FOURIER RESTRICTION ESTIMATES TO MIXED HOMOGENEOUS SURFACES

	E. FERREYRA AND M. URCIUOLO
	FAMAF - CIEM (Universidad Nacional de Córdoba - Conicet).
	Medina Allende s/n, Ciudad Universitaria,
	5000 Córdoba.
	EMail: eferrey@mate.uncor.edu urciuolo@gmail.com
Received:	17 September, 2008
Accepted:	13 February, 2009
Communicated by:	L. Pick
2000 AMS Sub. Class.:	Primary 42B10, 26D10.
Key words:	Restriction theorems, Fourier transform.
Abstract:	Let a, b be real numbers such that $2 \leq a<b$, and let $\varphi: \mathbb{R}^{2} \rightarrow \mathbb{R}$ a mixed homogeneous function. We consider polynomial functions φ and also functions of the type $\varphi\left(x_{1}, x_{2}\right)=A\left\|x_{1}\right\|^{a}+B\left\|x_{2}\right\|^{b}$. Let $\Sigma=\{(x, \varphi(x)): x \in B\}$ with the Lebesgue induced measure. For $f \in S\left(\mathbb{R}^{3}\right)$ and $x \in B$, let $(\mathcal{R} f)(x, \varphi(x))=\widehat{f}(x, \varphi(x))$, where \widehat{f} denotes the usual Fourier transform. For a large class of functions φ and for $1 \leq p<\frac{4}{3}$ we characterize, up to endpoints, the pairs (p, q) such that \mathcal{R} is a bounded operator from $L^{p}\left(\mathbb{R}^{3}\right)$ on $L^{q}(\Sigma)$. We also give some sharp $L^{p} \rightarrow L^{2}$ estimates.
Acknowledgements:	Research partially supported by Secyt-UNC, Agencia Nacional de Promoción Científica y Tecnológica. The authors wish to thank Professor Fulvio Ricci for fruitful conversations about this subject.

Fourier Restriction

 EstimatesE. Ferreyra and M. Urciuolo vol. 10, iss. 2, art. 35, 2009

Title Page

Contents

Page 1 of 24

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-575b

Contents

1 Introduction 3
2 Preliminaries 5
3 The Cases $\varphi\left(x_{1}, x_{2}\right)=A\left|x_{1}\right|^{a}+B\left|x_{2}\right|^{b}$ 8
4 The Polynomial Cases 11
4.1 Sharp $L^{p}-L^{2}$ Estimates 20

Fourier Restriction Estimates
E. Ferreyra and M. Urciuolo vol. 10, iss. 2, art. 35, 2009

Title Page
Contents

$\mathbf{4}$	
$\mathbf{4}$	
Page 2 of 24	
Go Back	
Full Screen	
Close	

journal of inequalities in pure and applied mathematics
issn: 1443-575b

1. Introduction

Let a, b be real numbers such that $2 \leq a<b$, let $\varphi: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a mixed homogeneous function of degree one with respect to the non isotropic dilations $r \cdot\left(x_{1}, x_{2}\right)=\left(r^{\frac{1}{a}} x_{1}, r^{\frac{1}{b}} x_{2}\right)$, i.e.

$$
\begin{equation*}
\varphi\left(r^{\frac{1}{a}} x_{1}, r^{\frac{1}{b}} x_{2}\right)=r \varphi\left(x_{1}, x_{2}\right), \quad r>0 . \tag{1.1}
\end{equation*}
$$

We also suppose φ to be smooth enough. We denote by B the closed unit ball of \mathbb{R}^{2}, by

$$
\Sigma=\{(x, \varphi(x)): x \in B\}
$$

and by σ the induced Lebesgue measure. For $f \in S\left(\mathbb{R}^{3}\right)$, let $\mathcal{R} f: \Sigma \rightarrow \mathbb{C}$ be defined by

$$
\begin{equation*}
(\mathcal{R} f)(x, \varphi(x))=\widehat{f}(x, \varphi(x)), \quad x \in B \tag{1.2}
\end{equation*}
$$

where \widehat{f} denotes the usual Fourier transform of f. We denote by E the type set associated to \mathcal{R}, given by

$$
E=\left\{\left(\frac{1}{p}, \frac{1}{q}\right) \in[0,1] \times[0,1]:\|\mathcal{R}\|_{L^{p}\left(\mathbb{R}^{3}\right), L^{q}(\Sigma)}<\infty\right\} .
$$

Our aim in this paper is to obtain as much information as possible about the set E, for certain surfaces Σ of the type above described.

In the general n-dimensional case, the $L^{p}\left(\mathbb{R}^{n+1}\right)-L^{q}(\Sigma)$ boundedness properties of the restriction operator \mathcal{R} have been studied by different authors. A very interesting survey about recent progress in this research area can be found in [11]. The $L^{p}\left(\mathbb{R}^{n+1}\right)-L^{2}(\Sigma)$ restriction theorems for the sphere were proved by E. Stein in

J

Title Page
Contents

Page 3 of 24
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

1967, for $\frac{3 n+4}{4 n+4}<\frac{1}{p} \leq 1$; for $\frac{n+4}{2 n+4}<\frac{1}{p} \leq 1$ by P. Tomas in [12] and then in the same year by Stein for $\frac{n+4}{2 n+4} \leq \frac{1}{p} \leq 1$. The last argument has been used in several related contexts by R. Strichartz in [9] and by A. Greenleaf in [6]. This method provides a general tool to obtain, from suitable estimates for $\widehat{\sigma}, L^{p}\left(\mathbb{R}^{n+1}\right)-L^{2}(\Sigma)$ estimates for \mathcal{R}. Moreover, a general theorem, due to Stein, holds for smooth enough hypersurfaces with never vanishing Gaussian curvature ([8], pp.386). There it is shown that in this case, $\left(\frac{1}{p}, \frac{1}{q}\right) \in E$ if $\frac{n+4}{2 n+4} \leq \frac{1}{p} \leq 1$ and $-\frac{n+2}{n} \frac{1}{p}+\frac{n+2}{n} \leq \frac{1}{q} \leq 1$, also that this last relation is the best possible and that no restriction theorem of any kind can hold for $f \in L^{p}\left(\mathbb{R}^{n+1}\right)$ when $\frac{1}{p} \leq \frac{n+2}{2 n+2}$ ([8, pp.388]). The cases $\frac{n+2}{2 n+2}<\frac{1}{p}<\frac{n+4}{2 n+4}$ are not completely solved. The best results for surfaces with non vanishing curvature like the paraboloid and the sphere are due to T. Tao [10]. Restriction theorems for the Fourier transform to homogeneous polynomial surfaces in \mathbb{R}^{3} are obtained in [4]. Also, in [1] the authors obtain sharp $L^{p}\left(\mathbb{R}^{n+l}\right)-L^{2}(\Sigma)$ estimates for certain homogeneous surfaces Σ of codimension l in \mathbb{R}^{n+l}.

In Section 2 we give some preliminary results.
In Section 3 we consider $\varphi\left(x_{1}, x_{2}\right)=A\left|x_{1}\right|^{a}+B\left|x_{2}\right|^{b}, A \neq 0, B \neq 0$. We describe completely, up to endpoints, the pairs $\left(\frac{1}{p}, \frac{1}{q}\right) \in E$ with $\frac{1}{p}>\frac{3}{4}$. A fundamental tool we use is Theorem 2.1 of [2].

