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Abstract: Let G(v, e) be the set of all simple graphs withv vertices ande edges and let
P2(G) =

∑
d2

i denote the sum of the squares of the degrees,d1, . . . , dv, of the
vertices ofG.
It is known that the maximum value ofP2(G) for G ∈ G(v, e) occurs at one or both
of two special graphs inG(v, e)–the quasi-star graph or the quasi-complete graph.
For each pair(v, e), we determine which of these two graphs has the larger value
of P2(G). We also determine all pairs(v, e) for which the values ofP2(G) are the
same for the quasi-star and the quasi-complete graph. In addition to the quasi-star
and quasi-complete graphs, we find all other graphs inG(v, e) for which the max-
imum value ofP2(G) is attained. Density questions posed by previous authors are
examined.
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1. Introduction

LetG(v, e) be the set of all simple graphs withv vertices ande edges and letP2(G) =∑
d2

i denote the sum of the squares of the degrees,d1, . . . , dv, of the vertices ofG.
The purpose of this paper is to finish the solution of an old problem:

1. What is the maximum value ofP2(G), for a graphG in G(v, e)?

2. For which graphsG in G(v, e) is the maximum value ofP2(G) attained?

Throughout, we say that a graphG is optimal in G(v, e), if P2(G) is maximum
and we denote this maximum value bymax(v, e).

These problems were first investigated by Katz [8] in 1971 and by R. Ahlswede
and G.O.H. Katona [2] in 1978. In his review of the paper by Ahlswede and Katona,
P. Erd̋os [4] commented that “the solution is more difficult than one would expect."
Ahlswede and Katona were interested in an equivalent form of the problem: they
wanted to find the maximum number of pairs of different edges that have a common
vertex. In other words, they wanted to maximize the number of edges in the line
graphL(G) asG ranges overG(v, e). That these two formulations of the problem
are equivalent follows from an examination of the vertex-edge incidence matrixN
for a graphG ∈ G(v, e):

trace((NNT )2) = P2(G) + 2e,

trace((NT N)2) = trace(AL(G)2) + 4e,

where AL(G) is the adjacency matrix of the line graph ofG. Thus P2(G) =
trace(AL(G)2) + 2e. (trace(AL(G)2) is twice the number of edges in the line graph
of G.)

Ahlswede and Katona showed that the maximum valuemax(v, e) is always at-
tained at one or both of two special graphs inG(v, e).
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They called the first of the two special graphs aquasi-completegraph. The quasi-
complete graph inG(v, e) has the largest possible complete subgraphKk. Let k, j
be unique integers such that

e =

(
k + 1

2

)
− j =

(
k

2

)
+ k − j, where1 ≤ j ≤ k.

The quasi-complete graph inG(v, e), which is denoted byQC(v, e), is obtained
from the complete graph on thek vertices1, 2, . . . , k by addingv − k verticesk +
1, k + 2, . . . , v, and the edges(1, k + 1), (2, k + 1), . . . , (k − j, k + 1).

The other special graph inG(v, e) is thequasi-star, which we denote byQS(v, e).
This graph has as many dominant vertices as possible (adominant vertexis one with
maximum degreev − 1). Perhaps the easiest way to describeQS(v, e) is to say that
it is the graph complement ofQC(v, e′), wheree′ =

(
v
2

)
− e.

Define the functionC(v, e) to be the sum of the squares of the degree sequence of
the quasi-complete graph inG(v, e), and defineS(v, e) to be the sum of the squares
of the degree sequence of the quasi-star graph inG(v, e). The value ofC(v, e) can
be computed as follows:

Let e =
(

k+1
2

)
− j, with 1 ≤ j ≤ k. The degree sequence of the quasi-complete

graph inG(v, e) is

d1 = · · · = dk−j = k, dk−j+1 = · · · = dk = k − 1,

dk+1 = k − j, dk+2 = · · · = dv = 0.

Hence

(1.1) C(v, e) = j(k − 1)2 + (k − j)k2 + (k − j)2.

SinceQS(v, e) is the complement ofQC(v, e′), it is straightforward to show that

(1.2) S(v, e) = C(v, e′) + (v − 1)(4e− v(v − 1))
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from which it follows that, for fixedv, the functionS(v, e) − C(v, e) is point-
symmetric about the middle of the interval0 ≤ e ≤

(
v
2

)
. In other words,

S(v, e)− C(v, e) = − (S(v, e′)− C(v, e′)) .

It also follows from equation (1.2) thatQC(v, e) is optimal inG(v, e) if and only if
QS(v, e′) is optimal inG(v, e′). This allows us to restrict our attention to values of
e in the interval[0,

(
v
2

)
/2] or equivalently the interval[

(
v
2

)/
2,

(
v
2

)
]. On occasion, we

will do so but we will always state results for all values ofe.
As the midpoint of the range of values fore plays a recurring role in what follows,

we denote it by

m = m(v) =
1

2

(
v

2

)
and definek0 = k0(v) to be the integer such that

(1.3)

(
k0

2

)
≤ m <

(
k0 + 1

2

)
.

To state the results of [2] we need one more notion, that of the distance from
(

k0

2

)
to

m. Write

b0 = b0(v) = m−
(

k0

2

)
.

We are now ready to summarize the results of [2]:

Theorem 1.1 ([2, Theorem 2]). max(v, e) is the larger of the two valuesC(v, e)
andS(v, e).

Theorem 1.2 ([2, Theorem 3]). max(v, e) = S(v, e) if 0 ≤ e < m − v
2

and
max(v, e) = C(v, e) if m + v

2
< e ≤

(
v
2

)
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Lemma 1.3 ([2, Lemma 8]). If 2b0 ≥ k0, or 2v − 2k0 − 1 ≤ 2b0 < k0, then

C(v, e) ≤ S(v, e) for all 0 ≤ e ≤ m and

C(v, e) ≥ S(v, e) for all m ≤ e ≤
(

v

2

)
.

If 2b0 < k0 and 2k0 + 2b0 < 2v − 1, then there exists anR with b0 ≤ R ≤
min {v/2, k0 − b0} such that

C(v, e) ≤ S(v, e) for all 0 ≤ e ≤ m−R

C(v, e) ≥ S(v, e) for all m−R ≤ e ≤ m

C(v, e) ≤ S(v, e) for all m ≤ e ≤ m + R

C(v, e) ≥ S(v, e) for all m + R ≤ e ≤
(

v

2

)
.

Ahlswede and Katona pose some open questions at the end of [2]. “Some strange
number-theoretic combinatorial questions arise. What is the relative density of the
numbersv for whichR = 0 [max(v, e) = S(v, e) for all 0 ≤ e < m andmax(v, e) =
C(v, e) for all m < e ≤

(
v
2

)
]?"

This is the point of departure for our paper. Our first main result, Theorem2.3,
strengthens Ahlswede and Katona’s Theorem 2; not only does the maximum value
of P2(G) occur at either the quasi-star or quasi-complete graph inG(v, e), but all
optimal graphs inG(v, e) are related to the quasi-star or quasi-complete graphs via
their so-called diagonal sequence. As a result of their relationship to the quasi-star
and quasi-complete graphs, all optimal graphs can be and are described in our second
main result, Theorem2.4. Our third main result, Theorem2.8, is a refinement of
Lemma 8 in [2]. Theorem2.8characterizes the values ofv ande for whichS(v, e) =
C(v, e) and gives an explicit expression for the valueR in Lemma 8 of [2]. Finally,
the “strange number-theoretic combinatorial" aspects of the problem, mentioned by
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Ahlswede and Katona, turn out to be Pell’s Equationy2− 2x2 = ±1. Corollary2.11
answers the density question posed by Ahlswede and Katona. We have just recently
learned that Wagner and Wang [16] have independently answered this question as
well. Their approach is similar to ours, as they also find an expression forR in
Lemma 8 of [2].

Before stating some new results, we summarize the work on the problem that
followed [2].

A generalization of the problem of maximizing the sum of the squares of the
degree sequence was investigated by Katz [8] in 1971 and R. Aharoni [1] in 1980.
Katz’s problem was to maximize the sum of the elements inA2, whereA runs over
all (0, 1)-square matrices of sizen with preciselyj ones. He found the maxima and
the matrices for which the maxima are attained for the special cases where there are
k2 ones or where there aren2 − k2 ones in the(0, 1)-matrix. Aharoni [1] extended
Katz’s results for generalj and showed that the maximum is achieved at one of four
possible forms forA.

If A is a symmetric(0, 1)-matrix, with zeros on the diagonal, thenA is the ad-
jacency matrixA(G) for a graphG. Now let G be a graph inG(v, e). Then the
adjacency matrixA(G) of G is av × v (0, 1)-matrix with 2e ones. ButA(G) satis-
fies two additional restrictions:A(G) is symmetric, and all diagonal entries are zero.
However, the sum of all entries inA(G)2 is precisely

∑
di(G)2. Thus our problem is

essentially the same as Aharoni’s in that both ask for the maximum of the sum of the
elements inA2. The graph-theory problem simply restricts the set of(0, 1)-matrices
to those with2e ones that are symmetric and have zeros on the diagonal.

Olpp [14], apparently unaware of the work of Ahlswede and Katona, reproved the
basic result thatmax(v, e) = max(S(v, e), C(v, e)), but his results are stated in the
context of two-colorings of a graph. He investigates a question of Goodman [5, 6]:
maximize the number of monochromatic triangles in a two-coloring of the complete
graph with a fixed number of vertices and a fixed number of red edges. Olpp shows
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that Goodman’s problem is equivalent to finding the two-coloring that maximizes
the sum of squares of the red-degrees of the vertices. Of course, a two-coloring of
the complete graph onv vertices gives rise to two graphs onv vertices: the graphG
whose edges are colored red, and its complementG′. So Goodman’s problem is to
find the maximum value ofP2(G) for G ∈ G(v, e).

Olpp [14] shows that either the quasi-star or the quasi-complete graph is optimal
in G(v, e), but he does not discuss which of the two valuesS(v, e), C(v, e) is larger.
He leaves this question unanswered and does not attempt to identify all optimal
graphs inG(v, e).

In 1999, Peled, Pedreschi, and Sterbini [13] showed that the only possible graphs
for which the maximum value is attained are the so-called threshold graphs. The
main result in [13] is that all optimal graphs are in one of six classes of threshold
graphs. They end with the remark, “Further questions suggested by this work are
the existence and uniqueness of the [graphs inG(v, e)] in each class, and the precise
optimality conditions."

