FOURIER RESTRICTION ESTIMATES TO MIXED HOMOGENEOUS SURFACES

E. FERREYRA AND M. URCIUOLO

	 FAMAF - CIEM (Universidad Nacional de Córdoba - Conicet). Medina Allende s/n, Ciudad Universitaria, 5000 Córdoba. EMail: eferrey@mate.uncor.edu urciuolo@gmail.com 		Estimates E. Ferreyra and M. Urciuolo vol. 10, iss. 2, art. 35, 2009		
Received:	17 September, 2008		Title F	⊃age	
Accepted:	13 February, 2009		Contents		
Communicated by:	L. Pick		44	••	
2000 AMS Sub. Class.:	Primary 42B10, 26D10.				
Key words:	Restriction theorems, Fourier transform.		•	►	
Abstract:	Let a, b be real numbers such that $2 \leq a < b$, and let $\varphi : \mathbb{R}^2 \to \mathbb{R}$ a mixed homogeneous function. We consider polynomial functions φ and also functions of the type $\varphi(x_1, x_2) = A x_1 ^a + B x_2 ^b$. Let $\Sigma = \{(x, \varphi(x)) : x \in B\}$ with the Lebesgue induced measure. For $f \in S(\mathbb{R}^3)$ and $x \in B$, let $(\mathcal{R}f)(x,\varphi(x)) = \widehat{f}(x,\varphi(x))$, where \widehat{f} denotes the usual Fourier transform. For a large class of functions φ and for $1 \leq p < \frac{4}{3}$ we characterize, up to endpoints, the pairs (p,q) such that \mathcal{R} is a bounded operator from $L^p(\mathbb{R}^3)$ on $L^q(\Sigma)$. We also give some sharp $L^p \to L^2$ estimates.	Page 1 of 24		of 24	
			Go Back		
			Full Screen		
		Close			
		01030			
Acknowledgements:	Research partially supported by Secyt-UNC, Agencia Nacional de Promoción Científica y Tecnológica. The authors wish to thank Professor Fulvio Ricci for fruitful conversations about this subject.	in m	journal of inequalities in pure and applied mathematics issn: 1443-5756		

Fourier Restriction

Contents

1	Introduction
2	Preliminaries
3	The Cases $\varphi(x_1, x_2) = A x_1 ^a + B x_2 ^b$
4	The Polynomial Cases 4.1 Sharp $L^p - L^2$ Estimates

3

5

8

11

20

journal of inequalities in pure and applied mathematics

1. Introduction

Let a, b be real numbers such that $2 \le a < b$, let $\varphi : \mathbb{R}^2 \to \mathbb{R}$ be a mixed homogeneous function of degree one with respect to the non isotropic dilations $r \cdot (x_1, x_2) = \left(r^{\frac{1}{a}}x_1, r^{\frac{1}{b}}x_2\right)$, i.e.

(1.1)
$$\varphi\left(r^{\frac{1}{a}}x_1, r^{\frac{1}{b}}x_2\right) = r\varphi\left(x_1, x_2\right), \quad r > 0.$$

We also suppose φ to be smooth enough. We denote by B the closed unit ball of $\mathbb{R}^2,$ by

 $\Sigma = \left\{ \left(x,\varphi \left(x\right) \right) : x\in B\right\}$

and by σ the induced Lebesgue measure. For $f\in S\left(\mathbb{R}^3\right),$ let $\mathcal{R}f:\Sigma\to\mathbb{C}$ be defined by

(1.2)
$$(\mathcal{R}f)(x,\varphi(x)) = \widehat{f}(x,\varphi(x)), \quad x \in B$$

where \hat{f} denotes the usual Fourier transform of f. We denote by E the type set associated to \mathcal{R} , given by

$$E = \left\{ \left(\frac{1}{p}, \frac{1}{q}\right) \in [0, 1] \times [0, 1] : \|\mathcal{R}\|_{L^{p}(\mathbb{R}^{3}), L^{q}(\Sigma)} < \infty \right\}.$$

Our aim in this paper is to obtain as much information as possible about the set E, for certain surfaces Σ of the type above described.

In the general *n*-dimensional case, the $L^p(\mathbb{R}^{n+1})-L^q(\Sigma)$ boundedness properties of the restriction operator \mathcal{R} have been studied by different authors. A very interesting survey about recent progress in this research area can be found in [11]. The $L^p(\mathbb{R}^{n+1}) - L^2(\Sigma)$ restriction theorems for the sphere were proved by E. Stein in

Estimates E. Ferreyra and M. Urciuolo vol. 10, iss. 2, art. 35, 2009 **Title Page** Contents 44 ◀ Page 3 of 24 Go Back Full Screen Close

journal of inequalities in pure and applied mathematics issn: 1443-5756

1967, for $\frac{3n+4}{4n+4} < \frac{1}{p} \leq 1$; for $\frac{n+4}{2n+4} < \frac{1}{p} \leq 1$ by P. Tomas in [12] and then in the same year by Stein for $\frac{n+4}{2n+4} \leq \frac{1}{p} \leq 1$. The last argument has been used in several related contexts by R. Strichartz in [9] and by A. Greenleaf in [6]. This method provides a general tool to obtain, from suitable estimates for $\hat{\sigma}$, $L^p(\mathbb{R}^{n+1}) - L^2(\Sigma)$ estimates for \mathcal{R} . Moreover, a general theorem, due to Stein, holds for smooth enough hypersurfaces with never vanishing Gaussian curvature ([8], pp.386). There it is shown that in this case, $\left(\frac{1}{p}, \frac{1}{q}\right) \in E$ if $\frac{n+4}{2n+4} \leq \frac{1}{p} \leq 1$ and $-\frac{n+2}{n}\frac{1}{p} + \frac{n+2}{n} \leq \frac{1}{q} \leq 1$, also that this last relation is the best possible and that no restriction theorem of any kind can hold for $f \in L^p(\mathbb{R}^{n+1})$ when $\frac{1}{p} \leq \frac{n+2}{2n+2}$ ([8, pp.388]). The cases $\frac{n+2}{2n+2} < \frac{1}{p} < \frac{n+4}{2n+4}$ are not completely solved. The best results for surfaces with non vanishing curvature like the paraboloid and the sphere are due to T. Tao [10]. Restriction theorems for the Fourier transform to homogeneous polynomial surfaces in \mathbb{R}^3 are obtained in [4]. Also, in [1] the authors obtain sharp $L^p(\mathbb{R}^{n+l}) - L^2(\Sigma)$ estimates for certain homogeneous surfaces Σ of codimension l in \mathbb{R}^{n+l} .