In Section 4 we deal with polynomial functions φ. Under certain hypothesis about φ we can prove that if $\frac{3}{4}<\frac{1}{p} \leq 1$ and the pair $\left(\frac{1}{p}, \frac{1}{q}\right)$ satisfies some sharp conditions, then $\left(\frac{1}{p}, \frac{1}{q}\right) \in E$. Finally we obtain some $L^{\frac{4}{3}}-L^{q}$ estimates and also some sharp $L^{p}-L^{2}$ estimates.
,

Title Page
Contents

Page 4 of 24
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics

2. Preliminaries

We take φ to be a mixed homogeneous and smooth enough function that satisfies (1.1). If V is a measurable set in \mathbb{R}^{2}, we denote $\Sigma^{V}=\{(x, \varphi(x)): x \in V\}$ and σ^{V} as the associated surface measure. Also, for $f \in S\left(\mathbb{R}^{3}\right)$, we define $\mathcal{R}^{V} f: \Sigma^{V} \rightarrow \mathbb{C}$ by

$$
\left(\mathcal{R}^{V} f\right)(x, \varphi(x))=\widehat{f}(x, \varphi(x)) \quad x \in V
$$

we note that $\mathcal{R}^{B}=\mathcal{R}, \sigma^{B}=\sigma$ and $\Sigma^{B}=\Sigma$.
For $x=\left(x_{1}, x_{2}\right)$ letting $\|x\|=\left|x_{1}\right|^{a}+\left|x_{2}\right|^{b}$, we define

$$
A_{0}=\left\{x \in \mathbb{R}^{2}: \frac{1}{2} \leq\|x\| \leq 1\right\}
$$

and for $j \in \mathbb{N}$,

$$
A_{j}=2^{-j} \cdot A_{0}
$$

Thus $B \subseteq \bigcup_{j \in \mathbb{N} \cup\{0\}} A_{j}$. A standard homogeneity argument (see, e.g. [5]) gives, for $1 \leq p, q \leq \infty$,
(2.1) $\left\|\mathcal{R}^{A_{j}}\right\|_{L^{p}\left(\mathbb{R}^{3}\right), L^{q}\left(\Sigma^{A_{j}}\right)}=2^{-j \frac{a+b}{a b}\left(\frac{1}{q}-\frac{a+b+a b}{a+b}+\frac{1}{p} \frac{a+b+a b}{a+b}\right)}\left\|\mathcal{R}^{A_{0}}\right\|_{L^{p}\left(\mathbb{R}^{3}\right), L^{q}\left(\Sigma^{A_{0}}\right)}$.

From this we obtain the following remarks.
Remark 1. If $\left(\frac{1}{p}, \frac{1}{q}\right) \in E$ then $\frac{1}{q} \geq-\frac{a+b+a b}{a+b} \frac{1}{p}+\frac{a+b+a b}{a+b}$.
Remark 2. If $-\frac{a+b+a b}{a+b} \frac{1}{p}+\frac{a+b+a b}{a+b}<\frac{1}{q} \leq 1$ and

$$
\begin{equation*}
\left\|\mathcal{R}^{A_{0}}\right\|_{L^{p}\left(\mathbb{R}^{3}\right), L^{q}\left(\Sigma^{A_{0}}\right)}<\infty \tag{2.2}
\end{equation*}
$$

then $\left(\frac{1}{p}, \frac{1}{q}\right) \in E$.

Fourier Restriction

 EstimatesE. Ferreyra and M. Urciuolo vol. 10, iss. 2, art. 35, 2009

Title Page

Contents

Page 5 of 24
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

We will use a theorem due to Strichartz (see [9]), whose proof relies on the Stein complex interpolation theorem, which gives $L^{p}\left(\mathbb{R}^{3}\right)-L^{2}\left(\Sigma^{V}\right)$ estimates for the operator \mathcal{R}^{V} depending on the behavior at infinity of $\widehat{\sigma^{V}}$. In [4] we obtained information about the size of the constants. There we found the following:
Remark 3. If V is a measurable set in \mathbb{R}^{2} of positive measure and if

$$
\left|\widehat{\sigma^{V}}(\xi)\right| \leq A\left(1+\left|\xi_{3}\right|\right)^{-\tau}
$$

for some $\tau>0$ and for all $\xi=\left(\xi_{1}, \xi_{2}, \xi_{3}\right) \in \mathbb{R}^{3}$, then there exists a positive constant c_{τ} such that

$$
\left\|\mathcal{R}^{V}\right\|_{L^{p}\left(\mathbb{R}^{3}\right), L^{2}\left(\Sigma^{V}\right)} \leq c_{\tau} A^{\frac{1}{2(1+\tau)}}
$$

for $p=\frac{2+2 \tau}{2+\tau}$.
In [2] the authors obtain a result (Theorem 2.1, p.155) from which they also obtain the following consequence
Remark 4 ([2, Corollary 2.2]). Let I, J be two real intervals, and let

$$
M=\left\{\left(x_{1}, x_{2}, \psi\left(x_{1}, x_{2}\right)\right):\left(x_{1}, x_{2}\right) \in I \times J\right\}
$$

Fourier Restriction

 EstimatesE. Ferreyra and M. Urciuolo vol. 10, iss. 2, art. 35, 2009

Title Page
Contents

Page 6 of 24
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

Following the proof of Theorem 2.1 in [2] we can check that if in the last remark we take $J=\left[2^{-k}, 2^{-k+1}\right], k \in \mathbb{N}$ in the case that $\left|\frac{\partial^{2} \psi}{\partial x_{1}^{2}}\left(x_{1}, x_{2}\right)\right| \geq c>0$ uniformly on $I \times J$ with c independent of k, or $I=\left[2^{-k}, 2^{-k+1}\right], k \in \mathbb{N}$ in the other case, then we can replace (2.3) by

$$
\begin{equation*}
\left\|\left.\widehat{f}\right|_{M}\right\|_{L^{q}(M)} \leq c^{\prime} 2^{-k\left(\frac{1}{p}+\frac{1}{q}-1\right)}\|f\|_{L^{p}\left(\mathbb{R}^{3}\right)} \tag{2.4}
\end{equation*}
$$

with c^{\prime} independent of k.
E. Ferreyra and M. Urciuolo vol. 10, iss. 2, art. 35, 2009

Title Page
Contents
44

Page 7 of 24
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

3. The Cases $\varphi\left(x_{1}, x_{2}\right)=A\left|x_{1}\right|^{a}+B\left|x_{2}\right|^{b}$

In this cases we characterize, up to endpoints, the pairs $\left(\frac{1}{p}, \frac{1}{q}\right) \in E$ with $\frac{3}{4}<\frac{1}{p} \leq 1$. We also obtain some border segments. If either $A=0$ or $B=0, \varphi$ becomes homogeneous and these cases are treated in [4]. For the remainder situation we obtain the following
Theorem 3.1. Let $a, b, A, B \in \mathbb{R}$ with $2 \leq a \leq b, A \neq 0, B \neq 0$, let $\varphi\left(x_{1}, x_{2}\right)=$ $A\left|x_{1}\right|^{a}+B\left|x_{2}\right|^{b}$ and let E be the type set associated to φ. If $\frac{3}{4}<\frac{1}{p} \leq 1$ and $-\frac{a+b+a b}{a+b} \frac{1}{p}+\frac{a+b+a b}{a+b}<\frac{1}{q} \leq 1$ then $\left(\frac{1}{p}, \frac{1}{q}\right) \in E$.