Also in 1999, Byer [3] approached the problem in yet another equivalent context:
he studied the maximum number of paths of length two over all graphs inG(v, e).
Every path of length two inG represents an edge in the line graphL(G), so this
problem is equivalent to studying the graphs that achievemax(v, e). For each(v, e),
Byer shows that there are at most six graphs inG(v, e) that achieve the maximum.
These maximal graphs come from among six general types of graphs for which there
is at most one of each type inG(v, e). He also extended his results to the problem
of finding the maximum number of monochromatic triangles (or any other fixed
connected graph with 3 edges) among two-colorings of the complete graph onv
vertices, where exactlye edges are colored red. However, Byer did not discuss how
to computemax(v, e), or how to determine when any of the six graphs is optimal.

In Section2, we have unified some of the earlier work on this problem by using
partitions, threshold graphs, and the idea of a diagonal sequence.
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2. Statements of the Main Results

2.1. Threshold graphs

All optimal graphs come from a class of special graphs calledthresholdgraphs. The
quasi-star and quasi-complete graphs are just two among the many threshold graphs
in G(v, e). The adjacency matrix of a threshold graph has a special form. The upper-
triangular part of the adjacency matrix of a threshold graph is left justified and the
number of zeros in each row of the upper-triangular part of the adjacency matrix does
not decrease. We will show adjacency matrices using “+" for the main diagonal, an
empty circle “◦" for the zero entries, and a black dot, “•" for the entries equal to one.

For example, the graphG whose adjacency matrix is shown in Figure1(a) is a
threshold graph inG(8, 13) with degree sequence(6, 5, 5, 3, 3, 3, 1, 0).

By looking at the upper-triangular part of the adjacency matrix, we can associate
the distinct partitionπ = (6, 4, 3) of 13 with the graph. In general, thethreshold
graphTh(π) ∈ G(v, e) corresponding to a distinct partitionπ = (a0, a1, . . . , ap) of e,
all of whose parts are less thanv, is the graph with an adjacency matrix whose upper-
triangular part is left-justified and containsas ones in rows. Thus the threshold
graphs inG(v, e) are in one-to-one correspondence with the set of distinct partitions,
Dis(v, e) of e with all parts less thanv:

Dis(v, e) =
{

π = (a0, a1, . . . , ap) : v > a0 > a1 > · · · > ap > 0,
∑

as = e
}

We denote the adjacency matrix of the threshold graphTh(π) corresponding to the
distinct partitionπ by Adj(π).

Peled, Pedreschi, and Sterbini [13] showed that all optimal graphs in a graph class
G(v, e) must be threshold graphs.

Lemma 2.1 ([13]). If G is an optimal graph inG(v, e), thenG is a threshold graph.
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Thus we can limit the search for optimal graphs to the threshold graphs.
Actually, a much larger class of functions, including the power functions,dp

1 +
· · · + dp

v for p ≥ 2, on the degrees of a graph are maximized only at threshold
graphs. In fact, every Schur convex function of the degrees is maximized only at
the threshold graphs. The reason is that the degree sequences of threshold graphs
are maximal with respect to the majorization order among all graphical sequences.
See [11] for a discussion of majorization and Schur convex functions and [10] for a
discussion of the degree sequences of threshold graphs.

2.2. The Diagonal Sequence of a Threshold Graph

To state the first main theorem, we must now digress to describe the diagonal se-
quence of a threshold graph in the graph classG(v, e).

Returning to the example in Figure1(a) corresponding to the distinct partition
π = (6, 4, 3) ∈ Dis(8, 13), we superimpose diagonal lines on the adjacency matrix
Adj(π) for the threshold graphTh(π) as shown in Figure1(b).

The number of black dots in the upper triangular part of the adjacency matrix on
each of the diagonal lines is called thediagonal sequenceof the partitionπ (or of
the threshold graphTh(π)). The diagonal sequence forπ is denoted byδ(π) and for
π = (6, 4, 3) shown in Figure1, δ(π) = (1, 1, 2, 2, 3, 3, 1). The value ofP2(Th(π))
is determined by the diagonal sequence ofπ.

Lemma 2.2.Letπ be a distinct partition inDis(v, e) with diagonal sequenceδ(π) =
(δ1, . . . , δt). ThenP2(Th(π)) is the dot product

P2(Th(π)) = 2δ(π) · (1, 2, 3, . . . , t) = 2
t∑

i=1

iδi.
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(a) (b)

Figure 1: The adjacency matrix,Adj(π), for the threshold graph inG(8, 13) corresponding to the
distinct partitionπ = (6, 4, 3) ∈ Dis(8, 13) with diagonal sequenceδ(π) = (1, 1, 2, 2, 3, 3, 1).

For example, ifπ = (6, 4, 3) as in Figure1, then

P2(Th(π)) = 2(1, 1, 2, 2, 3, 3, 1) · (1, 2, 3, 4, 5, 6, 7) = 114,

which equals the sum of squares of the degree sequence(6, 5, 5, 3, 3, 3, 1) of the
graphTh(π).

Theorem 2 in [2] guarantees that one (or both) of the graphsQS(v, e), QC(v, e)
must be optimal inG(v, e). However, there may be other optimal graphs inG(v, e),
as the next example shows.

The quasi-complete graphQC(10, 30), which corresponds to the distinct partition
(8, 7, 5, 4, 3, 2, 1) is optimal inG(10, 30). The threshold graphG2, corresponding to
the distinct partition(9, 6, 5, 4, 3, 2, 1) is also optimal inG(10, 30), but is neither
quasi-star inG(10, 30) nor quasi-complete inG(v, 30) for any v. The adjacency
matrices for these two graphs are shown in Figure2. They have the same diagonal
sequenceδ = (1, 1, 2, 2, 3, 3, 4, 4, 4, 2, 2, 1, 1) and both are optimal.
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Figure 2: Adjacency matrices for two optimal graphs inG(10, 30), QC(10, 30) =
Th(8, 7, 5, 4, 3, 2, 1) and Th(9, 6, 5, 4, 3, 2, 1), having the same diagonal sequenceδ =
(1, 1, 2, 2, 3, 3, 4, 4, 4, 2, 2, 1, 1)

We know that either the quasi-star or the quasi-complete graph inG(v, e) is op-
timal and that any threshold graph with the same diagonal sequence as an optimal
graph is also optimal. In fact, the converse is also true. Indeed, the relationship
between the optimal graphs and the quasi-star and quasi-complete graphs in a graph
classG(v, e) is described in our first main theorem.

Theorem 2.3.LetG be an optimal graph inG(v, e). ThenG = Th(π) is a threshold
graph for some partitionπ ∈ Dis(v, e) and the diagonal sequenceδ(π) is equal to
the diagonal sequence of either the quasi-star graph or the quasi-complete graph in
G(v, e).

Theorem2.3is stronger than Lemma 8 of [2] because it characterizesall optimal
graphs inG(v, e). In Section2.3we describe all optimal graphs in detail.
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2.3. Optimal Graphs

Every optimal graph inG(v, e) is a threshold graph,Th(π), corresponding to a par-
tition π in Dis(v, e). So we extend the terminology and say that the partitionπ is
optimal in Dis(v, e), if its threshold graphTh(π) is optimal inG(v, e). We say that
the partitionπ ∈ Dis(v, e) is the quasi-star partition, if Th(π) is the quasi-star
graph inG(v, e). Similarly, π ∈ Dis(v, e) is thequasi-complete partition, if Th(π)
is the quasi-complete graph inG(v, e).

We now describe the quasi-star and quasi-complete partitions in Dis(v, e).
First, the quasi-complete graphs. Letv be a positive integer ande an integer such

that0 ≤ e ≤
(

v
2

)
. There exists unique integersk andj such that

e =

(
k + 1

2

)
− j and 1 ≤ j ≤ k.

The partition

π(v, e, qc) := (k, k − 1, . . . , j + 1, j − 1, . . . , 1) = (k, k − 1, . . . , ĵ, . . . , 2, 1)

corresponds to the quasi-complete threshold graphQC(v, e) in G(v, e). The symbol
ĵ means thatj is missing.

To describe the quasi-star partitionπ(v, e, qs) in Dis(v, e), let k′, j′ be the unique
integers such that

e =

(
v

2

)
−

(
k′ + 1

2

)
+ j′ and 1 ≤ j′ ≤ k′.

Then the partition

π(v, e, qs) = (v − 1, v − 2, . . . , k′ + 1, j′)
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corresponds to the quasi-star graphQS(v, e) in G(v, e).
In general, there may be many partitions with the same diagonal sequence as

π(v, e, qc) or π(v, e, qs). For example, if(v, e) = (14, 28), thenπ(14, 28, qc) =
(7, 6, 5, 4, 3, 2, 1) and all of the partitions in Figure3 have the same diagonal se-
quence,δ = (1, 1, 2, 2, 3, 3, 4, 3, 3, 2, 2, 1, 1). However, none of the threshold graphs

Figure 3: Four partitions with the same diagonal sequence asπ(14, 28, qc)

corresponding to the partitions in Figure3 is optimal. Indeed, if the quasi-complete
graph is optimal in Dis(v, e), then there are at most three partitions in Dis(v, e) with
the same diagonal sequence as the quasi-complete graph. The same is true for the
quasi-star partition. If the quasi-star partition is optimal in Dis(v, e), then there are
at most three partitions in Dis(v, e) having the same diagonal sequence as the quasi-
star partition. As a consequence, there are at most six optimal partitions in Dis(v, e)
and so at most six optimal graphs inG(v, e). Our second main result, Theorem
2.4, entails Theorem2.3; it describes the optimal partitions inG(v, e) in detail. The
six partitions described in Theorem2.4correspond to the six graphs determined by
Byer in [3]. However, we give precise conditions to determine when each of these
partitions is optimal.
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Theorem 2.4. Let v be a positive integer ande an integer such that0 ≤ e ≤
(

v
2

)
.

Letk, k′, j, j′ be the unique integers satisfying

e =

(
k + 1

2

)
− j, with 1 ≤ j ≤ k,

and

e =

(
v

2

)
−

(
k′ + 1

2

)
+ j′, with 1 ≤ j′ ≤ k′.