In Section 2 we give some preliminary results.

In Section 3 we consider $\varphi(x_1, x_2) = A |x_1|^a + B |x_2|^b$, $A \neq 0, B \neq 0$. We describe completely, up to endpoints, the pairs $\left(\frac{1}{p}, \frac{1}{q}\right) \in E$ with $\frac{1}{p} > \frac{3}{4}$. A fundamental tool we use is Theorem 2.1 of [2].

In Section 4 we deal with polynomial functions φ . Under certain hypothesis about φ we can prove that if $\frac{3}{4} < \frac{1}{p} \le 1$ and the pair $\left(\frac{1}{p}, \frac{1}{q}\right)$ satisfies some sharp conditions, then $\left(\frac{1}{p}, \frac{1}{q}\right) \in E$. Finally we obtain some $L^{\frac{4}{3}} - L^q$ estimates and also some sharp $L^p - L^2$ estimates.

journal of inequalities in pure and applied mathematics

2. Preliminaries

We take φ to be a mixed homogeneous and smooth enough function that satisfies (1.1). If V is a measurable set in \mathbb{R}^2 , we denote $\Sigma^V = \{(x, \varphi(x)) : x \in V\}$ and σ^V as the associated surface measure. Also, for $f \in S(\mathbb{R}^3)$, we define $\mathcal{R}^V f : \Sigma^V \to \mathbb{C}$ by

$$\left(\mathcal{R}^{V}f\right)\left(x,\varphi\left(x\right)\right) = \widehat{f}\left(x,\varphi\left(x\right)\right) \qquad x \in V;$$

we note that $\mathcal{R}^B = \mathcal{R}$, $\sigma^B = \sigma$ and $\Sigma^B = \Sigma$. For $x = (x_1, x_2)$ letting $||x|| = |x_1|^a + |x_2|^b$, we define

$$A_0 = \left\{ x \in \mathbb{R}^2 : \frac{1}{2} \le ||x|| \le 1 \right\}$$

and for $j \in \mathbb{N}$,

 $A_j = 2^{-j} \cdot A_0.$

Thus $B \subseteq \bigcup_{j \in \mathbb{N} \cup \{0\}} \overline{A_j}$. A standard homogeneity argument (see, e.g. [5]) gives, for $1 \leq p, q \leq \infty$,

(2.1)
$$\left\| \mathcal{R}^{A_j} \right\|_{L^p(\mathbb{R}^3), L^q(\Sigma^{A_j})} = 2^{-j\frac{a+b}{ab}\left(\frac{1}{q} - \frac{a+b+ab}{a+b} + \frac{1}{p}\frac{a+b+ab}{a+b}\right)} \left\| \mathcal{R}^{A_0} \right\|_{L^p(\mathbb{R}^3), L^q(\Sigma^{A_0})}.$$

From this we obtain the following remarks.

Remark 1. If $\left(\frac{1}{p}, \frac{1}{q}\right) \in E$ then $\frac{1}{q} \geq -\frac{a+b+ab}{a+b}\frac{1}{p} + \frac{a+b+ab}{a+b}$. Remark 2. If $-\frac{a+b+ab}{a+b}\frac{1}{p} + \frac{a+b+ab}{a+b} < \frac{1}{q} \leq 1$ and (2.2) $\left\|\mathcal{R}^{A_0}\right\|_{L^p(\mathbb{R}^3), L^q(\Sigma^{A_0})} < \infty$, then $\left(\frac{1}{p}, \frac{1}{q}\right) \in E$.

issn: 1443-5756

jС

We will use a theorem due to Strichartz (see [9]), whose proof relies on the Stein complex interpolation theorem, which gives $L^p(\mathbb{R}^3) - L^2(\Sigma^V)$ estimates for the operator \mathcal{R}^V depending on the behavior at infinity of $\widehat{\sigma^V}$. In [4] we obtained information about the size of the constants. There we found the following: *Remark* 3. If V is a measurable set in \mathbb{R}^2 of positive measure and if

 $\left|\widehat{\sigma^{V}}\left(\xi\right)\right| \le A \left(1 + \left|\xi_{3}\right|\right)^{-\tau}$

for some $\tau > 0$ and for all $\xi = (\xi_1, \xi_2, \xi_3) \in \mathbb{R}^3$, then there exists a positive constant c_{τ} such that

$$\left\|\mathcal{R}^{V}\right\|_{L^{p}(\mathbb{R}^{3}), L^{2}(\Sigma^{V})} \leq c_{\tau} A^{\frac{1}{2(1+\tau)}}$$

for $p = \frac{2+2\tau}{2+\tau}$.

In [2] the authors obtain a result (Theorem 2.1, p.155) from which they also obtain the following consequence

Remark 4 ([2, Corollary 2.2]). Let I, J be two real intervals, and let

$$M = \{ (x_1, x_2, \psi (x_1, x_2)) : (x_1, x_2) \in I \times J \},\$$

where $\psi: I \times J \to \mathbb{R}$ is a smooth function such that either $\left| \frac{\partial^2 \psi}{\partial x_1^2}(x_1, x_2) \right| \ge c > 0$ or $\left| \frac{\partial^2 \psi}{\partial x_2^2}(x_1, x_2) \right| \ge c > 0$, uniformly on $I \times J$. If M has the Lebesgue surface measure, $\frac{1}{q} = 3\left(1 - \frac{1}{p}\right)$ and $\frac{3}{4} < \frac{1}{p} \le 1$ then there exists a positive constant c such that

(2.3)
$$\left\|\widehat{f}\right\|_{M}\right\|_{L^{q}(M)} \leq c \left\|f\right\|_{L^{p}(\mathbb{R}^{3})}$$

for $f \in S(\mathbb{R}^3)$.

journal of inequalities in pure and applied mathematics

Following the proof of Theorem 2.1 in [2] we can check that if in the last remark we take $J = \begin{bmatrix} 2^{-k}, 2^{-k+1} \end{bmatrix}$, $k \in \mathbb{N}$ in the case that $\left| \frac{\partial^2 \psi}{\partial x_1^2} (x_1, x_2) \right| \ge c > 0$ uniformly on $I \times J$ with c independent of k, or $I = \begin{bmatrix} 2^{-k}, 2^{-k+1} \end{bmatrix}$, $k \in \mathbb{N}$ in the other case, then we can replace (2.3) by

