . Now, for (x1, x2) ∈ Wε and(y1, y2, y3) ∈ Kε,

|x1y1 + x2y2 + ϕ (x1, x2) y3| ≤ 1

so ∣∣∣f̂ε (x1, x2, ϕ (x1, x2))
∣∣∣

=

∣∣∣∣∫
Kε

e−i(x1y1+x2y2+ϕ(x1,x2)y3)dy1dy2dy3

∣∣∣∣
≥

∫
Kε

cos (x1y1 + x2y2 + ϕ (x1, x2) y3) dy1dy2dy3 ≥ cε−1−l.

Thus

(4.15) ‖Rfε‖Lq(Σ) ≥ cε−1−l+ 1
q .

The proposition follows from (4.14) and (4.15).
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We note that in the case that(a+ b) l > ab (for exampleϕ (x1, x2) = x4
2 (x2

1 + x4
2))

the portion of the type set corresponding to3
4
< 1

p
≤ 1 will be smaller than the region

Ea,b.
Also,ϕ (x1, x2) = x2

2 (x1 + x2
2) is an example wherea = 2, b = 4, Hessϕ (x1, x2)

= −4x2
2 and if x2 = 0 and x1 6= 0, ϕx2x2 (x1, x2) = 2x1 6= 0. Again, since

12 = (a+ b) l > ab = 8, we get that the portion of the type set corresponding
to 3

4
< 1

p
≤ 1 will be smaller than the regionEa,b.

Proposition 4.3. Letϕ be a mixed homogeneous function satisfying (1.1) and (4.12)

with l ≥ b
2
. If 3

4
≤ 1

p
≤ 1 and 1

q
> (l + 1)

(
1− 1

p

)
, then∥∥RA0

∥∥
Lp(R3),Lq(ΣA0) ≤ c.

Proof. Let (x0
1, x

0
2) ∈ A0, if Hessϕ (x0

1, x
0
2) 6= 0, as in the proof of Theorem4.1

we find a neighborhoodU of (x0
1, x

0
2) such that (4.1) holds. IfHessϕ (x0

1, x
0
2) = 0,

by (4.13), eitherx0
2 = 0 or the polynomialQ given byPx1x1(l(l − 1)P + 2lx2Px2

+x2
2Px2x2)− (lPx1 + x2Px1x2)

2 vanishes at(x0
1, x

0
2) . In the first case, using the fact

thatP (x1, 0) 6= 0 for x1 6= 0, we get that(
Px1x1l (l − 1)P − l2P 2

x1

) (
x0

1, 0
)
6= 0.

We take a neighborhoodW1 of the point(x0
1, 0) andUk as in the proof of Theorem

4.1. So for(x1, x2) ∈ Uk,

|Hessϕ (x1, x2)| ≥ c2−k(2l−2)

and so ∣∣∣σ̂Uk (ξ1, ξ2, ξ3)
∣∣∣ ≤ 2k(l−1)

1 + |ξ3|
.
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By the other side, ∣∣∣σ̂Uk (ξ1, ξ2, ξ3)
∣∣∣ ≤ 2−k

so for0 ≤ τ ≤ 1, ∣∣∣σ̂Uk (ξ1, ξ2, ξ3)
∣∣∣ ≤ 2k(τl−1)

(1 + |ξ3|)τ

and by Remark3 ∥∥RUk
∥∥
Lp(R3),L2(ΣUk) ≤ cτ2

k(τl−1)
2(1+τ)

for p = 2(1+τ)
2+τ

and so Hölder’s inequality implies, for1 ≤ q < 2,∥∥RUk
∥∥
Lp(R3),Lq(ΣUk) ≤ cτ2

k( τl−1
2(1+τ)

− 2−q
2q )

and a computation shows that this exponent is negative for1
q
> (l + 1)

(
1− 1

p

)
.