Then every optimal partitionπ in Dis(v, e) is one of the following six partitions:

1.1 π1.1 = (v − 1, v − 2, . . . , k′ + 1, j′), the quasi-star partition fore,

1.2 π1.2 = (v−1, v−2, . . . , ̂2k′ − j′ − 1, . . . , k′−1), if k′+1 ≤ 2k′−j′−1 ≤ v−1,

1.3 π1.3 = (v − 1, v − 2, . . . , k′ + 1, 2, 1), if j′ = 3 andv ≥ 4,

2.1 π2.1 = (k, k − 1, . . . , ĵ, . . . , 2, 1), the quasi-complete partition fore,

2.2 π2.2 = (2k − j − 1, k − 2, k − 3, . . . 2, 1), if k + 1 ≤ 2k − j − 1 ≤ v − 1,

2.3 π2.3 = (k, k − 1, . . . , 3), if j = 3 andv ≥ 4.

Partitionsπ1.1 andπ2.1 always exist and at least one of them is optimal. Further-
more,π1.2 and π1.3 (if they exist) have the same diagonal sequence asπ1.1, and if
S(v, e) ≥ C(v, e), then they are all optimal. Similarly,π2.2 andπ2.3 (if they exist)
have the same diagonal sequence asπ2.1, and ifS(v, e) ≤ C(v, e), then they are all
optimal.

A few words of explanation are in order regarding the notation for the optimal
partitions in Theorem2.4. If k′ = v, thenj′ = v, e = 0, andπ1.1 = ∅. If k′ = v − 1,
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thene = j′ ≤ v − 1, andπ1.1 = (j′); further, if j′ = 3, thenπ1.3 = (2, 1). In all
other casesk′ ≤ v − 2 and thenπ1.1, π1.2, andπ1.3 are properly defined.

If j′ = k′ or j′ = k′ − 1, then both partitions in 1.1 and 1.2 would be equal to
(v − 1, v − 2, . . . , k′) and (v − 1, v − 2, . . . , k′ + 1, k′ − 1) respectively. So the
conditionk′ + 1 ≤ 2k′ − j′ − 1 merely ensures thatπ1.1 6= π1.2. A similar remark
holds for the partitions in 2.1 and 2.2. By definition the partitionsπ1.1 andπ1.3 are
always distinct; the same holds for partitionsπ2.1 andπ2.3. In general, the partitions
πi.j described in items 1.1-1.3 and 2.1-2.3 (and their corresponding threshold graphs)
are all different. All the exceptions are illustrated in Figure4 and are as follows: For
any v, if e ∈ {0, 1, 2} or e′ ∈ {0, 1, 2} thenπ1.1 = π2.1. For anyv ≥ 4, if e = 3
or e′ = 3, thenπ1.3 = π2.1 andπ1.1 = π2.3. If (v, e) = (5, 5) thenπ1.1 = π2.2

andπ1.2 = π2.1. Finally, if (v, e) = (6, 7) or (7, 12), thenπ1.2 = π2.3. Similarly, if
(v, e) = (6, 8) or (7, 9), thenπ1.3 = π2.2. For v ≥ 8 and4 ≤ e ≤

(
v
2

)
− 4, all the

partitionsπi.j are pairwise distinct (when they exist).

Figure 4: Instances of pairs(v, e) where two partitionsπi.j coincide

In the next section, we determine the pairs(v, e) having a prescribed number of
optimal partitions (and hence graphs) inG(v, e).
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2.4. Pairs (v, e) with a Prescribed Number of Optimal Partitions

In principle, a given pair(v, e), could have between one and six optimal partitions.
It is easy to see that there are infinitely many pairs(v, e) with only one optimal
partition (either the quasi-star or the quasi-complete). For example the pair

(
v,

(
v
2

))
only has the quasi-complete partition. Similarly, there are infinitely many pairs with
exactly two optimal partitions and this can be achieved in many different ways. For
instance, if(v, e) = (v, 2v − 5) andv ≥ 9, thenk′ = v − 2, j′ = v − 4 > 3, and
S(v, e) > C(v, e) (c.f. Corollary2.10). Thus only the partitionsπ1.1 andπ1.2 are
optimal. The interesting question is the existence of pairs with 3,4,5, or 6 optimal
partitions.

Often, both partitionsπ1.2 andπ1.3 in Theorem2.4exist for the same pair(v, e);
however it turns out that this almost never happens when they are optimal partitions.
More precisely,

Theorem 2.5. If π1.2 andπ1.3 are optimal partitions then(v, e) = (7, 9) or (9, 18).
Similarly, if π2.2 and π2.3 are optimal partitions, then(v, e) = (7, 12) or (9, 18).
Furthermore, the pair(9, 18) is the only one with six optimal partitions, there are no
pairs with five. If there are more than two optimal partitions for a pair(v, e), then
S(v, e) = C(v, e), that is, both the quasi-complete and the quasi-star partitions must
be optimal.

In the next two results, we describe two infinite families of partitions in Dis(v, e),
and hence graph classesG(v, e), for which there are exactly three (four) optimal
partitions. The fact that they are infinite is proved in Section9.

Theorem 2.6.Letv > 5 andk be positive integers that satisfy the Pell’s Equation

(2.1) (2v − 3)2 − 2(2k − 1)2 = −1
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and lete =
(

k
2

)
. Then (using the notation of Theorem2.4), j = k, k′ = k + 1,

j′ = 2k − v + 2, and there are exactly three optimal partitions inDis(v, e), namely

π1.1 = (v − 1, v − 2, . . . , k + 2, 2k − v + 2)

π1.2 = (v − 2, v − 3, . . . , k)

π2.1 = (k − 1, k − 2, . . . , 2, 1).

The partitionsπ1.3, π2.2, andπ2.3 do not exist.

Theorem 2.7.Letv > 9 andk be positive integers that satisfy the Pell’s Equation

(2.2) (2v − 1)2 − 2(2k + 1)2 = −49

ande = m = 1
2

(
v
2

)
. Then (using the notation of Theorem2.4), j = j′ = 3, k = k′,

and there are exactly four optimal partitions inDis(v, e), namely

π1.1 = (v − 1, v − 2, . . . , k + 1, 3)

π1.3 = (v − 1, v − 2, . . . , k + 1, 2, 1)

π2.1 = (k − 1, k − 2, . . . , 4, 2, 1)

π2.3 = (k − 1, k − 2, . . . , 4, 3).

The partitionsπ1.2 andπ2.2 do not exist.

2.5. Quasi-star versus quasi-complete

In this section, we compareS(v, e) andC(v, e). The main result of the section,
Theorem2.8, is a theorem very much like Lemma 8 of [2], with the addition that our
results give conditions for equality of the two functions.

If e = 0, 1, 2, 3, thenS(v, e) = C(v, e) for all v. Of course, ife = 0, e = 1 and
v ≥ 2, or e ≤ 3 andv = 3, there is only one graph in the graph classG(v, e). If
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e = 2 andv ≥ 4, then there are two graphs in the graph classG(v, 2): the pathP and
the partial matchingM , with degree sequences(2, 1, 1) and(1, 1, 1, 1), respectively.
The path is optimal asP2(P ) = 6 andP2(M) = 4. However, the path is both the
quasi-star and the quasi-complete graph inG(v, 2). If e = 3 andv ≥ 4, then the
quasi-star graph has degree sequence(3, 1, 1, 1) and the quasi-complete graph is a
triangle with degree sequence(2, 2, 2). SinceP2(G) = 12 for both of these graphs,
both are optimal. Similarly,S(v, e) = C(v, e) for e =

(
v
2

)
− j for j = 0, 1, 2, 3.

Now, we consider the cases where4 ≤ e ≤
(

v
4

)
− 4. Figures5, 6, 7, and8 show

the values of the differenceS(v, e)−C(v, e). When the graph is above the horizontal
axis,S(v, e) is strictly larger thanC(v, e) and so the quasi-star graph is optimal and
the quasi-complete is not optimal. And when the graph is on the horizontal axis,
S(v, e) = C(v, e) and both the quasi-star and the quasi-complete graph are optimal.
Since the functionS(v, e)−C(v, e) is central symmetric, we shall consider only the
values ofe from 4 to the midpoint,m, of the interval[0,

(
v
2

)
].

Figure5 shows thatS(25, e) > C(25, e) for all values ofe: 4 ≤ e < m = 150.
So, whenv = 25, the quasi-star graph is optimal for0 ≤ e < m = 150 and the
quasi-complete graph is not optimal. Fore = m(25) = 150, the quasi-star and the
quasi-complete graphs are both optimal.

Figure6 shows thatS(15, e) > C(15, e) for 4 ≤ e < 45 and45 < e ≤ m =
52.5. But S(15, 45) = C(15, 45). So the quasi-star graph is optimal and the quasi-
complete graph is not optimal for all0 ≤ e ≤ 52 except fore = 45. Both the
quasi-star and the quasi-complete graphs are optimal inG(15, 45).

Figure7 shows thatS(17, e) > C(17, e) for 4 ≤ e < 63, S(17, 64) = C(17, 64),
S(17, e) < C(17, e) for 65 ≤ e < m = 68, andS(17, 68) = C(17, 68).

Finally, Figure8 shows thatS(23, e) > C(23, e) for 4 ≤ e ≤ 119, butS(23, e) =
C(23, e) for 120 ≤ e ≤ m = 126.5.