(2.4)
$$\left\|\widehat{f}\right\|_{M}\right\|_{L^{q}(M)} \leq c' 2^{-k\left(\frac{1}{p}+\frac{1}{q}-1\right)} \|f\|_{L^{p}(\mathbb{R}^{3})}$$

with c' independent of k.

journal of inequalities in pure and applied mathematics

3. The Cases $\varphi(x_1, x_2) = A |x_1|^a + B |x_2|^b$

In this cases we characterize, up to endpoints, the pairs $\left(\frac{1}{p}, \frac{1}{q}\right) \in E$ with $\frac{3}{4} < \frac{1}{p} \leq 1$. We also obtain some border segments. If either A = 0 or B = 0, φ becomes homogeneous and these cases are treated in [4]. For the remainder situation we obtain the following

Theorem 3.1. Let $a, b, A, B \in \mathbb{R}$ with $2 \le a \le b, A \ne 0, B \ne 0$, let $\varphi(x_1, x_2) = A |x_1|^a + B |x_2|^b$ and let E be the type set associated to φ . If $\frac{3}{4} < \frac{1}{p} \le 1$ and $-\frac{a+b+ab}{a+b}\frac{1}{p} + \frac{a+b+ab}{a+b} < \frac{1}{q} \le 1$ then $\left(\frac{1}{p}, \frac{1}{q}\right) \in E$.

Proof. Suppose $\frac{3}{4} < \frac{1}{p} \leq 1$ and $-\frac{a+b+ab}{a+b}\frac{1}{p} + \frac{a+b+ab}{a+b} < \frac{1}{q} \leq 1$. By Remark 2 it is enough to prove (2.2). Now, A_0 is contained in the union of the rectangles $Q = [-1,1] \times [\frac{1}{2},1]$, $Q' = [\frac{1}{2},1] \times [-1,1]$, and its symmetrics with respect to the x_1 and x_2 axes. Now we will study $\|\mathcal{R}^Q\|_{L^p(\mathbb{R}^3),L^q(\Sigma^Q)}$. We decompose $Q = \bigcup_{k \in N} Q_k$ with

$$Q_k = \left(\left[-2^{-k+1}, -2^{-k} \right] \cup \left[2^{-k}, 2^{-k+1} \right] \right) \times \left[\frac{1}{2}, 1 \right]$$

Now, as in Theorem 1, (3.2), in [3] we have

$$\left|\widehat{\sigma^{Q_k}}\left(\xi\right)\right| \le A2^{k\frac{a-2}{2}} \left(1 + \left|\xi_3\right|\right)^{-1}$$

and then Remark 3 implies

(3.1)
$$\left\| \mathcal{R}^{Q_k} \right\|_{L^{\frac{4}{3}}(\mathbb{R}^3), L^2(\Sigma^{Q_k})} \le c 2^{k \frac{a-2}{8}}.$$

journal of inequalities in pure and applied mathematics

Also, since $\left|\frac{\partial^2 \varphi}{\partial x_2^2}(x_1, x_2)\right| \ge c > 0$ uniformly on Q_k , from (2.4) we obtain $\left\|\mathcal{R}^{Q_k}\right\|_{L^p(\mathbb{R}^3), L^q(\Sigma^{Q_k})} \le c' 2^{-k\left(\frac{1}{p} + \frac{1}{q} - 1\right)}$

for $\frac{1}{q} = 3\left(1 - \frac{1}{p}\right)$ and $\frac{3}{4} < \frac{1}{p} \le 1$. Applying the Riesz interpolation theorem and then performing the sum on $k \in \mathbb{N}$ we obtain

$$\left\|\mathcal{R}^{Q}\right\|_{L^{p}(\mathbb{R}^{3}),L^{q}(\Sigma^{Q})}<\infty,$$

for $\frac{2+3a}{2+a}\left(1-\frac{1}{p}\right) < \frac{1}{q} \le 1$ and $\frac{3}{4} < \frac{1}{p} \le 1$. In a similar way we get that

$$\left\|\mathcal{R}^{Q}\right\|_{L^{p}(\mathbb{R}^{3}),L^{q}(\Sigma^{Q'})}<\infty,$$

for $\frac{2+3b}{2+b}\left(1-\frac{1}{p}\right) < \frac{1}{q} \le 1$ and $\frac{3}{4} < \frac{1}{p} \le 1$. The study for the symmetric rectangles is analogous. Thus

$$\left\|\mathcal{R}^{A_0}\right\|_{L^p(\mathbb{R}^3),L^q\left(\Sigma^{A_0}\right)} < \infty$$

for $\frac{3}{4} < \frac{1}{p} \le 1$ and $-\frac{a+b+ab}{a+b}\frac{1}{p} + \frac{a+b+ab}{a+b} < \frac{1}{q} \le 1$ and the theorem follows. *Remark* 5.

i) If
$$\frac{b+2}{8} < \frac{1}{q} \le 1$$
 then $\left(\frac{3}{4}, \frac{1}{q}\right) \in E$.

ii) The point $\left(\frac{a+b+2ab}{2a+2b+2ab}, \frac{1}{2}\right) \in E$.

journal of inequalities in pure and applied mathematics

issn: 1443-5756

 \square

From (3.1) and the Hölder inequality we obtain that

$$\left\|\mathcal{R}^{Q_{k}}\right\|_{L^{\frac{4}{3}}(\mathbb{R}^{3}),L^{q}(\Sigma^{Q_{k}})} \leq c2^{k\left(\frac{a-2}{8}-\frac{2-q}{2q}\right)}$$

for $\frac{1}{2} \leq \frac{1}{q} \leq 1$. Then if $\frac{a+2}{8} < \frac{1}{q} \leq 1$ we perform the sum over $k \in \mathbb{N}$ to get

$$\left\|\mathcal{R}^{Q}\right\|_{L^{\frac{4}{3}}(\mathbb{R}^{3}),L^{q}(\Sigma^{Q})}<\infty,$$

for these q 's. Analogously, if $\frac{b+2}{8} < \frac{1}{q} \leq 1$ we get

$$\left\|\mathcal{R}^{Q'}\right\|_{L^{\frac{4}{3}}(\mathbb{R}^3),L^q\left(\Sigma^{Q'}\right)}<\infty,$$

thus since $a \le b$, if $\frac{b+2}{8} < \frac{1}{q} \le 1$,

$$\left\|\mathcal{R}^{A_0}\right\|_{L^{\frac{4}{3}}(\mathbb{R}^3),L^q\left(\Sigma^{A_0}\right)} < \infty$$

and i) follows from Remark 2.