Proof. Suppose $\frac{3}{4}<\frac{1}{p} \leq 1$ and $-\frac{a+b+a b}{a+b} \frac{1}{p}+\frac{a+b+a b}{a+b}<\frac{1}{q} \leq 1$. By Remark 2 it is enough to prove (2.2). Now, A_{0} is contained in the union of the rectangles $Q=$ $[-1,1] \times\left[\frac{1}{2}, 1\right], Q^{\prime}=\left[\frac{1}{2}, 1\right] \times[-1,1]$, and its symmetrics with respect to the x_{1} and x_{2} axes. Now we will study $\left\|\mathcal{R}^{Q}\right\|_{L^{p}\left(\mathbb{R}^{3}\right), L^{q}\left(\Sigma^{Q}\right)}$. We decompose $Q=\bigcup_{k \in N} Q_{k}$ with

$$
Q_{k}=\left(\left[-2^{-k+1},-2^{-k}\right] \cup\left[2^{-k}, 2^{-k+1}\right]\right) \times\left[\frac{1}{2}, 1\right] .
$$

Fourier Restriction

 EstimatesE. Ferreyra and M. Urciuolo vol. 10, iss. 2, art. 35, 2009

Title Page
Contents

$$
\left|\widehat{\sigma^{Q_{k}}}(\xi)\right| \leq A 2^{k \frac{a-2}{2}}\left(1+\left|\xi_{3}\right|\right)^{-1}
$$

and then Remark 3 implies

$$
\begin{equation*}
\left\|\mathcal{R}^{Q_{k}}\right\|_{L^{\frac{4}{3}\left(\mathbb{R}^{3}\right), L^{2}\left(\Sigma^{Q_{k}}\right)}} \leq c 2^{k \frac{a-2}{8}} \tag{3.1}
\end{equation*}
$$

J

Page 8 of 24
Go Back
Full Screen

Close

journal of inequalities in pure and applied mathematics
issn: 1443-575b

Also, since $\left|\frac{\partial^{2} \varphi}{\partial x_{2}^{2}}\left(x_{1}, x_{2}\right)\right| \geq c>0$ uniformly on Q_{k}, from (2.4) we obtain

$$
\left\|\mathcal{R}^{Q_{k}}\right\|_{L^{p}\left(\mathbb{R}^{3}\right), L^{q}\left(\Sigma^{Q_{k}}\right)} \leq c^{\prime} 2^{-k\left(\frac{1}{p}+\frac{1}{q}-1\right)}
$$

for $\frac{1}{q}=3\left(1-\frac{1}{p}\right)$ and $\frac{3}{4}<\frac{1}{p} \leq 1$. Applying the Riesz interpolation theorem and then performing the sum on $k \in \mathbb{N}$ we obtain

$$
\left\|\mathcal{R}^{Q}\right\|_{L^{p}\left(\mathbb{R}^{3}\right), L^{q}\left(\Sigma^{Q}\right)}<\infty
$$

for $\frac{2+3 a}{2+a}\left(1-\frac{1}{p}\right)<\frac{1}{q} \leq 1$ and $\frac{3}{4}<\frac{1}{p} \leq 1$. In a similar way we get that

$$
\left\|\mathcal{R}^{Q^{\prime}}\right\|_{L^{p}\left(\mathbb{R}^{3}\right), L^{q}\left(\Sigma^{Q^{\prime}}\right)}<\infty
$$

for $\frac{2+3 b}{2+b}\left(1-\frac{1}{p}\right)<\frac{1}{q} \leq 1$ and $\frac{3}{4}<\frac{1}{p} \leq 1$. The study for the symmetric rectangles is analogous. Thus

$$
\left\|\mathcal{R}^{A_{0}}\right\|_{L^{p}\left(\mathbb{R}^{3}\right), L^{q}\left(\Sigma^{A_{0}}\right)}<\infty
$$

for $\frac{3}{4}<\frac{1}{p} \leq 1$ and $-\frac{a+b+a b}{a+b} \frac{1}{p}+\frac{a+b+a b}{a+b}<\frac{1}{q} \leq 1$ and the theorem follows.

Remark 5.

i) If $\frac{b+2}{8}<\frac{1}{q} \leq 1$ then $\left(\frac{3}{4}, \frac{1}{q}\right) \in E$.
ii) The point $\left(\frac{a+b+2 a b}{2 a+2 b+2 a b}, \frac{1}{2}\right) \in E$.

Page 9 of 24
Go Back
Fourier Restriction Estimates
E. Ferreyra and M. Urciuolo vol. 10, iss. 2, art. 35, 2009

Title Page
Contents

Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

From (3.1) and the Hölder inequality we obtain that

$$
\left\|\mathcal{R}^{Q_{k}}\right\|_{L^{\frac{4}{3}}\left(\mathbb{R}^{3}\right), L^{q}\left(\Sigma^{Q_{k}}\right)} \leq c 2^{k\left(\frac{a-2}{8}-\frac{2-q}{2 q}\right)}
$$

for $\frac{1}{2} \leq \frac{1}{q} \leq 1$. Then if $\frac{a+2}{8}<\frac{1}{q} \leq 1$ we perform the sum over $k \in \mathbb{N}$ to get

$$
\left\|\mathcal{R}^{Q}\right\|_{L^{\frac{4}{3}}\left(\mathbb{R}^{3}\right), L^{q}\left(\Sigma^{Q}\right)}<\infty
$$

for these q 's. Analogously, if $\frac{b+2}{8}<\frac{1}{q} \leq 1$ we get

$$
\left\|\mathcal{R}^{Q^{\prime}}\right\|_{L^{\frac{4}{3}}\left(\mathbb{R}^{3}\right), L^{q}\left(\Sigma^{Q^{\prime}}\right)}<\infty
$$

thus since $a \leq b$, if $\frac{b+2}{8}<\frac{1}{q} \leq 1$,

$$
\left\|\mathcal{R}^{A_{0}}\right\|_{L^{\frac{4}{3}}\left(\mathbb{R}^{3}\right), L^{q}\left(\Sigma^{A_{0}}\right)}<\infty
$$

and i) follows from Remark 2.
Assertion $i i$) follows from Remark 3, since from Lemma 3 in [3] we have that

$$
|\widehat{\sigma}(\xi)| \leq c\left(1+\left|\xi_{3}\right|\right)^{-\frac{1}{a}-\frac{1}{b}} .
$$

Fourier Restriction Estimates
E. Ferreyra and M. Urciuolo vol. 10, iss. 2, art. 35, 2009