These four examples exhibit the types of behavior of the functionS(v, e) −
C(v, e), for fixed v. The main thing that determines this behavior is the quadratic
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Figure 5:S(25, e)− C(25, e) > 0 for 4 ≤ e < m = 150

69605039
36 45 55 66

Figure 6:S(15, e)− C(15, e) > 0 for 4 ≤ e < 45 and for45 < e ≤ m = 52.5
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81705845

55 66 78 91

Figure 7:S(17, e)− C(17, e) > 0 for 4 ≤ e ≤ 63.
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Figure 8:S(23, e)− C(23, e) > 0 for 4 ≤ e ≤ 119, S(23, e) = C(23, e) for 120 ≤ e < m = 126.5

http://jipam.vu.edu.au
mailto:
mailto:
http://jipam.vu.edu.au


Sum of Squares of Degrees
in a Graph

B.M. Ábrego, S. Fernández-Merchant,
M.G. Neubauer and W. Watkins

vol. 10, iss. 3, art. 64, 2009

Title Page

Contents

JJ II

J I

Page 22 of 69

Go Back

Full Screen

Close

function

q0(v) :=
1

4

(
1− 2(2k0 − 3)2 + (2v − 5)2

)
(the integerk0 = k0(v) depends onv). For example, ifq0(v) > 0, thenS(v, e) −
C(v, e) ≥ 0 for all values ofe < m. To describe the behavior ofS(v, e) − C(v, e)
for q0(v) < 0, we need to define

R0 = R0(v) =
8(m− e0)(k0 − 2)

−1− 2(2k0 − 4)2 + (2v − 5)2
,

where

e0 = e0(v) =

(
k0

2

)
= m− b0

Our third main theorem is the following:

Theorem 2.8.Letv be a positive integer

1. If q0(v) > 0, then

S(v, e) ≥ C(v, e) for all 0 ≤ e ≤ m and

S(v, e) ≤ C(v, e) for all m ≤ e ≤
(

v
2

)
.

S(v, e) = C(v, e) if and only ife, e′ ∈ {0, 1, 2, 3, m}, or e, e′ = e0 and(2v −
3)2 − 2(2k0 − 3)2 = −1, 7.

2. If q0(v) < 0, then

C(v, e) ≤ S(v, e) for all 0 ≤ e ≤ m−R0;

C(v, e) ≥ S(v, e) for all m−R0 ≤ e ≤ m;

C(v, e) ≤ S(v, e) for all m ≤ e ≤ m + R0;

C(v, e) ≥ S(v, e) for all m + R0 ≤ e ≤
(

v
2

)
.
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S(v, e) = C(v, e) if and only ife, e′ ∈ {0, 1, 2, 3, m−R0, m}.

3. If q0(v) = 0, then

S(v, e) ≥ C(v, e) for all 0 ≤ e ≤ m and

S(v, e) ≤ C(v, e) for all m ≤ e ≤
(

v
2

)
.

S(v, e) = C(v, e) if and only ife, e′ ∈ {0, 1, 2, 3, e0, ...,m}.

The conditions in Theorem2.8 involving the quantityq0(v) simplify and refine
the conditions in [2] involving k0 and b0. The condition2b0 ≥ k0 in Lemma 8
of [2] can be removed and the result restated in terms of the sign of the quantity
2k0 + 2b0 − (2v − 1) = 1

2
q0(v). While [2] considers only the two casesq0(v) ≤ 0

andq0(v) > 0, we analyze the caseq0(v) = 0 separately.
It is apparent from Theorem2.8 thatS(v, e) ≥ C(v, e) for 0 ≤ e ≤ m − αv if

α > 0 is large enough. Indeed, Ahlswede and Katona [2, Theorem 3] show this for
α = 1/2, thus establishing an inequality that holds for all values ofv regardless of
the sign ofq0(v). We improve this result and show that the inequality holds when
α = 1−

√
2/2 ≈ 0.2929.

Corollary 2.9. Letα = 1−
√

2/2. ThenS(v, e) ≥ C(v, e) for all 0 ≤ e ≤ m− αv
and S(v, e) ≤ C(v, e) for all m + αv ≤ e ≤

(
v
2

)
. Furthermore, the constantα

cannot be replaced by a smaller value.

Theorem 3 in [2] can be improved in another way. The inequalities are actually
strict.

Corollary 2.10. S(v, e) > C(v, e) for 4 ≤ e < m− v/2 andS(v, e) < C(v, e) for
m + v/2 < e ≤

(
v
2

)
− 4.
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2.6. Asymptotics and Density

We now turn to the questions asked in [2]:
What is the relative density of the positive integersv for which max(v, e) =

S(v, e) for 0 ≤ e < m? Of course,max(v, e) = S(v, e) for 0 ≤ e ≤ m if and only
if max(v, e) = C(v, e) for m ≤ e ≤

(
v
2

)
.

Corollary 2.11. Lett be a positive integer and letn(t) denote the number of integers
v in the interval[1, t] such that

max(v, e) = S(v, e),

for all 0 ≤ e ≤ m. Then

lim
t→∞

n(t)

t
= 2−

√
2 ≈ 0.5858.

2.7. Piecewise Linearity ofS(v, e)− C(v, e)

The diagonal sequence for a threshold graph helps explain the behavior of the differ-
enceS(v, e)− C(v, e) for fixedv and0 ≤ e ≤

(
v
2

)
. From Figures5, 6, 7, and8, we

see thatS(v, e)−C(v, e), regarded as a function ofe, is piecewise linear and the ends
of the intervals on which the function is linear occur ate =

(
j
2

)
ande =

(
v
2

)
−

(
j
2

)
for

j = 1, 2, . . . , v. We prove this fact in Lemma6.7. For now, we present an example.
Take v = 15, for example. Figure6 shows linear behavior on the intervals

[36, 39], [39, 45], [45, 50], [50, 55], [55, 60], [60, 66], and [66, 69]. There are 14 bi-
nomial coefficients

(
j
2

)
for 2 ≤ j ≤ 15:

1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 78, 91, 105.

The complements with respect to
(
15
2

)
= 105 are

104, 102, 99, 95, 90, 84, 77, 69, 60, 50, 39, 27, 14, 0.
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The union of these two sets of integers coincides with the end points for the intervals
on whichS(15, e) − C(15, e) is linear. In this case, the function is linear on the 27
intervals with end points:

0, 1, 3, 6, 10, 14, 15, 21, 27, 28, 36, 39, 45, 50, 55, 60,

66, 69, 77, 78, 84, 90, 91, 95, 99, 102, 104, 105.

These special values ofe correspond to special types of quasi-star and quasi-complete
graphs.

If e =
(

j
2

)
, then the quasi-complete graphQC(v, e) is the sum of a complete graph

on j vertices andv − j isolated vertices. For example, ifv = 15 andj = 9, and
e =

(
9
2

)
= 36, then the upper-triangular part of the adjacency matrix forQC(15, 21)

is shown on the left in Figure9. And if e =
(

v
2

)
−

(
j
2

)
, then the quasi-star graph

QS(v, e) hasj dominant vertices and none of the otherv − j vertices are adjacent
to each other. For example, the lower triangular part of the adjacency matrix for the
quasi-star graph withv = 15, j = 12, ande =

(
14
2

)
−

(
12
2

)
= 39, is shown on the

right in Figure9.
As additional dots are added to the adjacency matrices for the quasi-complete

graphs withe = 37, 38, 39, the value ofC(15, e) increases by18, 20, 22. And the
value ofS(15, e) increases by28, 30, 32. Thus, the differenceincreasesby a constant
amount of10. Indeed, the diagonal lines are a distance of five apart. Hence the graph
of S(15, e)−C(15, e) for 36 ≤ e ≤ 39 is linear with a slope of10. However, fore =
40, the adjacency matrix for the quasi-star graph has an additional dot on the diagonal
corresponding to14, whereas the adjacency matrix for the quasi-complete graph has
an additional dot on the diagonal corresponding to24. SoS(15, 40) − C(15, 40)
decreasesby 10. The decrease of10 continues until the adjacency matrix for the
quasi-complete graph contains a complete column ate = 45. Then the next matrix
for e = 46 has an additional dot in the first row and next column and the slope
changes again.
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quasi-complete partition
π=(8,7,6,5,4,3,2,1) π=(9,7,6,5,4,3,2,1) π=(9,8,6,5,4,3,2,1) π=(9,8,7,5,4,3,2,1)

quasi-star partition
π=(14,13,9) π=(14,13,10) π=(14,13,11) π=(14,13,12)

e = 36 e = 37 e = 38 e = 39

Figure 9: Adjacency matrices for quasi-complete and quasi-star graphs withv = 15 and36 ≤ e ≤
39
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3. Proof of Lemma 2.2

Returning for a moment to the threshold graphTh(π) from Figure1, which corre-
sponds to the distinct partitionπ = (6, 4, 3), we see the graph complement shown
with the white dots. Counting white dots in the rows from bottom to top and from the
left to the diagonal, we have 7,5,2,1. These same numbers appear in columns read-
ing from right to left and then top to the diagonal. So ifTh(π) is the threshold graph
associated withπ, then the set-wise complement ofπ (πc) in the set{1, 2, . . . , v−1}
corresponds to the threshold graphTh(π)c—the complement ofTh(π). That is,

Th(πc) = Th(π)c.

The diagonal sequence allows us to evaluate the sum of squares of the degree se-
quence of a threshold graph. Each black dot contributes a certain amount to the sum
of squares. The amount depends on the location of the black dot in the adjacency
matrix. In fact all of the dots on a particular diagonal line contribute the same amount
to the sum of squares. Forv = 8, the value of a black dot in position(i, j) is given
by the entry in the following matrix:

+ 1 3 5 7 9 11 13
1 + 3 5 7 9 11 13
1 3 + 5 7 9 11 13
1 3 5 + 7 9 11 13
1 3 5 7 + 9 11 13
1 3 5 7 9 + 11 13
1 3 5 7 9 11 + 13
1 3 5 7 9 11 13 +


This follows from the fact that a sum of consecutive odd integers is a square. So to
get the sum of squaresP2(Th(π)) of the degrees of the threshold graph associated
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with the distinct partitionπ, sum the values in the numerical matrix above that occur
in the positions with black dots. Of course, an adjacency matrix is symmetric. So
if we use only the black dots in the upper triangular part, then we must replace the
(i, j)-entry in the upper-triangular part of the matrix above with the sum of the(i, j)-
and the(j, i)-entry, which gives the following matrix:

(3.1) E =



+ 2 4 6 8 10 12 14
+ 6 8 10 12 14 16

+ 10 12 14 16 18
+ 14 16 18 20

+ 18 20 22
+ 22 24

+ 26
+


.

Thus,P2(Th(π)) = 2(1, 2, 3, . . .) · δ(π). Lemma2.2 is proved.
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4. Proofs of Theorems2.3and 2.4

Theorem2.3 is an immediate consequence of Theorem2.4 (and Lemmas2.1 and
2.2). Theorem2.4can be proved using the following central lemma:

Lemma 4.1. Let π = (v − 1, c, c − 1, . . . , ĵ, . . . , 2, 1) be an optimal partition in
Dis(v, e), wheree − (v − 1) = 1 + 2 + · · · + c − j ≥ 4 and1 ≤ j ≤ c < v − 2.
Thenj = c and2c ≥ v − 1 so that

π = (v − 1, c− 1, c− 2, . . . , 2, 1).