Assertion *ii*) follows from Remark 3, since from Lemma 3 in [3] we have that

$$\left|\widehat{\sigma}\left(\xi\right)\right| \le c\left(1 + \left|\xi_{3}\right|\right)^{-\frac{1}{a} - \frac{1}{b}}$$

E. Ferreyra and M. Urciuolo vol. 10, iss. 2, art. 35, 2009 **Title Page** Contents 44 ◀ ► Page 10 of 24 Go Back **Full Screen** Close

journal of inequalities in pure and applied mathematics

4. The Polynomial Cases

In this section we deal with mixed homogeneous polynomial functions φ satisfying (1.1). The following result is sharp (up to the endpoints) for $\frac{3}{4} < \frac{1}{p} \leq 1$, as a consequence of Remark 1.

Theorem 4.1. Let φ be a mixed homogeneous polynomial function satisfying (1.1). Suppose that the gaussian curvature of Σ does not vanish identically and that at each point of $\Sigma^{B-\{0\}}$ with vanishing curvature, at least one principal curvature is different from zero. If $(a, b) \neq (2, 4)$, $\frac{3}{4} < \frac{1}{p} \leq 1$ and $-\frac{a+b+ab}{a+b}\frac{1}{p} + \frac{a+b+ab}{a+b} < \frac{1}{q} \leq 1$ then $\left(\frac{1}{p}, \frac{1}{q}\right) \in E$.

Proof. We first study the operator \mathcal{R}^{A_0} . Let $(x_1^0, x_2^0) \in A_0$. If $Hess\varphi(x_1^0, x_2^0) \neq 0$ there exists a neighborhood U of (x_1^0, x_2^0) such that $Hess\varphi(x_1, x_2) \neq 0$ for $(x_1, x_2) \in U$. From the proposition in [8, pp. 386], it follows that

(4.1) $\left\|\mathcal{R}^{U}\right\|_{L^{p}(\mathbb{R}^{3}),L^{q}(\Sigma^{U})} < \infty$

for $\frac{1}{q} = 2\left(1 - \frac{1}{p}\right)$ and $\frac{3}{4} \le \frac{1}{p} \le 1$. Suppose now that $Hess\varphi\left(x_1^0, x_2^0\right) = 0$ and that either $\frac{\partial^2 \varphi}{\partial x_1^2}\left(x_1^0, x_2^0\right) \ne 0$ or $\frac{\partial^2 \varphi}{\partial x_2^2}\left(x_1^0, x_2^0\right) \ne 0$. Then there exists a neighborhood $V = I \times J$ of (x_1^0, x_2^0) such that either $\left|\frac{\partial^2 \varphi}{\partial x_1^2}\left(x_1, x_2\right)\right| \ge c > 0$ or $\left|\frac{\partial^2 \varphi}{\partial x_2^2}\left(x_1, x_2\right)\right| \ge c > 0$ uniformly on V. So from Remark 4 we obtain that

(4.2)
$$\left\|\mathcal{R}^{V}\right\|_{L^{p}(\mathbb{R}^{3}), L^{q}(\Sigma^{V})} < \infty$$

for $\frac{1}{q} = 3\left(1 - \frac{1}{p}\right)$ and $\frac{3}{4} < \frac{1}{p} \le 1$. From (4.1), (4.2) and Hölder's inequality, it follows that

(4.3)
$$\left\| \mathcal{R}^{A_0} \right\|_{L^p(\mathbb{R}^3), L^q\left(\Sigma^{A_0}\right)} < \infty$$

journal of inequalities in pure and applied mathematics

for $\frac{1}{q} \geq 3\left(1-\frac{1}{p}\right)$ and $\frac{3}{4} < \frac{1}{p} \leq 1$. So, if $\frac{a+b+ab}{a+b} \geq 3$, the theorem follows from Remark 2. The only cases left are (a,b) = (3,4), (a,b) = (3,5), (a,b) = (4,5) and (a,b) = (2,b), b > 2. If (a,b) = (3,4) and φ has a monomial of the form $a_{i,j}x^iy^j$, with $a_{ij} \neq 0$, then $\frac{i}{3} + \frac{j}{4} = 1$ so 4i + 3j = 12 and so either (i, j) = (0, 4) or (i, j) = (3, 0). So $\varphi(x_1, x_2) = a_{3,0}x_1^3 + a_{0,4}x_2^4$. The hypothesis about the derivatives of φ imply that $a_{3,0} \neq 0$ and $a_{0,4} \neq 0$ and the theorem follows using Theorem 3.1 in each quadrant. The cases (a, b) = (3, 5), or (a, b) = (4, 5) are completely analogous.

Now we deal with the cases (a, b) = (2, b), b > 2. We note that

(4.4)
$$\varphi(x_1, x_2) = Ax_1^2 + Bx_1x_2^{\frac{b}{2}} + Cx_2^{\frac{b}{2}}$$

where B = 0 for b odd. The hypothesis about φ implies $A \neq 0$. For b odd, $\varphi(x_1, x_2) = Ax_1^2 + Cx_2^b$ and since $C \neq 0$ (on the contrary $Hess\varphi(x_1, x_2) \equiv 0$), the theorem follows using Theorem 3.1 as before. Now we consider b even and φ given by (4.4). If B = 0 the theorem follows as above, so we suppose $B \neq 0$.

(4.5)
$$Hess\varphi(x_1, x_2)$$

= $-\frac{x_2^{\frac{b}{2}-2}}{4} \left(\left(B^2 b^2 + 8ACb - 8ACb^2 \right) x_2^{\frac{b}{2}} - 2(b-2)ABbx_1 \right)$

So if $Hess \varphi \left(x_1^0, x_2^0 \right) = 0$ then either $x_2^0 = 0$ or

$$\left(B^{2}b^{2} + 8ACb - 8ACb^{2}\right)\left(x_{2}^{0}\right)^{\frac{b}{2}} - 2(b-2)ABbx_{1}^{0} = 0.$$

In the first case we have b > 4. We take a neighborhood $W_1 = I \times [-2^{-k_0}, 2^{-k_0}] \subset A_0, k_0 \in \mathbb{N}$, of the point $(x_1^0, 0)$ such that $Hess\varphi$ vanishes, on W_1 , only along the x_1 axes. For $k \in \mathbb{N}, k > k_0$, we take $U_k = I \times J_k$ where $J_k = [-2^{-k+1}, -2^{-k}] \cup$

journal of inequalities in pure and applied mathematics

 $[2^{-k}, 2^{-k+1}]$. So $W_1 = \overline{\bigcup U_k}$. For $(x_1, x_2) \in U_k$, it follows from (4.5) that $|Hess\varphi(x_1, x_2)| \ge c2^{-k(\frac{b}{2}-2)}$,

so for $\xi = (\xi_1, \xi_2, \xi_3) \in \mathbb{R}^3$,

$$\left|\widehat{\sigma^{U_k}}\left(\xi\right)\right| \le c2^{k\frac{b-4}{4}} \left(1 + \left|\xi_3\right|\right)^{-1}$$

and from Remark 3 we get

(4.6)
$$\left\| \mathcal{R}^{U_k} \right\|_{L^{\frac{4}{3}}(\mathbb{R}^3), L^2(\Sigma^{U_k})} \le c 2^{k \frac{b-4}{16}}$$