Title Page
Contents

Page 10 of 24
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

4. The Polynomial Cases

In this section we deal with mixed homogeneous polynomial functions φ satisfying (1.1). The following result is sharp (up to the endpoints) for $\frac{3}{4}<\frac{1}{p} \leq 1$, as a consequence of Remark 1.
Theorem 4.1. Let φ be a mixed homogeneous polynomial function satisfying (1.1). Suppose that the gaussian curvature of Σ does not vanish identically and that at each point of $\Sigma^{B-\{0\}}$ with vanishing curvature, at least one principal curvature is different from zero. If $(a, b) \neq(2,4), \frac{3}{4}<\frac{1}{p} \leq 1$ and $-\frac{a+b+a b}{a+b} \frac{1}{p}+\frac{a+b+a b}{a+b}<\frac{1}{q} \leq 1$ then $\left(\frac{1}{p}, \frac{1}{q}\right) \in E$.
Proof. We first study the operator $\mathcal{R}^{A_{0}}$. Let $\left(x_{1}^{0}, x_{2}^{0}\right) \in A_{0}$. If $\operatorname{Hess} \varphi\left(x_{1}^{0}, x_{2}^{0}\right) \neq 0$ there exists a neighborhood U of $\left(x_{1}^{0}, x_{2}^{0}\right)$ such that $\operatorname{Hess} \varphi\left(x_{1}, x_{2}\right) \neq 0$ for $\left(x_{1}, x_{2}\right) \in$ U. From the proposition in [8, pp. 386], it follows that

$$
\begin{equation*}
\left\|\mathcal{R}^{U}\right\|_{L^{p}\left(\mathbb{R}^{3}\right), L^{q}\left(\Sigma^{U}\right)}<\infty \tag{4.1}
\end{equation*}
$$

for $\frac{1}{q}=2\left(1-\frac{1}{p}\right)$ and $\frac{3}{4} \leq \frac{1}{p} \leq 1$. Suppose now that $\operatorname{Hess} \varphi\left(x_{1}^{0}, x_{2}^{0}\right)=0$ and that either $\frac{\partial^{2} \varphi}{\partial x_{1}^{2}}\left(x_{1}^{0}, x_{2}^{0}\right) \neq 0$ or $\frac{\partial^{2} \varphi}{\partial x_{2}^{2}}\left(x_{1}^{0}, x_{2}^{0}\right) \neq 0$. Then there exists a neighborhood $V=$ $I \times J$ of $\left(x_{1}^{0}, x_{2}^{0}\right)$ such that either $\left|\frac{\partial^{2} \varphi}{\partial x_{1}^{2}}\left(x_{1}, x_{2}\right)\right| \geq c>0$ or $\left|\frac{\partial^{2} \varphi}{\partial x_{2}^{2}}\left(x_{1}, x_{2}\right)\right| \geq c>0$ uniformly on V. So from Remark 4 we obtain that

$$
\begin{equation*}
\left\|\mathcal{R}^{V}\right\|_{L^{p}\left(\mathbb{R}^{3}\right), L^{q}\left(\Sigma^{V}\right)}<\infty \tag{4.2}
\end{equation*}
$$

for $\frac{1}{q}=3\left(1-\frac{1}{p}\right)$ and $\frac{3}{4}<\frac{1}{p} \leq 1$. From (4.1), (4.2) and Hölder's inequality, it follows that

$$
\begin{equation*}
\left\|\mathcal{R}^{A_{0}}\right\|_{L^{p}\left(\mathbb{R}^{3}\right), L^{q}\left(\Sigma^{A_{0}}\right)}<\infty \tag{4.3}
\end{equation*}
$$

Fourier Restriction

 EstimatesE. Ferreyra and M. Urciuolo vol. 10, iss. 2, art. 35, 2009

Title Page
Contents

Page 11 of 24
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
for $\frac{1}{q} \geq 3\left(1-\frac{1}{p}\right)$ and $\frac{3}{4}<\frac{1}{p} \leq 1$. So, if $\frac{a+b+a b}{a+b} \geq 3$, the theorem follows from Remark 2. The only cases left are $(a, b)=(3,4),(a, b)=(3,5),(a, b)=(4,5)$ and $(a, b)=(2, b), b>2$. If $(a, b)=(3,4)$ and φ has a monomial of the form $a_{i, j} x^{i} y^{j}$, with $a_{i j} \neq 0$, then $\frac{i}{3}+\frac{j}{4}=1$ so $4 i+3 j=12$ and so either $(i, j)=(0,4)$ or $(i, j)=(3,0)$. So $\varphi\left(x_{1}, x_{2}\right)=a_{3,0} x_{1}^{3}+a_{0,4} x_{2}^{4}$. The hypothesis about the derivatives of φ imply that $a_{3,0} \neq 0$ and $a_{0,4} \neq 0$ and the theorem follows using Theorem 3.1 in each quadrant. The cases $(a, b)=(3,5)$, or $(a, b)=(4,5)$ are completely analogous.

Now we deal with the cases $(a, b)=(2, b), b>2$. We note that

$$
\begin{equation*}
\varphi\left(x_{1}, x_{2}\right)=A x_{1}^{2}+B x_{1} x_{2}^{\frac{b}{2}}+C x_{2}^{b} \tag{4.4}
\end{equation*}
$$

where $B=0$ for b odd. The hypothesis about φ implies $A \neq 0$. For b odd, $\varphi\left(x_{1}, x_{2}\right)=A x_{1}^{2}+C x_{2}^{b}$ and since $C \neq 0$ (on the contrary $\operatorname{Hess} \varphi\left(x_{1}, x_{2}\right) \equiv 0$), the theorem follows using Theorem 3.1 as before. Now we consider b even and φ given by (4.4). If $B=0$ the theorem follows as above, so we suppose $B \neq 0$.

$$
\begin{align*}
\operatorname{Hess} \varphi & \left(x_{1}, x_{2}\right) \tag{4.5}\\
\qquad= & -\frac{x_{2}^{\frac{b}{2}-2}}{4}\left(\left(B^{2} b^{2}+8 A C b-8 A C b^{2}\right) x_{2}^{\frac{b}{2}}-2(b-2) A B b x_{1}\right) .
\end{align*}
$$

So if $\operatorname{Hess\varphi }\left(x_{1}^{0}, x_{2}^{0}\right)=0$ then either $x_{2}^{0}=0$ or

$$
\left(B^{2} b^{2}+8 A C b-8 A C b^{2}\right)\left(x_{2}^{0}\right)^{\frac{b}{2}}-2(b-2) A B b x_{1}^{0}=0
$$

In the first case we have $b>4$. We take a neighborhood $W_{1}=I \times\left[-2^{-k_{0}}, 2^{-k_{0}}\right] \subset$ $A_{0}, k_{0} \in \mathbb{N}$, of the point $\left(x_{1}^{0}, 0\right)$ such that Hess φ vanishes, on W_{1}, only along the x_{1} axes. For $k \in \mathbb{N}, k>k_{0}$, we take $U_{k}=I \times J_{k}$ where $J_{k}=\left[-2^{-k+1},-2^{-k}\right] \cup$
E. Ferreyra and M. Urciuolo vol. 10, iss. 2, art. 35, 2009

Title Page
Contents

Page 12 of 24
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
$\left[2^{-k}, 2^{-k+1}\right]$. So $W_{1}=\overline{\cup U_{k}}$. For $\left(x_{1}, x_{2}\right) \in U_{k}$, it follows from (4.5) that

$$
\left|\operatorname{Hess\varphi }\left(x_{1}, x_{2}\right)\right| \geq c 2^{-k\left(\frac{b}{2}-2\right)}
$$

so for $\xi=\left(\xi_{1}, \xi_{2}, \xi_{3}\right) \in \mathbb{R}^{3}$,

$$
\left|\widehat{\sigma^{U_{k}}}(\xi)\right| \leq c 2^{k \frac{b-4}{4}}\left(1+\left|\xi_{3}\right|\right)^{-1}
$$

and from Remark 3 we get

$$
\begin{equation*}
\left\|\mathcal{R}^{U_{k}}\right\|_{L^{\frac{4}{3}}\left(\mathbb{R}^{3}\right), L^{2}\left(\Sigma^{U_{k}}\right)} \leq c 2^{k \frac{b-4}{16}} . \tag{4.6}
\end{equation*}
$$