We defer the proof of Lemma4.1until Section5 and proceed now with the proof
of Theorem2.4. The proof of Theorem2.4 is an induction onv.

Proof of Theorem2.4. Let π be an optimal partition in Dis(v, e), thenπc is optimal
in Dis(v, e′). One of the partitions,π, πc contains the partv − 1. We may assume
without loss of generality thatπ = (v − 1 : µ), whereµ is a partition in Dis(v −
1, e − (v − 1)). The cases whereµ is a decreasing partition of0, 1, 2, and3 will be
considered later. For now we shall assume thate− (v − 1) ≥ 4.

Sinceπ is optimal, it follows thatµ is optimal and hence by the induction hy-
pothesis,µ is one of the following partitions in Dis(v − 1, e− (v − 1)):

1.1a µ1.1 = (v − 2, . . . , k′ + 1, j′), the quasi-star partition fore− (v − 1),

1.2a µ1.2 = (v − 2, . . . , ̂2k′ − j′ − 1, . . . , k′ − 1), if k′ + 1 ≤ 2k′ − j′ − 1 ≤ v − 2,

1.3a µ1.3 = (v − 2, . . . , k′ + 1, 2, 1), if j′ = 3,

2.1a µ2.1 = (k1, k1−1, . . . , ĵ1, . . . , 2, 1), the quasi-complete partition fore−(v−1),

2.2a µ2.2 = (2k1− j1− 1, k1− 2, k1− 3, . . . 2, 1), if k1 + 1 ≤ 2k1− j1− 1 ≤ v− 2,
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2.3a µ2.3 = (k1, k1 − 1, . . . , 3), if j1 = 3,

where

e− (v − 1) = 1 + 2 + · · ·+ k1 − j1 ≥ 4, with 1 ≤ j1 ≤ k1.

In symbols,π = (v− 1, µi.j), for one of the partitionsµi.j above. For each partition,
µi.j, we will show that(v − 1, µi.j) = πs.t for one of the six partitions,πs.t, in the
statement of Theorem2.4.

The first three cases are obvious:

(v − 1, µ1.1) = π1.1,

(v − 1, µ1.2) = π1.2,

(v − 1, µ1.3) = π1.3.

Next suppose thatµ = µ2.1, µ2.2, or µ2.3. The partitionsµ2.2 andµ2.3 do not exist
unless certain conditions onk1, j1, andv are met. And whenever those conditions
are met, the partitionµ2.1 is also optimal. Thusπ1 = (v − 1, µ2.1) is optimal. Also,
sincee− (v − 1) ≥ 4, thenk1 ≥ 3. There are two cases:k1 = v − 2, k1 ≤ v − 3. If
k1 = v − 2, thenµ2.2 does not exist and

(v − 1, µ) =

{
π2.1, if µ = µ2.1,

π1.1, if µ = µ2.3.

If k1 ≤ v − 3, then by Lemma4.1, π1 = (v − 1, k1 − 1, . . . , 2, 1), with j1 = k1

and2k1 ≥ v − 1. We will show thatk = k1 + 1 andv − 1 = 2k − j − 1. The above
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inequalities imply that(
k1 + 1

2

)
= 1 + 2 + · · ·+ k1 ≤ e

=

(
k1 + 1

2

)
− k1 + (v − 1) <

(
k1 + 1

2

)
+ (k1 + 1) =

(
k1 + 2

2

)
.

But k is the unique integer satisfying
(

k
2

)
≤ e <

(
k+1
2

)
. Thusk = k1 + 1.

It follows that

e = (v − 1) + 1 + 2 + · · ·+ (k − 2) =

(
k + 1

2

)
− j,

and so2k − j = v.
We now consider the cases 2.1a, 2.2a, and 2.3a individually. Actually,µ2.2 does

not exist sincek1 = j1. If µ = µ2.3, thenµ = (3) sincek1 = j1 = 3. This contradicts
the assumption thatµ is a partition of an integer greater than 3. Therefore

µ = µ2.1 = (k1, k1 − 1, . . . , ĵ1, . . . , 2, 1) = (k − 2, k − 3, . . . 2, 1),

sincek1 = j1 andk = k1 + 1. Now since2k − j − 1 = v − 1 we have

π = (2k − j − 1, k − 2, k − 3, . . . 2, 1) =

{
π2.1 if e =

(
v
2

)
or e =

(
v
2

)
− (v − 2),

π2.2 otherwise.

Finally, if µ is a decreasing partition of0, 1, 2, or 3, then eitherπ = (v−1, 2, 1) =
π1.3, or π = (v − 1) = π1.1, or π = (v − 1, j′) = π1.1 for some1 ≤ j′ ≤ 3.

Now, we prove thatπ1.2 andπ1.3 (if they exist) have the same diagonal sequence
asπ1.1 (which always exists). This in turn implies (by using the duality argument
mentioned in Section3) thatπ2.2 andπ2.3 also have the same diagonal sequence as
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π2.1 (which always exists). We use the following observation. If we index the rows
and columns of the adjacency matrixAdj(π) starting at zero instead of one, then
two positions(i, j) and(i′, j′) are in the same diagonal if and only if the sum of their
entries are equal, that is,i + j = i′ + j′. If π1.2 exists then2k′ − j′ ≤ v. Applying
the previous argument toπ1.1 andπ1.2, we observe that the top row of the following
lists shows the positions where there is a black dot inAdj(π1.1) but not inAdj(π1.2)
and the bottom row shows the positions where there is a black dot inAdj(π1.2) but
not inAdj(π1.1).

(v − k′ − 2, v − 1) . . . (v − k′ − t, v − 1) . . . (v − k′ − (k′ − j′), v − 1)
(v − 1− k′, v − 2) . . . (v − 1− k′, v − t) . . . (v − 1− k′, v − (k′ − j′)).

Each position in the top row is in the same diagonal as the corresponding position in
the second row. Thus the number of positions per diagonal is the same inπ1.1 as in
π1.2. That is,δ (π1.1) = δ (π1.2).

Similarly, if π1.3 exists thenk′ ≥ j′ = 3. To show thatδ (π1.1) = δ (π1.3) note
that the only position where there is a black dot inAdj(π1.1) but not inAdj(π1.3)
is (v − 1 − k′, v − 1 − k′ + 3), and the only position where there is a black dot in
Adj(π1.3) but not inAdj(π1.1) is (v − k′, v − 1 − k′ + 2). Since these positions are
in the same diagonal thenδ (π1.1) = δ (π1.3).

Theorem2.4 is proved.
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5. Proof of Lemma 4.1

There is a variation of the formula forP2(Th(π)) in Lemma2.2that is useful in the
proof of Lemma4.1. We have seen that each black dot in the adjacency matrix for a
threshold graph contributes a summand, depending on the location of the black dot
in the matrixE in (3.1). For example, ifπ = (3, 1), then the part of(1/2)E that
corresponds to the black dots in the adjacency matrixAdj(π) for π is

Adj((3, 1)) =


+ • • •

+ • ◦
+ ◦

+

 ,


+ 1 2 3

+ 3
+

+

 .

ThusP2(Th(π)) = 2(1 + 2 + 3 + 3) = 18. Now if we index the rows and columns
of the adjacency matrix starting with zero instead of one, then the integer appearing
in the matrix(1/2)E at entry(i, j) is just i + j. So we can computeP2(Th(π))
by adding all of the positions(i, j) corresponding to the positions of black dots in
the upper-triangular part of the adjacency matrix ofTh(π). What are the positions
of the black dots in the adjacency matrix for the threshold graph corresponding to a
partitionπ = (a0, a1, . . . , ap)? The positions corresponding toa0 are

(0, 1), (0, 2), . . . , (0, a0)

and the positions corresponding toa1 are

(1, 2), (1, 3), . . . , (1, 1 + a1).

In general, the positions corresponding toat in π are

(t, t + 1), (t, t + 2), . . . , (t, t + at).
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We use these facts in the proof of Lemma4.1.
Let µ = (c, c − 1, . . . , ĵ, . . . , 2, 1) be the quasi-complete partition in Dis(v, e −

(v − 1)), where1 ≤ j ≤ c < v − 2 and1 + 2 + · · · + c − j ≥ 4. We deal with
the casesj = 1, j = c, and2 ≤ j ≤ c − 1 separately. Specifically, we show that if
π = (v − 1 : µ) is optimal, thenj = c and

(5.1) π = (v − 1, c− 1, . . . , 2, 1),

with 2c ≥ v − 1.
Arguments for the cases are given below.

5.1. j = 1 : µ = (c, c− 1, . . . , 3, 2)

Since2 + 3 + · · ·+ c ≥ 4 thenc ≥ 3. We show thatπ = (v − 1 : µ) is not optimal.
In this case, the adjacency matrix forπ has the following form:

0 1 2 · · · c · · · v − 1
0 + • • · · · • • • · · · •
1 + • · · · • • ◦ · · · ◦
2 +
...

.. .
c− 1 + • • ◦ · · · ◦

c + ◦ ◦ · · · ◦
c + 1 + ◦ · · · ◦

...
.. .

...
◦

v − 1 +
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5.1.1. 2c ≤ v − 1

Let
π′ = (v − 1, 2c− 1, c− 2, c− 3, . . . , 3, 2).

The parts ofπ′ are distinct and decreasing since2c ≤ v − 1. Thusπ′ ∈ Dis(v, e).
The adjacency matricesAdj(π) andAdj(π′) each havee black dots, many of

which appear in the same positions. But there are differences. Using the fact that
c − 1 ≥ 2, the first row of the following list shows the positions in which a black
dot appears inAdj(π) but not inAdj(π′). And the second row shows the positions
in which a black dot appears inAdj(π′) but not inAdj(π):

(2, c + 1) (3, c + 1) · · · (c− 1, c + 1) (c− 1, c)

(1, c + 2) (1, c + 3) · · · (1, 2c− 1) (1, 2c)

For each of the positions in the list, except the last ones, the sum of the coordinates
for the positions is the same in the first row as it is in the second row. But the
coordinates of the last pair in the first row sum to2c− 1 whereas the coordinates of
the last pair in the second row sum to2c + 1. It follows thatP2(π

′) = P2(π) + 4.
Thus,π is not optimal.