Also, since $\left|\frac{\partial^2 \varphi}{\partial x_1^2}(x_1, x_2)\right| \ge c > 0$ uniformly on U_k , as in (2.4) we obtain

(4.7)
$$\left\| \mathcal{R}^{U_k} \right\|_{L^p(\mathbb{R}^3), L^q(\Sigma^{U_k})} \le c 2^{-k\left(2 - \frac{2}{p}\right)}$$

for $\frac{3}{4} < \frac{1}{p} \le 1$ and $\frac{1}{q} = 3\left(1 - \frac{1}{p}\right)$. From (4.6), (4.7) and the Riesz Thorin theorem we obtain

(4.8)
$$\left\| \mathcal{R}^{U_k} \right\|_{L^{p_t}(\mathbb{R}^3), L^{q_t}(\Sigma^{U_k})} \le c 2^{k \left(t \frac{b-4}{16} - (1-t)\left(2 - \frac{2}{p}\right) \right)}$$

for $\frac{1}{q_t} = t\frac{1}{2} + (1-t)3\left(1-\frac{1}{p}\right)$ and $\frac{1}{p_t} = t\frac{3}{4} + (1-t)\frac{1}{p}$.

A simple computation shows that if $\frac{1}{p} = \frac{3}{4}$ then the exponent in (4.8) is negative for $t < t_0 = \frac{8}{4+b}$ and that

$$\frac{1}{q_{t_0}} - \frac{2+3b}{4\left(2+b\right)} < 0$$

journal of inequalities in pure and applied mathematics

so for $\frac{1}{p} > \frac{3}{4}$ and $t < t_0$, both near enough, the exponent is still negative and

$$\frac{1}{q_t} - \frac{2+3b}{2+b}\left(1 - \frac{1}{p_t}\right) < 0,$$

thus

(4.9)
$$\left\|\mathcal{R}^{W_1}\right\|_{L^p(\mathbb{R}^3), L^q\left(\Sigma^{W_1}\right)} < \infty$$

for $\frac{3}{4} < \frac{1}{p}$ near enough and $\frac{1}{q} = \frac{2+3b}{2+b} \left(1 - \frac{1}{p}\right)$. Finally, if

$$\left(B^{2}b^{2} + 8ACb - 8ACb^{2}\right)\left(x_{2}^{0}\right)^{\frac{b}{2}} - 2(b-2)ABbx_{1}^{0} = 0$$

then we study the order of $Hess\varphi(x_1, x_2^0)$ for $2^{-k-1} \leq |x_1 - x_1^0| \leq 2^{-k}, k \in \mathbb{N}$.

$$(4.10) \quad \left| \frac{\left(x_{2}^{0}\right)^{\frac{b}{2}-2}}{4} \left(\left(B^{2}b^{2} + 8ACb - 8ACb^{2} \right) \left(x_{2}^{0}\right)^{\frac{b}{2}} - 2(b-2)ABbx_{1} \right) \right| \\ = \left| \frac{\left(x_{2}^{0}\right)^{\frac{b}{2}-2}}{2} (b-2)ABb \left(x_{1} - x_{1}^{0}\right) \right| \ge c2^{-k}.$$

We take the following neighborhood of (x_1^0, x_2^0) , $W_2 = \overline{\bigcup_{k \in \mathbb{N}} V_k}$, with

$$V_k = \left\{ \left(r^{\frac{1}{2}} x_1, r^{\frac{1}{b}} x_2^0 \right) : 2^{-k-1} \le \left| x_1 - x_1^0 \right| \le 2^{-k}, \ \frac{1}{2} \le r \le 2 \right\}.$$

From the homogeneity of φ and (4.10) we obtain

$$\left| Hess\varphi\left(r^{\frac{1}{2}}x_{1}, r^{\frac{1}{b}}x_{2}^{0}\right) \right| = r^{1-\frac{2}{b}} \left| Hess\varphi\left(x_{1}, x_{2}^{0}\right) \right| \ge c2^{-k},$$

journal of inequalities in pure and applied mathematics

then from Proposition 6 in [8, p. 344], we get for $\xi = (\xi_1, \xi_2, \xi_3) \in \mathbb{R}^3$

$$\left|\widehat{\sigma^{V_k}}\left(\xi\right)\right| \le c2^{\frac{k}{2}} \left(1 + \left|\xi_3\right|\right)^{-1},$$

so from Remark 3

$$\left\|\mathcal{R}^{V_k}\right\|_{L^{\frac{4}{3}}(\mathbb{R}^3), L^2(\Sigma^{V_k})} \le c2^{\frac{k}{8}}$$

and by Hölder's inequality, for q < 2 we have

$$\left\|\mathcal{R}^{V_k}\right\|_{L^{\frac{4}{3}}(\mathbb{R}^3), L^q(\Sigma^{V_k})} \le c 2^{k\left(\frac{1}{8} - \frac{2-q}{2q}\right)}$$

This exponent is negative for $\frac{1}{q} > \frac{5}{8}$ and so we sum on k to obtain

(4.11)
$$\left\|\mathcal{R}^{W_2}\right\|_{L^{\frac{4}{3}}(\mathbb{R}^3), L^q(\Sigma^{W_2})} < \infty$$

for $\frac{5}{8} < \frac{1}{q} \le 1$. Since $b \ge 6$, $\frac{5}{8} \le \frac{2+3b}{4(2+b)}$ and then from (4.1), (4.9) and (4.11), we get $\|\mathcal{R}^{A_0}\|_{L^p(\mathbb{R}^3), L^q(\Sigma^{A_0})} < \infty,$

for $\frac{3}{4} < \frac{1}{p}$ near enough and $\frac{1}{q} > \frac{2+3b}{2+b} \left(1 - \frac{1}{p}\right)$ and the theorem follows from standard considerations involving Hölder's inequality, the Riesz Thorin theorem and from Remark 2.