Also, since $\left|\frac{\partial^{2} \varphi}{\partial x_{1}^{2}}\left(x_{1}, x_{2}\right)\right| \geq c>0$ uniformly on U_{k}, as in (2.4) we obtain

$$
\begin{equation*}
\left\|\mathcal{R}^{U_{k}}\right\|_{L^{p}\left(\mathbb{R}^{3}\right), L^{q}\left(\Sigma^{U_{k}}\right)} \leq c 2^{-k\left(2-\frac{2}{p}\right)} \tag{4.7}
\end{equation*}
$$

for $\frac{3}{4}<\frac{1}{p} \leq 1$ and $\frac{1}{q}=3\left(1-\frac{1}{p}\right)$. From (4.6), (4.7) and the Riesz Thorin theorem we obtain

$$
\begin{equation*}
\left\|\mathcal{R}^{U_{k}}\right\|_{L^{p_{t}\left(\mathbb{R}^{3}\right), L^{q_{t}}\left(\Sigma^{U_{k}}\right)}} \leq c 2^{k\left(\frac{b-4}{16}-(1-t)\left(2-\frac{2}{p}\right)\right)} \tag{4.8}
\end{equation*}
$$

for $\frac{1}{q_{t}}=t \frac{1}{2}+(1-t) 3\left(1-\frac{1}{p}\right)$ and $\frac{1}{p_{t}}=t \frac{3}{4}+(1-t) \frac{1}{p}$.
A simple computation shows that if $\frac{1}{p}=\frac{3}{4}$ then the exponent in (4.8) is negative for $t<t_{0}=\frac{8}{4+b}$ and that

$$
\frac{1}{q_{t_{0}}}-\frac{2+3 b}{4(2+b)}<0
$$

Fourier Restriction Estimates
E. Ferreyra and M. Urciuolo vol. 10, iss. 2, art. 35, 2009

Title Page
Contents
\square
Page 13 of 24
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
so for $\frac{1}{p}>\frac{3}{4}$ and $t<t_{0}$, both near enough, the exponent is still negative and

$$
\frac{1}{q_{t}}-\frac{2+3 b}{2+b}\left(1-\frac{1}{p_{t}}\right)<0
$$

thus

$$
\begin{equation*}
\left\|\mathcal{R}^{W_{1}}\right\|_{L^{p}\left(\mathbb{R}^{3}\right), L^{q}\left(\Sigma^{W_{1}}\right)}<\infty \tag{4.9}
\end{equation*}
$$

for $\frac{3}{4}<\frac{1}{p}$ near enough and $\frac{1}{q}=\frac{2+3 b}{2+b}\left(1-\frac{1}{p}\right)$. Finally, if

$$
\left(B^{2} b^{2}+8 A C b-8 A C b^{2}\right)\left(x_{2}^{0}\right)^{\frac{b}{2}}-2(b-2) A B b x_{1}^{0}=0
$$

then we study the order of $\operatorname{Hess} \varphi\left(x_{1}, x_{2}^{0}\right)$ for $2^{-k-1} \leq\left|x_{1}-x_{1}^{0}\right| \leq 2^{-k}, k \in \mathbb{N}$.

$$
\begin{align*}
\left\lvert\, \frac{\left(x_{2}^{0}\right)^{\frac{b}{2}-2}}{4}\left(\left(B^{2} b^{2}+8 A C b-\right.\right.\right. & \left.\left.8 A C b^{2}\right)\left(x_{2}^{0}\right)^{\frac{b}{2}}-2(b-2) A B b x_{1}\right) \mid \tag{4.10}\\
& =\left|\frac{\left(x_{2}^{0}\right)^{\frac{b}{2}-2}}{2}(b-2) A B b\left(x_{1}-x_{1}^{0}\right)\right| \geq c 2^{-k}
\end{align*}
$$

We take the following neighborhood of $\left(x_{1}^{0}, x_{2}^{0}\right), W_{2}=\overline{\bigcup_{k \in \mathbb{N}} V_{k}}$, with

$$
V_{k}=\left\{\left(r^{\frac{1}{2}} x_{1}, r^{\frac{1}{b}} x_{2}^{0}\right): 2^{-k-1} \leq\left|x_{1}-x_{1}^{0}\right| \leq 2^{-k}, \frac{1}{2} \leq r \leq 2\right\} .
$$

From the homogeneity of φ and (4.10) we obtain

$$
\left|\operatorname{Hess\varphi }\left(r^{\frac{1}{2}} x_{1}, r^{\frac{1}{b}} x_{2}^{0}\right)\right|=r^{1-\frac{2}{b}}\left|\operatorname{Hess\varphi }\left(x_{1}, x_{2}^{0}\right)\right| \geq c 2^{-k},
$$

Fourier Restriction Estimates
E. Ferreyra and M. Urciuolo vol. 10, iss. 2, art. 35, 2009

Title Page
Contents
\square
Page 14 of 24
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
then from Proposition 6 in [8, p. 344], we get for $\xi=\left(\xi_{1}, \xi_{2}, \xi_{3}\right) \in \mathbb{R}^{3}$

$$
\left|\widehat{\sigma^{V_{k}}}(\xi)\right| \leq c 2^{\frac{k}{2}}\left(1+\left|\xi_{3}\right|\right)^{-1}
$$

so from Remark 3

$$
\left\|\mathcal{R}^{V_{k}}\right\|_{L^{\frac{4}{3}}\left(\mathbb{R}^{3}\right), L^{2}\left(\Sigma^{V_{k}}\right)} \leq c 2^{\frac{k}{8}}
$$

and by Hölder's inequality, for $q<2$ we have

$$
\left\|\mathcal{R}^{V_{k}}\right\|_{L^{\frac{4}{3}}\left(\mathbb{R}^{3}\right), L^{q}\left(\Sigma^{V_{k}}\right)} \leq c 2^{k\left(\frac{1}{8}-\frac{2-q}{2 q}\right)} .
$$

This exponent is negative for $\frac{1}{q}>\frac{5}{8}$ and so we sum on k to obtain

$$
\begin{equation*}
\left\|\mathcal{R}^{W_{2}}\right\|_{L^{\frac{4}{3}}\left(\mathbb{R}^{3}\right), L^{q}\left(\Sigma^{W_{2}}\right)}<\infty \tag{4.11}
\end{equation*}
$$

for $\frac{5}{8}<\frac{1}{q} \leq 1$. Since $b \geq 6, \frac{5}{8} \leq \frac{2+3 b}{4(2+b)}$ and then from (4.1), (4.9) and (4.11), we get

$$
\left\|\mathcal{R}^{A_{0}}\right\|_{L^{p}\left(\mathbb{R}^{3}\right), L^{q}\left(\Sigma^{A_{0}}\right)}<\infty
$$

for $\frac{3}{4}<\frac{1}{p}$ near enough and $\frac{1}{q}>\frac{2+3 b}{2+b}\left(1-\frac{1}{p}\right)$ and the theorem follows from standard considerations involving Hölder's inequality, the Riesz Thorin theorem and from Remark 2.