5.1.2. 2c > v − 1

Let π′ = (v− 2, c, c− 1, . . . , 3, 2, 1). Sincec < v− 2, the partitionπ′ is in Dis(v, e).
The positions of the black dots in the adjacency matricesAdj(π) andAdj(π′) are the
same but with only two exceptions. There is a black dot in position(0, v − 1) in π
but not inπ′, and there is a black dot in position(c, c + 1) in π′ but not inπ. Since
c + (c + 1) > 0 + (v − 1), π is not optimal.
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5.2. j = c : µ = (c− 1, . . . , 2, 1)

Since1 + 2 + · · ·+ (c− 1) ≥ 4, thenc ≥ 4. We will show that if2c ≥ v− 1, thenπ
has the same diagonal sequence as the quasi-complete partition. And if2c < v − 1,
thenπ is not optimal.

The adjacency matrix forπ is of the following form:

0 1 2 · · · c · · · v − 1

0 + • • · · · • • · · · •
1 + • • ◦ ◦
...

...

+ • ◦ · · · ◦
c + ◦ · · · ◦

+ · · · ◦
.. .

v − 1 +

5.2.1. 2c ≥ v − 1

The quasi-complete partition inG(v, e) is π′ = (c + 1, c, . . . , k̂, . . . , 2, 1), where
k = 2c− v + 2. To see this, notice that

1 + 2 + · · ·+ c + (c + 1)− k = 1 + 2 + · · ·+ (c− 1) + (v − 1)

for k = 2c − v + 2. Since2c ≥ v − 1 and c < v − 2, then1 ≤ k < c and
π′ ∈ Dis(v, e).
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To see thatπ andπ′ have the same diagonal sequence, we again make a list of
the positions in which there is a black dot inAdj(π) but not inAdj(π′) (the top row
below), and the positions in which there is a black dot inAdj(π′) but not inAdj(π)
(the bottom row below):

(0, c + 2) (0, c + 3) · · · (0, c + t + 1) · · · (0, v − 1)

(1, c + 1) (2, c + 1) · · · (t, c + 1) · · · (v − c− 2, c + 1).

Each position in the top row is in the same diagonal as the corresponding position in
the bottom row, that is,0 + (c + t + 1) = t + (c + 1). Thus the diagonal sequences
δ(π) = δ(π′).

5.2.2. 2c < v − 1

In this case, letπ′ = (v − 1, 2c− 2, c− 3, . . . , 3, 2). And since2c− 2 ≤ v − 3, the
parts ofπ′ are distinct and decreasing. That is,π′ ∈ Dis(v, e).

Using the fact thatc− 2 ≥ 2, we again list the positions in which there is a black
dot in Adj(π) but not inAdj(π′) (the top row below), and the positions in which
there is a black dot inAdj(π′) but not inAdj(π):

(2, c) (3, c) · · · (c− 1, c) (c− 2, c− 1)

(1, c + 1) (1, c + 2) · · · (1, 2c− 2) (1, 2c− 1).

All of the positions but the last in the top row are on the same diagonal as the corre-
sponding position in the bottom row:t+c = 1+(c−1+ t). But in the last positions
we have(c− 2)+ (c− 1) = 2c− 3 and1+ (2c− 1) = 2c. ThusP2(π

′) = P2(π)+6
and soπ is not optimal.
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5.3. 1 < j < c : µ = (c, c− 1, . . . , ĵ, . . . , 2, 1)

We will show thatπ = (v−1, c, c−1, . . . , ĵ, . . . , 2, 1) is not optimal. The adjacency
matrix forπ has the following form:

0 1 2 · · · c
−

1
c c
+

1

c
+

2

· · · v
−

1

0 + • • · · · • • • · · · •
1 + • • • ◦ ◦
...
c− j • • ◦ · · · ◦
c− j + 1

... • ◦ ◦ · · · ◦
...
c− 1 + • ◦ ◦ · · · ◦
c + ◦ ◦ · · · ◦
c + 1 + ◦ · · · ◦
... +

...
v − 1 +

There are two cases.

5.3.1. 2c > v − 1

Let π′ = (v − r, c, c − 1, . . . , ̂j + 1− r, . . . , 2, 1), wherer = min(v − 1 − c, j).
Then r > 1 becausej > 1 and c < v − 2. We show thatπ′ ∈ Dis(v, e) and
P2(π

′) > P2(π).
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In order forπ′ to be in Dis(v, e), the sum of the parts inπ′ must equal the sum of
the parts inπ:

1 + 2 + · · ·+ c + (v − r)− (j + 1− r) = 1 + 2 + · · ·+ c + (v − 1)− j.

And the parts ofπ′ must be distinct and decreasing:

v − r > c > j + 1− r > 1.

The first inequality holds becausev − 1 − c ≥ r. The last two inequalities hold
becausec > j > r > 1. Thusπ′ ∈ Dis(v, e).

The top row below lists the positions where there is a black dot inAdj(π) but not
in Adj(π′); the bottom row lists the positions where there is a black dot inAdj(π′)
but not inAdj(π):

(0, v − 1) · · · (0, v − t) · · · (0, v − r + 1)
(c− j + r − 1, c + 1) · · · (c− j + r − t, c + 1) · · · (c− j + 1, c + 1).

Sincer > 1, the lists above are non-empty. Thus, to ensure thatP2(π
′) > P2(π), it

is sufficient to show that for each1 ≤ t ≤ r − 1, position(0, v − t) is in a diagonal
to the left of position(c− j + r − t, c + 1). That is,

0 < [(c− j + r + 1− t) + (c + 1)]− [0 + (v − t)] = 2c + r − v − j,

or equivalently,
v − 2c + j − 1 ≤ r = min(v − 1− c, j).

The inequalityv− 2c+ j ≤ v− 1− c holds becausej < c, andv− 2c+ j ≤ j holds
becausev − 1 < 2c. It follows thatπ is not an optimal partition.
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5.3.2. 2c ≤ v − 1

Again we show thatπ = (v − 1, c, c− 1, . . . , ĵ, . . . , 2, 1) is not optimal. Let

π′ = (v − 1, 2c− 2, c− 2, . . . , ĵ − 1, . . . , 2, 1).

The sum of the parts inπ equals the sum of the parts inπ′. And the partitionπ′ is
decreasing:

1 ≤ j − 1 ≤ c− 2 < 2c− 2 < v − 1.

The first three inequalities follow from the assumption that1 < j < c. And the
fourth inequality holds because2c ≤ v − 1. Soπ′ ∈ Dis(v, e).

The adjacency matricesAdj(π) andAdj(π′) differ as follows. The top rows of
the following two lists contain the positions where there is a black dot inAdj(π)
but not inAdj(π′); the bottom row lists the positions where there is a black dot in
Adj(π′) but not inAdj(π).

List 1 (2, c + 1) · · · (t, c + 1) · · · (c− j, c + 1)
(1, c + 2) · · · (1, c + t) · · · (1, 2c− j)

List 2 (c− j + 1, c) · · · (c− j + t, c) · · · (c− 1, c)
(1, 2c− j + 1) · · · (1, 2c− j + t) · · · (1, 2c− 1).

Each position,(t, c + 1) (t = 2, . . . , c − j), in the top row in List 1 is in the same
diagonal as the corresponding position,(1, c + t), in the bottom row of List 1. Each
position,(c − j + t, c) (t = 1, . . . , j − 1), in the top row of List 2 is in a diagonal
to the left of the corresponding position,(1, 2c− j + t) in the bottom row of List 2.
Indeed,(c− j + t) + c = 2c− j + t < 2c− j + t + 1 = 1 + (2c− j + t). And since
1 < j, List 2 is not empty. It follows thatP2(π

′) > P2(π) and soπ is not a optimal
partition.

The proof of Lemma4.1 is complete.
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6. Proof of Theorem2.8and Corollaries 2.9and 2.10

The notation in this section changes a little from that used in Section1. In Section
1, we writee =

(
k+1
2

)
− j, with 1 ≤ j ≤ k. Here, we lett = k − j so that

(6.1) e =

(
k

2

)
+ t,

with 0 ≤ t ≤ k − 1. Then Equation (1.1) is equivalent to

(6.2) C(v, e) = C(k, t) = (k− t)(k− 1)2 + tk2 + t2 = k(k− 1)2 + t2 + t(2k− 1).

Before proceeding, we should say that the abuse of notation inC(v, e) = C(k, t)
should not cause confusion as it will be clear which set of parameters(v, e) vs.(k, t)
are being used. Also notice that if we were to expand the range oft to 0 ≤ t ≤ k,
that is allowt = k, then the representation ofe in Equation (6.1) is not unique:

e =

(
k

2

)
+ k =

(
k + 1

2

)
+ 0.

But the value ofC(v, e) is the same in either case:

C(k, k) = C(k + 1, 0) = (k + 1)k2.

Thus we may take0 ≤ t ≤ k.
We begin the proofs now. At the beginning of Section2.5, we showed that

S(v, e) = C(v, e) for e = 0, 1, 2, 3. Also note that, whenm is an integer,Diff(v, m) =
0. We now compareS(v, e) with C(v, e) for 4 ≤ e < m. The first task is to show
thatS(v, e) > C(v, e) for all but a few values ofe that are close tom. We start by
finding upper and lower bounds onS(v, e) andC(v, e).
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Define

U(e) = e
(√

8e + 1− 1
)

and

U(k, t) =

((
k

2

)
+ t

) (√
(2k − 1)2 + 8t− 1

)
.

The first lemma shows thatU(e) is an upper bound forC(v, e) and leads to an
upper bound forS(v, e). The arguments used here to obtain upper and lower bounds
are similar to those in [12].

Lemma 6.1. For e ≥ 2,

C(v, e) ≤ U(e) and

S(v, e) ≤ U(e′) + (v − 1)(4e− v(v − 1)).

It is clearly enough to prove the first inequality. The second one is trivially ob-
tained from Equation (1.2) on linking the values ofS(v, e) andC(v, e).

Proof. We prove the inequality in each interval
(

k
2

)
≤ e ≤

(
k+1
2

)
and so fixk ≥ 2

for now. We make yet another change of variables to remove the square root in the
above expression ofU(k, t).