Remark 6. In the case (a, b) = (2, b), b > 2, we have (4.11). In a similar way we get, from (4.6) and Hölder's inequality,

$$\left\|\mathcal{R}^{W_1}\right\|_{L^{\frac{4}{3}}(\mathbb{R}^3),L^q\left(\Sigma^{W_1}\right)} < \infty$$

Fourier Restriction Estimates E. Ferreyra and M. Urciuolo vol. 10, iss. 2, art. 35, 2009 **Title Page** Contents 44 Page 15 of 24 Go Back Full Screen Close

journal of inequalities in pure and applied mathematics

for $\frac{b+4}{16} < \frac{1}{q} \le 1$. So

$$\|\mathcal{R}\|_{L^{\frac{4}{3}}(\mathbb{R}^3),L^q(\Sigma)} < \infty$$

for $\max\left\{\frac{5}{8}, \frac{b+4}{16}, \frac{2+3b}{8+4b}\right\} < \frac{1}{q} \le 1$. We observe that if b = 6 then $\frac{5}{8} = \frac{b+4}{16} = \frac{2+3b}{8+4b}$, thus from Remark 1 we see that, in this case, this condition for $\frac{1}{q}$ is sharp, up to the end point.

Now we will show some examples of functions φ not satisfying the hypothesis of the previous theorem, for which we obtain that the portion of the type set E in the region $\frac{3}{4} < \frac{1}{p} \le 1$ is smaller than the region

$$E_{a,b} = \left\{ \left(\frac{1}{p}, \frac{1}{q}\right) : \frac{3}{4} < \frac{1}{p} \le 1, \frac{a+b+ab}{a+b} \left(1-\frac{1}{p}\right) < \frac{1}{q} \le 1 \right\}$$

stated in Theorem 4.1.

We consider $\varphi(x_1, x_2) = x_1^2$, which is a mixed homogeneous function satisfying (1.1) for any b > 2. In this case $\varphi_{x_1x_1} \equiv 2$ but $Hess\varphi \equiv 0$. From Remark 2.8 in [4] and Remark 4 we obtain that the corresponding type set is the region $\frac{1}{q} \ge 3\left(1 - \frac{1}{p}\right)$, $\frac{3}{4} < \frac{1}{2} < 1$ which is smaller than the region $E_{a,b}$.

 $\frac{3}{4} < \frac{1}{p} \le 1$ which is smaller than the region $E_{a,b}$. We consider now a mixed homogeneous function φ satisfying (1.1), of the form

(4.12)
$$\varphi(x_1, x_2) = x_2^l P(x_1, x_2),$$

with $P(x_1, 0) \neq 0$ for $x_1 \neq 0$. Since a < b it can be checked that $l \ge 2$ and that for l > 2, $\varphi_{x_1x_1}(x_1, 0) = \varphi_{x_2x_2}(x_1, 0) = 0$. Moreover

(4.13)
$$Hess\varphi = x_2^{2l-2} \left(P_{x_1x_1} \left(l \left(l-1 \right) P + 2lx_2 P_{x_2} + x_2^2 P_{x_2x_2} \right) - \left(l P_{x_1} + x_2 P_{x_1x_2} \right)^2 \right),$$

which vanishes at $(x_1, 0)$. A computation shows that the second factor is different from zero at a point of the form $(x_1, 0)$. So $Hess\varphi$ does not vanish identically.

Full Screen

Close

journal of inequalities in pure and applied mathematics issn: 1443-5756

Proposition 4.2. Let φ be a mixed homogeneous function satisfying (1.1) and (4.12). If $\left(\frac{1}{p}, \frac{1}{q}\right) \in E$ then $\frac{1}{q} \ge (l+1)\left(1-\frac{1}{p}\right)$.

Proof. Let $f\varepsilon = \chi_{K_{\varepsilon}}$ the characteristic function of the set $K_{\varepsilon} = \begin{bmatrix} 0, \frac{1}{3} \end{bmatrix} \times \begin{bmatrix} 0, \frac{\varepsilon^{-1}}{3} \end{bmatrix} \times \begin{bmatrix} 0, \frac{\varepsilon^{-1}}{3} \end{bmatrix} \times \begin{bmatrix} 0, \frac{\varepsilon^{-1}}{3} \end{bmatrix}$, with $M = \max_{(x_1, x_2) \in [0, 1] \times [0, 1]} P(x_1, x_2)$. If $\left(\frac{1}{p}, \frac{1}{q}\right) \in E$ then (4.14) $\|\mathcal{R}f_{\varepsilon}\|_{L^q(\Sigma)} \leq c \|f_{\varepsilon}\|_{L^p(\mathbb{R}^3)} = c\varepsilon^{-\frac{1+l}{p}}.$

By the other side,

$$\left\|\mathcal{R}f_{\varepsilon}\right\|_{L^{q}(\Sigma)} \geq \left(\int_{W_{\varepsilon}} \left|\widehat{f}_{\varepsilon}\left(x_{1}, x_{2}, \varphi\left(x_{1}, x_{2}\right)\right)\right|^{q} dx_{1} dx_{2}\right)^{\frac{1}{q}}$$

where $W_{\varepsilon} = \begin{bmatrix} \frac{1}{2}, 1 \end{bmatrix} \times [0, \varepsilon]$. Now, for $(x_1, x_2) \in W_{\varepsilon}$ and $(y_1, y_2, y_3) \in K_{\varepsilon}$, $|x_1y_1 + x_2y_2 + \varphi(x_1, x_2)y_3| \le 1$

 \mathbf{SO}

$$\begin{aligned} \left| \widehat{f}_{\varepsilon} \left(x_1, x_2, \varphi \left(x_1, x_2 \right) \right) \right| \\ &= \left| \int_{K_{\varepsilon}} e^{-i(x_1y_1 + x_2y_2 + \varphi(x_1, x_2)y_3)} dy_1 dy_2 dy_3 \right| \\ &\geq \int_{K_{\varepsilon}} \cos \left(x_1y_1 + x_2y_2 + \varphi \left(x_1, x_2 \right) y_3 \right) dy_1 dy_2 dy_3 \geq c \varepsilon^{-1-l}. \end{aligned}$$

Thus

(4.15) $\|\mathcal{R}f_{\varepsilon}\|_{L^{q}(\Sigma)} \geq c\varepsilon^{-1-l+\frac{1}{q}}.$

The proposition follows from (4.14) and (4.15).