Remark 6. In the case $(a, b)=(2, b), b>2$, we have (4.11). In a similar way we get, from (4.6) and Hölder's inequality,

$$
\left\|\mathcal{R}^{W_{1}}\right\|_{L^{\frac{4}{3}}\left(\mathbb{R}^{3}\right), L^{q}\left(\Sigma^{W_{1}}\right)}<\infty
$$

Fourier Restriction Estimates
E. Ferreyra and M. Urciuolo vol. 10, iss. 2, art. 35, 2009

Title Page
Contents

Page 15 of 24
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
for $\frac{b+4}{16}<\frac{1}{q} \leq 1$. So

$$
\|\mathcal{R}\|_{L^{\frac{1}{3}}\left(\mathbb{R}^{3}\right), L^{q}(\Sigma)}<\infty
$$

for max $\left\{\frac{5}{8}, \frac{b+4}{16}, \frac{2+3 b}{8+4 b}\right\}<\frac{1}{q} \leq 1$. We observe that if $b=6$ then $\frac{5}{8}=\frac{b+4}{16}=\frac{2+3 b}{8+4 b}$, thus from Remark 1 we see that, in this case, this condition for $\frac{1}{q}$ is sharp, up to the end point.

Now we will show some examples of functions φ not satisfying the hypothesis of the previous theorem, for which we obtain that the portion of the type set E in the region $\frac{3}{4}<\frac{1}{p} \leq 1$ is smaller than the region

$$
E_{a, b}=\left\{\left(\frac{1}{p}, \frac{1}{q}\right): \frac{3}{4}<\frac{1}{p} \leq 1, \frac{a+b+a b}{a+b}\left(1-\frac{1}{p}\right)<\frac{1}{q} \leq 1\right\}
$$

stated in Theorem 4.1.
We consider $\varphi\left(x_{1}, x_{2}\right)=x_{1}^{2}$, which is a mixed homogeneous function satisfying (1.1) for any $b>2$. In this case $\varphi_{x_{1} x_{1}} \equiv 2$ but Hess $\varphi \equiv 0$. From Remark 2.8 in [4] and Remark 4 we obtain that the corresponding type set is the region $\frac{1}{q} \geq 3\left(1-\frac{1}{p}\right)$, $\frac{3}{4}<\frac{1}{p} \leq 1$ which is smaller than the region $E_{a, b}$.

We consider now a mixed homogeneous function φ satisfying (1.1), of the form

$$
\begin{equation*}
\varphi\left(x_{1}, x_{2}\right)=x_{2}^{l} P\left(x_{1}, x_{2}\right) \tag{4.12}
\end{equation*}
$$

with $P\left(x_{1}, 0\right) \neq 0$ for $x_{1} \neq 0$. Since $a<b$ it can be checked that $l \geq 2$ and that for $l>2, \varphi_{x_{1} x_{1}}\left(x_{1}, 0\right)=\varphi_{x_{2} x_{2}}\left(x_{1}, 0\right)=0$. Moreover

$$
\begin{align*}
\operatorname{Hess} \varphi=x_{2}^{2 l-2}\left(P _ { x _ { 1 } x _ { 1 } } \left(l(l-1) P+2 l x_{2} P_{x_{2}}\right.\right. & \left.+x_{2}^{2} P_{x_{2} x_{2}}\right) \tag{4.13}\\
& \left.-\left(l P_{x_{1}}+x_{2} P_{x_{1} x_{2}}\right)^{2}\right)
\end{align*}
$$

which vanishes at $\left(x_{1}, 0\right)$. A computation shows that the second factor is different from zero at a point of the form $\left(x_{1}, 0\right)$. So Hess φ does not vanish identically.

U

Title Page
Contents

Page 16 of 24
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

Proposition 4.2. Let φ be a mixed homogeneous function satisfying (1.1) and (4.12). If $\left(\frac{1}{p}, \frac{1}{q}\right) \in E$ then $\frac{1}{q} \geq(l+1)\left(1-\frac{1}{p}\right)$.
Proof. Let $f \varepsilon=\chi_{K_{\varepsilon}}$ the characteristic function of the set $K_{\varepsilon}=\left[0, \frac{1}{3}\right] \times\left[0, \frac{\varepsilon^{-1}}{3}\right] \times$ $\left[0, \frac{\varepsilon^{-l}}{3 M}\right]$, with $M=\max _{\left(x_{1}, x_{2}\right) \in[0,1] \times[0,1]} P\left(x_{1}, x_{2}\right)$. If $\left(\frac{1}{p}, \frac{1}{q}\right) \in E$ then

$$
\begin{equation*}
\left\|\mathcal{R} f_{\varepsilon}\right\|_{L^{q}(\Sigma)} \leq c\left\|f_{\varepsilon}\right\|_{L^{p}\left(\mathbb{R}^{3}\right)}=c \varepsilon^{-\frac{1+l}{p}} . \tag{4.14}
\end{equation*}
$$

By the other side,

$$
\left\|\mathcal{R} f_{\varepsilon}\right\|_{L^{q}(\Sigma)} \geq\left(\int_{W \varepsilon}\left|\widehat{f}_{\varepsilon}\left(x_{1}, x_{2}, \varphi\left(x_{1}, x_{2}\right)\right)\right|^{q} d x_{1} d x_{2}\right)^{\frac{1}{q}}
$$

where $W_{\varepsilon}=\left[\frac{1}{2}, 1\right] \times[0, \varepsilon]$. Now, for $\left(x_{1}, x_{2}\right) \in W_{\varepsilon}$ and $\left(y_{1}, y_{2}, y_{3}\right) \in K_{\varepsilon}$,

$$
\left|x_{1} y_{1}+x_{2} y_{2}+\varphi\left(x_{1}, x_{2}\right) y_{3}\right| \leq 1
$$

so

$$
\begin{aligned}
& \mid \widehat{f}_{\varepsilon}\left(x_{1}, x_{2},\right. \\
& \quad=\mid \int_{K_{\varepsilon}} e^{\left.-i\left(x_{1}, x_{2}\right)\right) \mid} \\
& \quad \geq \int_{K_{\varepsilon}} \cos \left(x_{1} y_{1}+x_{2} y_{2}+\varphi\left(x_{1}, x_{2}\right) y_{3}\right) d y_{1} d y_{2} d y_{3} \mid \\
& \left.\left.x_{1}, x_{2}\right) y_{3}\right) d y_{1} d y_{2} d y_{3} \geq c \varepsilon^{-1-l}
\end{aligned}
$$

Thus

$$
\begin{equation*}
\left\|\mathcal{R} f_{\varepsilon}\right\|_{L^{q}(\Sigma)} \geq c \varepsilon^{-1-l+\frac{1}{q}} \tag{4.15}
\end{equation*}
$$

The proposition follows from (4.14) and (4.15).

Fourier Restriction Estimates
E. Ferreyra and M. Urciuolo vol. 10, iss. 2, art. 35, 2009

Title Page
Contents

Page 17 of 24

Go Back

Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

We note that in the case that $(a+b) l>a b$ (for example $\varphi\left(x_{1}, x_{2}\right)=x_{2}^{4}\left(x_{1}^{2}+x_{2}^{4}\right)$) the portion of the type set corresponding to $\frac{3}{4}<\frac{1}{p} \leq 1$ will be smaller than the region $E_{a, b}$.

