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ABSTRACT. The main purpose of the present paper is to establish a new discrete Opial-type
inequality. Our result provide a new estimates on such type of inequality.
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1. INTRODUCTION
In 1960, Z. Opiall[14] established the following integral inequality:

Theorem A. Suppose’ € C*|0, h| satisfiesf(0) = f(h) = 0and f(z) > 0 for all z € (0, h).
Then the following integral inequality holds

" / h " N2
a.1) [ 1r@r@lde < [
0 0
where the constari} is best possible.

Opial’s inequality and its generalizations, extensions and discretizations, play a fundamental
role in establishing the existence and uniqueness of initial and boundary value problems for
ordinary and partial differential equations as well as difference equationsl[l, 2,[3,/10, 12]. In
recent years, inequality (1.1) has received further attention and a large number of papers dealing
with new proofs, extensions, generalizations and variants of Opial’s inequality have appeared in
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the literature([4] —[9],/[13],[[15],[16],[18] - [20]. For an extensive survey on these inequalities,
seel[1/1P2].

For discrete analogues of Opial-type inequalities, good accounts of the recent works in this
aspect are given in[1, 12], etc. In particular, an inequality involving two sequences was estab-
lished by Pachpatte in [17] as follows:

Theorem B. Letz; andy; (i = 0,1,...,7) be non-decreasing sequences of non-negative num-
bers, andry = y, = 0. Then, the following inequality holds
T—1 7—1
T
(1.2) Z [2i Ay; + yir1Az;] < 3 [(Az;)? + (Ayy)?] .
=0 1=0

The main purpose of the present paper is to establish a new discrete Opial-type inequality
involving two sequences as follows.

Theorem 1.1. Let{z; ;} and{y; ;} be non-decreasing sequences of non-negative numbers de-
fined fori = 0,1,...,7,7 =0,1,...,0, wherer, ¢ are natural numbers, and, ; = z;o = 0,
Yo, =Y%o0=0(=0,1,....,7 5=0,1,...,0). Let

ArLij = Tig1,j = Tigy,  Dolij = Tijyr — i,

then
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Our result in special cases yields some of the recent results on Opial’s inequality and provides
a new estimate on such types of inequalities.

2. MAIN RESULTS

Theorem 2.1. Let{z; ;} and{y; ;} be non-decreasing sequences of non-negative numbers de-
fined fori =0,1,...,7,j =0,1,...,0, wherer, ¢ are natural numbers, with, ; = z; o = 0,
yo’j:yi70:0(i:0,1,...,7;j:O,l,...,O'). Let%+%:17p> 1,and

Avij = Tig1j — Tig,  Dolij = Tijyr — i,

then
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Proof. We have
A2A1($z‘jyz‘j) = AZ(xi,jAlyi,j + yz‘+1,jA19€i,j)
= Ao(zijA1yi ) + Ao(Yir1 ;0170 5)
=25 - Doy + Aryi j1 Do + Yigry - Doz j + Agw j 11 A0 i

On the other hand, inview afy ; = 2,0 =0,y =v%0=0(=0,1,...,7; 7 =0,1,...,0),
it follows that
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[xz‘,j ) AQAlyi,j + Alyi,j—i-l : A2$z'+1,j + Yij - A2A1$z‘,j + A196‘z‘,j+1 : A2?/1‘+1,j+1

I
o
.
I
=)

=Tro " Yro-

Now, using the elementary inequality

P bq
<+ TiZo1 p>1
p q p
the facts that
7—1 o0—1
A2A1$”,
i=0 j=0
7—1 0—1
AQAlyz,]a
i=0 7=0

and Hdlder’s inequality, we obtain

[Ii,j DoAY+ Ay - Doz + Vi - Do+ Ay g - Aoyivr i

i=0 7=0
xP q
S T,0 +y7,a
p
1 71 0-1 p 1 T7—1 0—1 q
= — ( AgAll’i’j> + - ( AQAlyZJ)
p =0 7=0 q =0 5=0
1 7—1 0—1 1 7—1 0—1
< ~(oT)"/ (Dol )P + = (o) "7 (A2 )
p =0 5=0 q =0 5=0

Remark 2.2. Takingp = ¢ = 2, Theorenj 21 reduces to Theorpm|1.1.

Furthermore, by reducing; ;} and{y; ;} to {z;} and{y;} ( = 0,1,...,7), respectively,
and with suitable changes, we have

7—1 T—1
T
[%‘Ayi + yz‘+1A$i] 5

i=0 =0

[ Az;)* + (Ay;) ]

This result was given by Pachpattein[17].
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