Fourier Restriction Estimates E. Ferreyra and M. Urciuolo vol. 10, iss. 2, art. 35, 2009 **Title Page** Contents 44 ◀ ► Page 17 of 24 Go Back Full Screen Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

 \square

We note that in the case that (a + b) l > ab (for example $\varphi(x_1, x_2) = x_2^4 (x_1^2 + x_2^4)$) the portion of the type set corresponding to $\frac{3}{4} < \frac{1}{p} \le 1$ will be smaller than the region $E_{a,b}$.

Also, $\varphi(x_1, x_2) = x_2^2(x_1 + x_2^2)$ is an example where $a = 2, b = 4, Hess\varphi(x_1, x_2)$ = $-4x_2^2$ and if $x_2 = 0$ and $x_1 \neq 0, \varphi_{x_2x_2}(x_1, x_2) = 2x_1 \neq 0$. Again, since 12 = (a+b)l > ab = 8, we get that the portion of the type set corresponding to $\frac{3}{4} < \frac{1}{p} \leq 1$ will be smaller than the region $E_{a,b}$.

Proposition 4.3. Let φ be a mixed homogeneous function satisfying (1.1) and (4.12) with $l \geq \frac{b}{2}$. If $\frac{3}{4} \leq \frac{1}{p} \leq 1$ and $\frac{1}{q} > (l+1)\left(1-\frac{1}{p}\right)$, then

 $\left\|\mathcal{R}^{A_0}\right\|_{L^p(\mathbb{R}^3), L^q(\Sigma^{A_0})} \le c.$

Proof. Let $(x_1^0, x_2^0) \in A_0$, if $Hess\varphi(x_1^0, x_2^0) \neq 0$, as in the proof of Theorem 4.1 we find a neighborhood U of (x_1^0, x_2^0) such that (4.1) holds. If $Hess\varphi(x_1^0, x_2^0) = 0$, by (4.13), either $x_2^0 = 0$ or the polynomial Q given by $P_{x_1x_1}(l(l-1)P + 2lx_2P_{x_2} + x_2^2P_{x_2x_2}) - (lP_{x_1} + x_2P_{x_1x_2})^2$ vanishes at (x_1^0, x_2^0) . In the first case, using the fact that $P(x_1, 0) \neq 0$ for $x_1 \neq 0$, we get that

$$\left(P_{x_1x_1}l\left(l-1\right)P - l^2 P_{x_1}^2\right)\left(x_1^0, 0\right) \neq 0.$$

We take a neighborhood W_1 of the point $(x_1^0, 0)$ and U_k as in the proof of Theorem 4.1. So for $(x_1, x_2) \in U_k$,

$$|Hess\varphi\left(x_1, x_2\right)| \ge c2^{-k(2l-2)}$$

and so

$$\left|\widehat{\sigma^{U_k}}(\xi_1, \xi_2, \xi_3)\right| \le \frac{2^{k(l-1)}}{1+|\xi_3|}$$

issn: 1443-5756

© 2007 Victoria University. All rights reserved.

$$\left|\widehat{\sigma^{U_k}}\left(\xi_1,\xi_2,\xi_3\right)\right| \le 2^{-k}$$

so for $0 \leq \tau \leq 1$, $\left|\widehat{\sigma^{U_k}}\left(\xi_1, \xi_2, \xi_3\right)\right| \leq \frac{2^{k(\tau l - 1)}}{\left(1 + |\xi_3|\right)^{\tau}}$

and by Remark 3

$$\left\|\mathcal{R}^{U_k}\right\|_{L^p(\mathbb{R}^3), L^2(\Sigma^{U_k})} \le c_\tau 2^{\frac{k(\tau^{l-1})}{2(1+\tau)}}$$

for $p = \frac{2(1+\tau)}{2+\tau}$ and so Hölder's inequality implies, for $1 \le q < 2$,

$$\left\|\mathcal{R}^{U_k}\right\|_{L^p(\mathbb{R}^3), L^q(\Sigma^{U_k})} \le c_\tau 2^{k\left(\frac{\tau l-1}{2(1+\tau)} - \frac{2-q}{2q}\right)}$$

and a computation shows that this exponent is negative for $\frac{1}{q} > (l+1)\left(1-\frac{1}{p}\right)$. Thus

(4.16)
$$\left\|\mathcal{R}^{W_1}\right\|_{L^p(\mathbb{R}^3), L^q\left(\Sigma^{W_1}\right)} < \infty$$

for $\frac{3}{4} \leq \frac{1}{p} \leq 1$ and $(l+1)\left(1-\frac{1}{p}\right) < \frac{1}{q} \leq 1$. Now we suppose $Q(x_1^0, x_2^0) = 0$. We observe that

 $\deg Q \le 2 \deg P - 2 \le 2 (b - l) - 2 \le 2l - 2$

and so $Hess\varphi(x_1, x_2^0)$ vanishes at x_1^0 with order at most 2l - 2. Then defining W_2 and V_k as in the proof of Theorem 4.1, we have

$$\left|Hess\varphi\left(x_{1}, x_{2}^{0}\right)\right| \geq 2^{-k(2l-2)}$$

Fourier Restriction Estimates E. Ferreyra and M. Urciuolo vol. 10, iss. 2, art. 35, 2009 **Title Page** Contents 44 ◀ ► Page 19 of 24 Go Back Full Screen Close

journal of inequalities in pure and applied mathematics

and as in the previous case we obtain

(4.17)
$$\left\|\mathcal{R}^{W_2}\right\|_{L^p(\mathbb{R}^3), L^q\left(\Sigma^{W_2}\right)} < \infty$$

for $\frac{3}{4} \leq \frac{1}{p} \leq 1$ and $\frac{1}{q} > (l+1)\left(1-\frac{1}{p}\right)$. The proposition follows from (4.16), (4.17) and (4.1).

From Proposition 4.3 and Remark 2 we obtain the following result, sharp up to the end points, for $\frac{3}{4} \le \frac{1}{p} \le 1$.

Theorem 4.4. Let φ be a mixed homogeneous function satisfying (1.1) and (4.12) with $l \geq \frac{b}{2}$. If $m = \max\left\{l+1, \frac{a+b+ab}{a+b}\right\}, \frac{3}{4} \leq \frac{1}{p} \leq 1$ and $\frac{1}{q} > m\left(1-\frac{1}{p}\right)$, then $\left(\frac{1}{p}, \frac{1}{q}\right) \in E$.

4.1. Sharp $L^p - L^2$ Estimates

In [4] we obtain sharp $L^p - L^2$ estimates for the restriction of the Fourier transform to homogeneous polynomial surfaces in \mathbb{R}^3 . The principal tools we used there were two Littlewood Paley decompositions. Adapting this proof to the setting of non isotropic dilations we obtain the following results.