Also, $\varphi\left(x_{1}, x_{2}\right)=x_{2}^{2}\left(x_{1}+x_{2}^{2}\right)$ is an example where $a=2, b=4, \operatorname{Hess} \varphi\left(x_{1}, x_{2}\right)$ $=-4 x_{2}^{2}$ and if $x_{2}=0$ and $x_{1} \neq 0, \varphi_{x_{2} x_{2}}\left(x_{1}, x_{2}\right)=2 x_{1} \neq 0$. Again, since $12=(a+b) l>a b=8$, we get that the portion of the type set corresponding to $\frac{3}{4}<\frac{1}{p} \leq 1$ will be smaller than the region $E_{a, b}$.
Proposition 4.3. Let φ be a mixed homogeneous function satisfying (1.1) and (4.12) with $l \geq \frac{b}{2}$. If $\frac{3}{4} \leq \frac{1}{p} \leq 1$ and $\frac{1}{q}>(l+1)\left(1-\frac{1}{p}\right)$, then

$$
\left\|\mathcal{R}^{A_{0}}\right\|_{L^{p}\left(\mathbb{R}^{3}\right), L^{q}\left(\Sigma^{A_{0}}\right)} \leq c
$$

Proof. Let $\left(x_{1}^{0}, x_{2}^{0}\right) \in A_{0}$, if $\operatorname{Hess} \varphi\left(x_{1}^{0}, x_{2}^{0}\right) \neq 0$, as in the proof of Theorem 4.1 we find a neighborhood U of $\left(x_{1}^{0}, x_{2}^{0}\right)$ such that (4.1) holds. If $\operatorname{Hess} \varphi\left(x_{1}^{0}, x_{2}^{0}\right)=0$, by (4.13), either $x_{2}^{0}=0$ or the polynomial Q given by $P_{x_{1} x_{1}}\left(l(l-1) P+2 l x_{2} P_{x_{2}}\right.$ $\left.+x_{2}^{2} P_{x_{2} x_{2}}\right)-\left(l P_{x_{1}}+x_{2} P_{x_{1} x_{2}}\right)^{2}$ vanishes at $\left(x_{1}^{0}, x_{2}^{0}\right)$. In the first case, using the fact that $P\left(x_{1}, 0\right) \neq 0$ for $x_{1} \neq 0$, we get that

$$
\left(P_{x_{1} x_{1}} l(l-1) P-l^{2} P_{x_{1}}^{2}\right)\left(x_{1}^{0}, 0\right) \neq 0
$$

We take a neighborhood W_{1} of the point $\left(x_{1}^{0}, 0\right)$ and U_{k} as in the proof of Theorem 4.1. So for $\left(x_{1}, x_{2}\right) \in U_{k}$,

$$
\left|H e s s \varphi\left(x_{1}, x_{2}\right)\right| \geq c 2^{-k(2 l-2)}
$$

and so

$$
\left|\widehat{\sigma^{U_{k}}}\left(\xi_{1}, \xi_{2}, \xi_{3}\right)\right| \leq \frac{2^{k(l-1)}}{1+\left|\xi_{3}\right|}
$$

Fourier Restriction

 EstimatesE. Ferreyra and M. Urciuolo vol. 10, iss. 2, art. 35, 2009

Title Page
Contents

Page 18 of 24
Go Back

Full Screen

Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

By the other side,

$$
\left|\widehat{\sigma^{U_{k}}}\left(\xi_{1}, \xi_{2}, \xi_{3}\right)\right| \leq 2^{-k}
$$

so for $0 \leq \tau \leq 1$,

$$
\left|\widehat{\sigma^{U_{k}}}\left(\xi_{1}, \xi_{2}, \xi_{3}\right)\right| \leq \frac{2^{k(\tau l-1)}}{\left(1+\left|\xi_{3}\right|\right)^{\tau}}
$$

and by Remark 3

$$
\left\|\mathcal{R}^{U_{k}}\right\|_{L^{p}\left(\mathbb{R}^{3}\right), L^{2}\left(\Sigma^{U_{k}}\right)} \leq c_{\tau} 2^{\frac{k(\tau l-1)}{2(1+\tau)}}
$$

for $p=\frac{2(1+\tau)}{2+\tau}$ and so Hölder's inequality implies, for $1 \leq q<2$,

$$
\left\|\mathcal{R}^{U_{k}}\right\|_{L^{p}\left(\mathbb{R}^{3}\right), L^{q}\left(\Sigma^{U_{k}}\right)} \leq c_{\tau} 2^{k\left(\frac{\tau l-1}{2(1+\tau)}-\frac{2-q}{2 q}\right)}
$$

and a computation shows that this exponent is negative for $\frac{1}{q}>(l+1)\left(1-\frac{1}{p}\right)$. Thus

$$
\begin{equation*}
\left\|\mathcal{R}^{W_{1}}\right\|_{L^{p}\left(\mathbb{R}^{3}\right), L^{q}\left(\Sigma^{W_{1}}\right)}<\infty \tag{4.16}
\end{equation*}
$$

for $\frac{3}{4} \leq \frac{1}{p} \leq 1$ and $(l+1)\left(1-\frac{1}{p}\right)<\frac{1}{q} \leq 1$. Now we suppose $Q\left(x_{1}^{0}, x_{2}^{0}\right)=0$. We observe that

$$
\operatorname{deg} Q \leq 2 \operatorname{deg} P-2 \leq 2(b-l)-2 \leq 2 l-2
$$

and so $\operatorname{Hess} \varphi\left(x_{1}, x_{2}^{0}\right)$ vanishes at x_{1}^{0} with order at most $2 l-2$. Then defining W_{2} and V_{k} as in the proof of Theorem 4.1, we have

$$
\left|\operatorname{Hess\varphi }\left(x_{1}, x_{2}^{0}\right)\right| \geq 2^{-k(2 l-2)}
$$

Fourier Restriction Estimates
E. Ferreyra and M. Urciuolo vol. 10, iss. 2, art. 35, 2009

Title Page
Contents

Page 19 of 24
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
and as in the previous case we obtain

$$
\begin{equation*}
\left\|\mathcal{R}^{W_{2}}\right\|_{L^{p}\left(\mathbb{R}^{3}\right), L^{q}\left(\Sigma^{W_{2}}\right)}<\infty \tag{4.17}
\end{equation*}
$$

for $\frac{3}{4} \leq \frac{1}{p} \leq 1$ and $\frac{1}{q}>(l+1)\left(1-\frac{1}{p}\right)$. The proposition follows from (4.16), (4.17) and (4.1).

From Proposition 4.3 and Remark 2 we obtain the following result, sharp up to the end points, for $\frac{3}{4} \leq \frac{1}{p} \leq 1$.
Theorem 4.4. Let φ be a mixed homogeneous function satisfying (1.1) and (4.12) with $l \geq \frac{b}{2}$. If $m=\max \left\{l+1, \frac{a+b+a b}{a+b}\right\}, \frac{3}{4} \leq \frac{1}{p} \leq 1$ and $\frac{1}{q}>m\left(1-\frac{1}{p}\right)$, then $\left(\frac{1}{p}, \frac{1}{q}\right) \in E$.