Sett(x) = (x2 − (2k − 1)2)/8, for 2k − 1 ≤ x ≤ 2k + 1. Then

U(k, t(x))−C(k, t(x)) =
1

64
(x−(2k−1))((2k+1)−x)

(
x2 + 4(k − 2)(k + x)− 1

)
,

which is easily seen to be positive for allk ≥ 2 and all2k − 1 ≤ x ≤ 2k + 1.

http://jipam.vu.edu.au
mailto:
mailto:
http://jipam.vu.edu.au


Sum of Squares of Degrees
in a Graph

B.M. Ábrego, S. Fernández-Merchant,
M.G. Neubauer and W. Watkins

vol. 10, iss. 3, art. 64, 2009

Title Page

Contents

JJ II

J I

Page 43 of 69

Go Back

Full Screen

Close

Now define

L(e) = e
(√

8e + 1− 1.5
)

and

L(k, t) =

((
k

2

)
+ t

) (√
(2k − 1)2 + 8t− 1.5

)
.

The next lemma shows thatL(e) is a lower bound forC(v, e) and leads to a lower
bound forS(v, e).

Lemma 6.2. For e ≥ 3

C(v, e) ≥ L(e) and

S(v, e) ≥ L(e′) + (v − 1)(4e− v(v − 1)).

Proof. As above, sett(x) = (x2 − (2k − 1)2)/8, 2k − 1 ≤ x ≤ 2k + 1, and
x(k, b) = 2k + b,−1 ≤ b ≤ 1. Then

C(k, t(x(k, b)))− L(k, t(x(k, b)))

=
1

64
b2(b + 4k − 4)2 +

1

32
(4k − 7)

(
b +

2(k + 1)

4k − 7

)2

+
4k(22k − 49) + 13

64(4k − 7)

This expression is easily seen to be positive fork ≥ 3.

We are now ready to prove thatS(v, e) > C(v, e) for 0 ≤ e ≤ m for all but a few
small values and some values close tom.

Lemma 6.3. Assumev ≥ 5. For 4 ≤ e < v we haveC(v, e) < S(v, e).

Proof. As we showed above in Lemma6.1, e
(√

8e + 1− 1
)

is an upper bound on
C(v, e) for all 1 ≤ e ≤

(
v
2

)
. Furthermore, it is easy to see that for1 ≤ e < v we
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haveS(v, e) = e2 + e. In fact, the quasi-star graph is optimal for1 ≤ e < v. The
rest is then straightforward. For4 ≤ e, we have

0 < (e− 3)(e− 1) = (e + 2)2 − (8e + 1).

Taking square roots and rearranging some terms proves the result.

Lemma 6.4. Assumev ≥ 5. For v ≤ e ≤ m− 0.55v we have

S(v, e) > C(v, e).

Proof. Assume that0 ≤ e ≤ m. Let e = m − d with 0 ≤ d ≤ m. By Lemmas6.1
and6.2, we have

S(v, e)− C(v, e) ≥ L(e′) + (v − 1)(4e− v(v − 1))− U(e)

= (m + d)
√

8(m + d) + 1− (m− d)
√

8(m− d) + 1

−
((

4(v − 1) +
5

2

)
d +

m

2

)
.

We focus on the first two terms. Set

h(d) = (m + d)
√

8(d + m) + 1− (m− d)
√

8(m− d) + 1.

By considering a real variabled, it is easy to see thath′(d) > 0, h(2)(0) = 0, and
h(3)(d) < 0 on the interval in question. Thush(d) is concave down on0 ≤ d ≤ m.
We are comparingh(d) with the line (4(v − 1) + 5/2)d + m/2 on the interval
[0.55v, m − v]. The concavity ofh(d) allows us to check only the end points. For
d = m− v, we need to check

1

2
v

(
(v − 3)

√
4v2 − 12v + 1− 2

√
8v + 1

)
>

1

4
v

(
4v2 − 21v + 7

)
.
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It is messy, but elementary to verify this inequality forv ≥ 9.
Ford = 0.55v we need to check(

v2

4
+ 0.3v

)√
2v2 + 2.4v + 1−

(
v2

4
− 0.8v

)√
2v2 − 6.4v + 1 > v(2.325v−0.95).

This inequality holds forv ≥ 29. This time the calculations are rather messier, yet
still elementary. For4 < v ≤ 28, we verify the result directly by calculation.

In Section2, we introduced the valuee0 =
(

k0

2

)
.

We now define

e1 =

(
k0 − 1

2

)
,

f1 =

(
v

2

)
−

(
k0 + 1

2

)
,

f2 =

(
v

2

)
−

(
k0 + 2

2

)
.

The next lemma shows that those binomial coefficients and their complements
are all we need to consider.

Lemma 6.5. e1, f2 < m− 0.55v.

As a consequence,S(v, e) > C(v, e) for all 4 ≤ e ≤ max{e1, f2}. We need a
small result on the relationship betweenk0 andv first. The upper bound will be used
later in this section.

Lemma 6.6.
√

2
2

(
v − 1

2

)
− 1

2
< k0 <

√
2

2
v + 1

2
.
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Proof. Since
(

k0

2

)
≤ m ≤

(
k0+1

2

)
− 1

2
, we have

2k0(k0 − 1) ≤ v2 − v ≤ 2k0(k0 + 1)− 2.

Thus
2(k0 − 1/2)2 ≤ (v − 1/2)2 + 1/4 ≤ 2(k0 + 1/2)2 − 2.

That is,

√
2

2

√(
v − 1

2

)2

+
9

4
− 1

2
≤ k0 ≤

√
2

2

√(
v − 1

2

)2

+
1

4
+

1

2
.

The result follows using(v−1/2)2 < (v−1/2)2+9/4 and(v−1/2)2+1/4 < v2.

Proof of Lemma6.5. Note thate1 = e0 − (k0 − 1) ≤ m − (k0 − 1) and f2 =
f1 − (k0 + 1) < m − (k0 + 1) < m − (k0 − 1). Hence, it is enough to show
that 0.55v < (k0 − 1). This follows from the previous lemma forv ≥ 12. For
5 ≤ v ≤ 11, we verify the statement by direct calculation.

Next, we show that the difference function

Diff(v, e) = S(v, e)− C(v, e)

is piecewise linear on the intervals induced by the binomial coefficients
(

k
2

)
, 2 ≤

k ≤ v, and their complements
(

v
2

)
−

(
k
2

)
, 2 ≤ k ≤ v. In Section2.7, we show a

specific example.

Lemma 6.7. As a function ofe, the functionDiff(v, e) is linear on the interval

max

{(
k

2

)
,

(
v

2

)
−

(
l + 1

2

)}
≤ e ≤ min

{(
k + 1

2

)
,

(
v

2

)
−

(
l

2

)}
.
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The line has the slope

(6.3) −1

4

(
1− (2k − 3)2 − (2l − 3)2 + (2v − 5)2

)
.

Proof. If e =
(

k+1
2

)
− j with 1 ≤ j ≤ k, then it is easy to see from Equation (1.1)

that

C(v, e + 1)− C(v, e) = 2e− 2

(
k

2

)
+ 2k = 2e− k(k − 3).

Using Equations (1.2) and (6.2), we find that, ife′ =
(

l
2

)
+ c, 1 ≤ c ≤ l, then

S(v, e + 1)− S(v, e) = 2e + 4(v − 1)− 2

(
v

2

)
− 2l + 2

(
l

2

)
+ 2.

We now have

(S(v, e + 1)− C(v, e + 1))− (S(v, e)− C(v, e))

= k(k − 3) + l(l − 3)− (v − 1)(v − 4) + 2

= −1

4

(
1− (2k − 3)2 − (2l − 3)2 + (2v − 5)2

)
.

The conclusion follows.

Since we already know thatDiff(v, e) > 0 for 4 ≤ e ≤ max{e1, f2}, and
Diff(v, e) = 0 for e = 0, 1, 2, 3, or m, we can now focus on the intervalI1 =
(max{e1, f2}, m). The only binomial coefficients or complements of binomial coef-
ficients that can fall into this interval aree0 andf1.

There are two possible arrangements we need to consider

1. e1, f2 < e0 ≤ f1 < m and
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2. f1 < e0 ≤ m.

The next result deals with the first arrangement.

Lemma 6.8. If e0 ≤ f1 < m, thenq0(v) > 0. Furthermore,S(v, e) ≥ C(v, e)
for 0 ≤ e ≤ m with equality if and only ife = 0, 1, 2, 3, or m; or e = e0 and
(2v − 3)2 − 2(2k0 − 1)2 = −1, 7.

Proof. e0 ≤ f1 impliese0 ≤ m−k0/2. By Lemma6.6, we conclude that forv > 12,

4q0(v) = 1− 2(2k0 − 3)2 + (2v − 5)2

= 16(m− e0)− 16(v − k0) + 8

≥ 24k0 − 16v + 8

≥ 24
(√

2/2(v − 1/2)− 1/2
)
− 16v + 8

=
(
12
√

2− 16
)

v −
(
6
√

2 + 4
)

> 0.

For smaller values, we verify thatq0(v) > 0 by direct calculation.
If e = f1 in Equation (6.2), and sincee0 ≤ f1 < m, thenk = k0 andt = f1−

(
k0

2

)
.

Using Equation (1.2), Diff(v, f1) = (m− f1)q0(v) > 0. Similarly, sincef2 < e0 ≤
f1, then fore = e′0 in Equation (6.2), we havek = k0 + 1 and t = e′0 −

(
k0+1

2

)
.

Again, using Equation (1.2),

Diff(v, e0)(6.4)

= (v2 − 3v − 2k2
0 + 2k0 + 2)(v2 − 3v − 2k2

0 + 2k0)/4

= ((2v − 3)2 − 2(2k0 − 1)2 + 1)((2v − 3)2 − 2(2k0 − 1)2 − 7)/64.

Notice thatDiff(v, e0) ≥ 0 since both factors in (6.4) are even and differ by 2.
Equality occurs if and only if(2v − 3)2 − 2(2k0 − 1)2 = −1 or 7. Finally, observe
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thatDiff(v, e1) > 0 andDiff(v, f2) > 0 by Lemmas6.4 and6.5, ande1 andf2 are
both less thanf1. HenceDiff(v, e) ≥ 0 for e ∈ [max{e1, f2}, m] follows from the
piecewise linearity ofDiff(v, e). The rest follows from Lemma6.4.