Lemma 4.5. Let
$$\frac{a+b+2ab}{2a+2b+2ab} \leq \frac{1}{p} \leq 1$$
. If
 $\left\| \mathcal{R}^{A_0} \right\|_{L^p(\mathbb{R}^3), L^2(\Sigma^{A_0})} < \infty$

then $\left(\frac{1}{p}, \frac{1}{2}\right) \in E$.

Proof. From (2.1), the lemma follows from a process analogous to the proof of Lemma 4.3 in [4]. \Box

mathematics

Theorem 4.6.

i) If φ is a mixed homogeneous polynomial function satisfying the hypothesis of Theorem 4.1 then $\left(\frac{a+b+2ab}{2a+2b+2ab}, \frac{1}{2}\right) \in E$.

ii) Let $\frac{1}{p_0} = \max\left\{\frac{a+b+2ab}{2a+2b+2ab}, \frac{2l+1}{2l+2}\right\}$. If φ is a mixed homogeneous polynomial function satisfying the hypothesis of Theorem 4.4 then $\left(\frac{1}{p_0}, \frac{1}{2}\right) \in E$.

Proof. i) If $\frac{a+b+ab}{a+b} \ge 3$, i) follows from (4.3) and Lemma 4.5. The cases (a, b) = (3, 4), (a, b) = (3, 5) and (a, b) = (4, 5) are solved in Remark 5, part *ii*). The cases (a, b) = (2, b) with b odd or B = 0 are also included in Remark 5, part *ii*). For the remainder cases (2, b), we observe that, if b > 6, from the proof of Theorem 4.1 we obtain

(4.18)
$$\left\| \mathcal{R}^{A_0} \right\|_{L^p(\mathbb{R}^3), L^2(\Sigma^{A_0})} < \infty,$$

for
$$\frac{1}{p} = \frac{a+b+2ab}{2a+2b+2ab}$$
, so *i*) follows from Lemma 4.5. For $b = 6$, as before we get
$$\left\| \mathcal{R}^{W_1} \right\|_{L^p(\mathbb{R}^3), L^2(\Sigma^{W_1})} < \infty,$$

and

$$\left\|\mathcal{R}^{V_k}\right\|_{L^p(\mathbb{R}^3),L^2\left(\Sigma^{V_k}
ight)} < \infty$$

for $k \in \mathbb{N}$, $\frac{1}{p} = \frac{a+b+2ab}{2a+2b+2ab}$. In a similar way to Lemma 4.3 of [4], we use a unidimensional Littlewood Paley decomposition to obtain

$$\left\|\mathcal{R}^{W_2}\right\|_{L^p(\mathbb{R}^3),L^2\left(\Sigma^{W_2}\right)} < \infty$$

and then we have (4.18) for $\frac{1}{p} = \frac{a+b+2ab}{2a+2b+2ab}$. So *i*) follows from Lemma 4.5.

journal of inequalities in pure and applied mathematics

ii) From the proof of Proposition 4.3, we use a uni-dimensional Littlewood Paley decomposition to obtain (4.18) for $\frac{1}{p} = \max\left\{\frac{a+b+2ab}{2a+2b+2ab}, \frac{2l+1}{2l+2}\right\}$, and *ii*) follows from Lemma 4.5.

Remark 7. In [7] the authors obtain sharp estimates for the Fourier transform of measures σ associated to surfaces Σ like ours, when φ is a polynomial function satisfying (1.1) and the condition that φ and $Hess\varphi$ do not vanish simultaneously on $B - \{(0,0)\}$. In these cases, part *i*) of the above theorem follows from Remark 3. We observe that our hypotheses are less restrictive, for example $\varphi(x_1, x_2) = x_1^4 x_2^2 + x_2^{10}$ satisfies the hypothesis of part *i*) of the above theorem but φ and $Hess\varphi$ vanish at any (x_1, x_2) with $x_2 = 0$.

journal of inequalities in pure and applied mathematics

References

- L. DE CARLY AND A. IOSEVICH, Some sharp restriction theorems for homogeneous manifolds, *The Journal of Fourier Analysis and Applications*, 4(1) (1998), 105–128.
- [2] S.W. DRURY AND K. GUO, Some remarks on the restriction of the Fourier transform to surfaces, *Math. Proc. Camb. Phil. Soc.*, **113** (1993), 153–159.
- [3] E. FERREYRA, T. GODOY AND M. URCIUOLO, $L^p L^q$ estimates for convolution operators with *n*-dimensional singular measures, *The Journal of Fourier Analysis and Applications*, **3**(4) (1997), 475–484.
- [4] E. FERREYRA, T. GODOY AND M. URCIUOLO, Restriction theorems for the Fourier transform to homogeneous polynomial surfaces in \mathbb{R}^3 , *Studia Math.*, **160**(3) (2004), 249–265.
- [5] E. FERREYRA AND M. URCIUOLO, Restriction theorems for anisotropically homogeneous hypersurfaces of \mathbb{R}^{n+1} , *Georgian Math. Journal*, **15**(4) (2008), 643–651.
- [6] A. GREENLEAF, Principal curvature in harmonic analysis, *Indiana U. Math. J.*, **30** (1981), 519–537.
- [7] A. IOSEVICH AND E. SAWYER, Oscilatory integrals and maximal averages over homogeneous surfaces, *Duke Math. J.*, **82**(1) (1996), 103–141.
- [8] E.M. STEIN, *Harmonic Analysis, Real Variable Methods, Orthogonality, and Oscillatory Integrals*, Princeton University Press, Princeton New Jersey (1993).
- [9] R.S. STRICHARTZ, Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations, *Duke Math. J.*, **44** (1977), 705–713.

Title Page					
Contents					
44	••				
◀	•				
Page 23 of 24					
Go Back					
Full S	creen				
Clo	ose				
urnal of inequalities					

journal of inequalities in pure and applied mathematics

- [10] T. TAO, A sharp bilinear restriction estimate on paraboloids. *GAFA*, *Geom. and Funct. Anal.*, **13** (2003), 1359–1384.
- [11] T. TAO, Some recent progress on the restriction conjecture. Fourier analysis and convexity, *Appl. Numer. Harmon. Anal.*, Birkhaüser Boston, Boston MA (2004), 217–243.
- [12] P. TOMAS, A restriction theorem for the Fourier transform, *Bull. Amer. Math. Soc.*, **81** (1975), 477–478.

journal of inequalities in pure and applied mathematics