4.1. Sharp $L^{p}-L^{2}$ Estimates

In [4] we obtain sharp $L^{p}-L^{2}$ estimates for the restriction of the Fourier transform to homogeneous polynomial surfaces in \mathbb{R}^{3}. The principal tools we used there were two Littlewood Paley decompositions. Adapting this proof to the setting of non isotropic dilations we obtain the following results.
Lemma 4.5. Let $\frac{a+b+2 a b}{2 a+2 b+2 a b} \leq \frac{1}{p} \leq 1$. If

Fourier Restriction

 EstimatesE. Ferreyra and M. Urciuolo vol. 10, iss. 2, art. 35, 2009

Title Page
Contents

$\mathbf{4 4}$	
$\mathbf{4}$	
Page 20 of 24	
Go Back	
Full Screen	
Close	

then $\left(\frac{1}{p}, \frac{1}{2}\right) \in E$.
Proof. From (2.1), the lemma follows from a process analogous to the proof of Lemma 4.3 in [4].

$$
\left\|\mathcal{R}^{A_{0}}\right\|_{L^{p}\left(\mathbb{R}^{3}\right), L^{2}\left(\Sigma^{A_{0}}\right)}<\infty
$$

journal of inequalities in pure and applied mathematics
issn: 1443-575b

Theorem 4.6.

i) If φ is a mixed homogeneous polynomial function satisfying the hypothesis of Theorem 4.1 then $\left(\frac{a+b+2 a b}{2 a+2 b+2 a b}, \frac{1}{2}\right) \in E$.
ii) Let $\frac{1}{p_{0}}=\max \left\{\frac{a+b+2 a b}{2 a+2 b+2 a b}, \frac{2 l+1}{2 l+2}\right\}$. If φ is a mixed homogeneous polynomial function satisfying the hypothesis of Theorem 4.4 then $\left(\frac{1}{p_{0}}, \frac{1}{2}\right) \in E$.
Proof. i) If $\left.\frac{a+b+a b}{a+b} \geq 3, i\right)$ follows from (4.3) and Lemma 4.5. The cases $(a, b)=$ $(3,4),(a, b)=(3,5)$ and $(a, b)=(4,5)$ are solved in Remark 5, part $i i)$. The cases $(a, b)=(2, b)$ with b odd or $B=0$ are also included in Remark 5, part $i i)$. For the remainder cases $(2, b)$, we observe that, if $b>6$, from the proof of Theorem 4.1 we obtain

$$
\begin{equation*}
\left\|\mathcal{R}^{A_{0}}\right\|_{L^{p}\left(\mathbb{R}^{3}\right), L^{2}\left(\Sigma^{A_{0}}\right)}<\infty, \tag{4.18}
\end{equation*}
$$

for $\frac{1}{p}=\frac{a+b+2 a b}{2 a+2 b+2 a b}$, so i) follows from Lemma 4.5. For $b=6$, as before we get

$$
\left\|\mathcal{R}^{W_{1}}\right\|_{L^{p}\left(\mathbb{R}^{3}\right), L^{2}\left(\Sigma^{W_{1}}\right)}<\infty
$$

and

$$
\left\|\mathcal{R}^{V_{k}}\right\|_{L^{p}\left(\mathbb{R}^{3}\right), L^{2}\left(\Sigma^{V_{k}}\right)}<\infty
$$

for $k \in \mathbb{N}, \frac{1}{p}=\frac{a+b+2 a b}{2 a+2 b+2 a b}$. In a similar way to Lemma 4.3 of [4], we use a unidimensional Littlewood Paley decomposition to obtain

$$
\left\|\mathcal{R}^{W_{2}}\right\|_{L^{p}\left(\mathbb{R}^{3}\right), L^{2}\left(\Sigma^{W_{2}}\right)}<\infty
$$

and then we have (4.18) for $\frac{1}{p}=\frac{a+b+2 a b}{2 a+2 b+2 a b}$. So i) follows from Lemma 4.5.

Fourier Restriction

 EstimatesE. Ferreyra and M. Urciuolo vol. 10, iss. 2, art. 35, 2009

Title Page
Contents

Page 21 of 24
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
ii) From the proof of Proposition 4.3, we use a uni-dimensional Littlewood Paley decomposition to obtain (4.18) for $\frac{1}{p}=\max \left\{\frac{a+b+2 a b}{2 a+2 b+2 a b}, \frac{2 l+1}{2 l+2}\right\}$, and $i i$) follows from Lemma 4.5.

Remark 7. In [7] the authors obtain sharp estimates for the Fourier transform of measures σ associated to surfaces Σ like ours, when φ is a polynomial function satisfiyng (1.1) and the condition that φ and Hess φ do not vanish simultaneously on $B-\{(0,0)\}$. In these cases, part $i)$ of the above theorem follows from Remark 3. We observe that our hypotheses are less restrictive, for example $\varphi\left(x_{1}, x_{2}\right)=x_{1}^{4} x_{2}^{2}+x_{2}^{10}$ satisfies the hypothesis of part i) of the above theorem but φ and $\operatorname{Hess} \varphi$ vanish at any (x_{1}, x_{2}) with $x_{2}=0$.

Fourier Restriction Estimates
E. Ferreyra and M. Urciuolo vol. 10, iss. 2, art. 35, 2009

Title Page
Contents

$\mathbf{4}$	
$\mathbf{4}$	
Page 22 of 24	
Go Back	
Full Screen	
Close	

journal of inequalities in pure and applied mathematics
issn: 1443-575b

References

[1] L. DE CARLY AND A. IOSEVICH, Some sharp restriction theorems for homogeneous manifolds, The Journal of Fourier Analysis and Applications, 4(1) (1998), 105-128.
[2] S.W. DRURY and K. GUO, Some remarks on the restriction of the Fourier transform to surfaces, Math. Proc. Camb. Phil. Soc., 113 (1993), 153-159.
[3] E. FERREYRA, T. GODOY and M. URCIUOLO, $L^{p}-L^{q}$ estimates for convolution operators with n-dimensional singular measures, The Journal of Fourier Analysis and Applications, 3(4) (1997), 475-484.
[4] E. FERREYRA, T. GODOY and M. URCIUOLO, Restriction theorems for the Fourier transform to homogeneous polynomial surfaces in \mathbb{R}^{3}, Studia Math., 160(3) (2004), 249-265.
[5] E. FERREYRA AND M. URCIUOLO, Restriction theorems for anisotropically homogeneous hypersurfaces of \mathbb{R}^{n+1}, Georgian Math. Journal, 15(4) (2008), 643-651.
[6] A. GREENLEAF, Principal curvature in harmonic analysis, Indiana U. Math. J., 30 (1981), 519-537.
[7] A. IOSEVICH AND E. SAWYER, Oscilatory integrals and maximal averages over homogeneous surfaces, Duke Math. J., 82(1) (1996), 103-141.
[8] E.M. STEIN, Harmonic Analysis, Real - Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton University Press, Princeton New Jersey (1993).
[9] R.S. STRICHARTZ, Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations, Duke Math. J., 44 (1977), 705-713.

Fourier Restriction Estimates
E. Ferreyra and M. Urciuolo vol. 10, iss. 2, art. 35, 2009

Title Page
Contents

Page 23 of 24
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
[10] T. TAO, A sharp bilinear restriction estimate on paraboloids. GAFA, Geom. and Funct. Anal., 13 (2003), 1359-1384.
[11] T. TAO, Some recent progress on the restriction conjecture. Fourier analysis and convexity, Appl. Numer. Harmon. Anal., Birkhaüser Boston, Boston MA (2004), 217-243.
[12] P. TOMAS, A restriction theorem for the Fourier transform, Bull. Amer. Math. Soc., 81 (1975), 477-478.

Fourier Restriction Estimates
E. Ferreyra and M. Urciuolo
vol. 10, iss. 2, art. 35, 2009

Title Page
Contents

Page 24 of 24
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