Thus

(4.16)
∥∥RW1

∥∥
Lp(R3),Lq(ΣW1) <∞

for 3
4
≤ 1

p
≤ 1 and(l + 1)

(
1− 1

p

)
< 1

q
≤ 1. Now we supposeQ (x0

1, x
0
2) = 0. We

observe that
degQ ≤ 2 degP − 2 ≤ 2 (b− l)− 2 ≤ 2l − 2

and soHessϕ (x1, x
0
2) vanishes atx0

1 with order at most2l − 2. Then definingW2

andVk as in the proof of Theorem4.1, we have∣∣Hessϕ (
x1, x

0
2

)∣∣ ≥ 2−k(2l−2)
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and as in the previous case we obtain

(4.17)
∥∥RW2

∥∥
Lp(R3),Lq(ΣW2) <∞

for 3
4
≤ 1

p
≤ 1 and 1

q
> (l + 1)

(
1− 1

p

)
. The proposition follows from (4.16),

(4.17) and (4.1).

From Proposition4.3 and Remark2 we obtain the following result, sharp up to
the end points, for3

4
≤ 1

p
≤ 1.

Theorem 4.4. Let ϕ be a mixed homogeneous function satisfying (1.1) and (4.12)

with l ≥ b
2
. If m = max

{
l + 1, a+b+ab

a+b

}
, 3

4
≤ 1

p
≤ 1 and 1

q
> m

(
1− 1

p

)
, then(

1
p
, 1
q

)
∈ E.

4.1. SharpLp − L2 Estimates

In [4] we obtain sharpLp−L2 estimates for the restriction of the Fourier transform to
homogeneous polynomial surfaces inR3. The principal tools we used there were two
Littlewood Paley decompositions. Adapting this proof to the setting of non isotropic
dilations we obtain the following results.

Lemma 4.5. Let a+b+2ab
2a+2b+2ab

≤ 1
p
≤ 1. If∥∥RA0

∥∥
Lp(R3),L2(ΣA0) <∞

then
(

1
p
, 1

2

)
∈ E.

Proof. From (2.1), the lemma follows from a process analogous to the proof of
Lemma 4.3 in [4].
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Theorem 4.6.

i) If ϕ is a mixed homogeneous polynomial function satisfying the hypothesis of
Theorem4.1then

(
a+b+2ab

2a+2b+2ab
, 1

2

)
∈ E.

ii) Let 1
p0

= max
{

a+b+2ab
2a+2b+2ab

, 2l+1
2l+2

}
. If ϕ is a mixed homogeneous polynomial

function satisfying the hypothesis of Theorem4.4then
(

1
p0
, 1

2

)
∈ E.

Proof. i) If a+b+ab
a+b

≥ 3, i) follows from (4.3) and Lemma4.5. The cases(a, b) =
(3, 4) , (a, b) = (3, 5) and(a, b) = (4, 5) are solved in Remark5, partii). The cases
(a, b) = (2, b) with b odd orB = 0 are also included in Remark5, partii). For the
remainder cases(2, b), we observe that, ifb > 6, from the proof of Theorem4.1we
obtain

(4.18)
∥∥RA0

∥∥
Lp(R3),L2(ΣA0) <∞,

for 1
p

= a+b+2ab
2a+2b+2ab

, soi) follows from Lemma4.5. Forb = 6, as before we get∥∥RW1
∥∥
Lp(R3),L2(ΣW1) <∞,

and ∥∥RVk
∥∥
Lp(R3),L2(ΣVk) <∞

for k ∈ N, 1
p

= a+b+2ab
2a+2b+2ab

. In a similar way to Lemma 4.3 of [4], we use a uni-
dimensional Littlewood Paley decomposition to obtain∥∥RW2

∥∥
Lp(R3),L2(ΣW2) <∞

and then we have (4.18) for 1
p

= a+b+2ab
2a+2b+2ab

. Soi) follows from Lemma4.5.
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ii) From the proof of Proposition4.3, we use a uni-dimensional Littlewood Paley
decomposition to obtain (4.18) for 1

p
= max

{
a+b+2ab

2a+2b+2ab
, 2l+1

2l+2

}
, andii) follows from

Lemma4.5.

Remark7. In [7] the authors obtain sharp estimates for the Fourier transform of
measuresσ associated to surfacesΣ like ours, whenϕ is a polynomial function
satisfiyng (1.1) and the condition thatϕ andHessϕ do not vanish simultaneously on
B−{(0, 0)} . In these cases, parti) of the above theorem follows from Remark3. We
observe that our hypotheses are less restrictive, for exampleϕ (x1, x2) = x4

1x
2
2 + x10

2

satisfies the hypothesis of parti) of the above theorem butϕ andHessϕ vanish at
any(x1, x2) with x2 = 0.
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