Now we deal with the casef1 < e0. There are three cases depending on the sign
of q0(v). All these cases require the following fact. Iff1 < e0, then fore0 ≤ e ≤ m
in Equation (6.2), k = k0 andt = e −

(
k0

2

)
. Sincef1 < e ≤ m, for e′ in Equation

(6.2), k = k0 andt = e′ −
(

k0

2

)
. Thus, using Equation (1.2),

(6.5) Diff(v, e) = (m− e)q0(v)

wheneverf1 < e0 ≤ e ≤ m. This automatically gives the sign ofDiff(v, e) near
m. By the piecewise linearity ofDiff(v, e) given by Lemma6.7, the only thing
remaining is to investigate the sign ofDiff(v, f1).

Lemma 6.9.Assumef1 < e0 andq0(v) > 0. ThenS(v, e) ≥ C(v, e) for 0 ≤ e ≤ m,
with equality if and only ife = 0, 1, 2, 3, m.

Proof. First, note thate1 ≤ f1 < e0 < m, sincee1 > f1 occurs only ifm = e0 and
thusq0(v) = 2 − 4(v − k0) < 0. For e0 ≤ e < m, by Equation (6.5), Diff(v, e) =
(m − e)q0(v) > 0. Furthermore, ife = f1 in Equation (6.2), thenk = k0 − 1 and
t = f1 −

(
k0−1

2

)
. Thus, by Equation (1.2),

Diff(v, f1) = (−4k4
0 +16k3

0 +4v2k2
0−12vk2

0−8v2k0 +4k0−v4 +6v3 +v2−6v)/4,

and

Diff(v, f1)−Diff(v, e0) = (2k2
0 − v2 + v)(−2− 2k2

0 + 8k0 + v2 − 5v)/2.

The first factor is positive becausef1 < e0. The second factor is positive forv ≥
15. This follows from the fact thatv <

√
2k0 + (

√
2 + 1)/2 by Lemma6.6, and
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−2− 2k2
0 + 2k0 + v2 − v ≥ 0 becausee1 ≤ f1. Forv ≥ 15,

−2− 2k2
0 + 8k0 + v2 − 5v = (−2− 2k2

0 + 2k0 + v2 − v) + 2(3k0 − 2v)

≥ 2(3k0 − 2v)

> 0.

SinceDiff(v, e0) > 0, thenDiff(v, f1) > 0 for v ≥ 15. The only case left to
verify satisfying the conditions of this lemma isv = 14. In this case,f1 = 36 and
Diff(14, 36) = 30 > 0.

The previous two lemmas provide a proof of part 1 of Theorem2.8.

Lemma 6.10. Assumef1 < e0 andq0(v) = 0. ThenS(v, e) ≥ C(v, e) for 0 ≤ e ≤
m with equality if and only ife = 0, 1, 2, 3, e0, e0 + 1, . . . ,m.

Proof. For e0 ≤ e ≤ m, by Equation (6.5), Diff(v, e) = (m − e)q0(v) = 0. As in
the previous lemma, forv ≥ 15

Diff(v, f1)−Diff(v, e0) = (2k2
0 − v2 + v)(−2− 2k2

0 + 8k0 + v2 − 5v)/2 > 0

and thusDiff(v, f1) > 0. The only value ofv < 15 satisfying the conditions of this
lemma isv = 6 with f1 = 5, andDiff(6, 5) = 4 > 0.

The previous lemma provides a proof for part 3 of Theorem2.8.

Lemma 6.11. Assumef1 < e0 ≤ m and q0(v) < 0. ThenS(v, e) ≥ C(v, e) for
0 ≤ e ≤ m − R0 andS(v, e) ≤ C(v, e) for m − R0 ≤ e ≤ m with equality if and
only if e = 0, 1, 2, 3, m−R0, m.

Proof. For e0 ≤ e < m, by Equation (6.5), Diff(v, e) = (m − e)q0(v) < 0. This
time it is possible thatf1 < e1. In this case, by Lemmas6.4and6.5, we know that
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Diff(v, f1), Diff(v, e1) > 0. Also,m = e0 andR0 = 0, implyingDiff(v, e0) = 0 and
Diff(v, e) > 0 for all e1 ≤ e < e0 = m−R0 = m.

If e1 ≤ f1, by Lemma6.7, Diff(v, e) is linear as a function ofe on the interval
[f1, e0]. Let−q1(v) be the slope of this line. Sincee1 < f1 < e0 ≤ m, thenk = k0

and l = k0 in Lemma6.7. Thusq1(v) = (−1 − 2(2k0 − 4)2 + (2v − 5)2)/4 =
q0(v) + 2k0 − 4 andDiff(v, f1) = (m− e0)q0(v) + (e0 − f1)q1(v). The line through
the two points(e0, Diff(v, e0)) and(f1, Diff(v, f1)) crosses thex-axis atm−R0. We
now show thatf1 < m−R0 < e0, which in turn proves thatDiff(v, f1) > 0.

We have

m−R0 = e0 + (m− e0)
q0(v)

q1(v)
(6.6)

= m− (m− e0)
2k0 − 4

q1(v)
.(6.7)

Sincee0 ≤ m andv > 4, then

(6.8) k0 ≤
1

2
+

√(
v

2

)
+

1

4
< 2 +

√(
v − 2

2

)
,

which is equivalent toq1(v) > 0. Thusm − R0 < e0 by Equation (6.6). To prove
f1 < m−R0, according to Equation (6.7), we need to show

(m− e0)
2k0 − 4

q1(v)
<

(
k0 + 1

2

)
−m.

After multiplying by q1(v), the last inequality becomes(
m−

(
k0 + 1

2

)
+

k0

2

)
(2k0 − 4) <

((
k0 + 1

2

)
−m

) (
(v − 2)(v − 3)− 2(k0 − 2)2

)
,
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which is equivalent to

k0

2
(2k0 − 4) <

((
k0 + 1

2

)
−m

)
((v − 2)(v − 3)− 2(k0 − 2)(k0 − 3)) .

Sincef1 < e0 we know thatk0/2 <
(

k0+1
2

)
−m. Also, Inequality (6.8) is equivalent

to 2k0− 4 < (v− 2)(v− 3)− 2(k0− 2)(k0− 3). Multiplying these two inequalities
yields the result.

The previous lemma provides a proof of part 2 of Theorem2.8.
The expression form − R0 is sometimes an integer. Thosev < 1000 for which

m − R0 is an integer are 14, 17, 21, 120, 224, 309, 376, 393, 428, 461, 529, 648,
697, and 801.

In the remaining part of this section, we prove Corollaries2.9and2.10.

Lemma 6.12. Assume thatv > 4 and q0(v) < 0. ThenR0 ≤ αv whereα =
1−

√
2/2.

Proof. We show thatR0 ≤ αv for v > 4. Recall that

R0 =
(m− e0)(2k0 − 4)

q1(v, k0)
.

Thus we need to show

αvq1(v, k0)− (m− e0)(2k0 − 4) > 0.

Define the functionh(x) = αvq1(v, x) −
(
m−

(
x
2

))
(2x − 4). The interval forx is

limited by the condition thatq0(v) < 0 which implies that

i1 :=

√
2

2
v − 5

√
2

4
+

3

2
< k0.
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Furthermore, sincee0 ≤ m, we know thati2 := (
√

2/2)v + 1/2 > k0. We show that
h(x) is increasing onI := [i1, i2]. Note that, sincev > 4,

h′′(x) = −6−
(
4− 2

√
2
)

v + 6x > 0

for x ∈ I. Henceh(x) is concave up onI. Furthermore

h′(i1) =
(
3− 2

√
2
)

v2 +

(
−10 +

11

2

√
2

)
v − 15

4

√
2 +

73

8
> 0

for v ≥ 11, and hence

h(x) > h(i1)

=
1

32

((
−72 + 58

√
2
)

v + 23
(
6− 5

√
2
))

> 0

for v ≥ 11. The only values ofv greater than 4 and smaller than 11 for which
q0(v) < 0 arev = 7, 10. The result is easily verified in those two cases.

How good is the boundR0 ≤ αv? Suppose there is a parameterβ such that
R0 ≤ βv with β < α. Assume thatq0(v) = −2. There are infinitely many
values ofv for which this is true (see Section9). In all of those casesk0(v) =

1/2
√

(9 + (2v − 5)2)/2 + 3/2. We have the following

(βvq1(v)− (m− e0)(2k0 − 4))/v2 →
√

2β −
√

2 + 1 ≥ 0

asv →∞. Thusβ ≥ α and henceα is the greatest number for which the bound on
R0 holds.

SinceS(v, e) ≥ C(v, e) for all 1 ≤ e ≤ m−R0, we have proved Corollary2.9.
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To prove Corollary2.10, we need to investigate the other non-trivial case of equal-
ity in Theorem2.8. It occurs whene = e0 and(2v − 3)2 − 2(2k0 − 1)2 = −1, 7.
Notice that this implies

m− e0 =
1

16

(
(2v − 1)2 − 2(2k0 − 1)2 + 1

)
=

v

2
or

v − 1

2
.

There are infinitely many values ofv such that(2v − 3)2 − 2(2k0 − 1)2 = −1, and
infinitely many values ofv such that(2v − 3)2 − 2(2k0 − 1)2 = 7 (see Section9).
Thus the most we can say is thatS(v, e) > C(v, e) for all 4 ≤ e < m − v/2, and
Corollary2.10is proved.
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7. Proof of Corollary 2.11

Recall that for eachv, k0(v) = k0 is a unique positive integer such that(
k0

2

)
≤ 1

2

(
v

2

)
<

(
k0 + 1

2

)
.

It follows that

(7.1) −1 ≤ (2v − 1)2 − 2(2k0 − 1)2, and (2v − 1)2 − 2(2k0 + 1)2 ≤ −17.

Let us restrict our attention to the parts of the hyperbolas

Hlow : (2v − 1)2 − 2(2k − 1)2 = −1, Hhigh : (2v − 1)2 − 2(2k + 1)2 = −17

that occupy the first quadrant as shown in Figure10. Then each lattice point,(v, k0)
is in the closed region bounded byHlow below andHhigh above. Furthermore, the
sign of the quadratic form(2v− 5)2− 2(2k− 3)2 + 1 determines whether the quasi-
star graph is optimal inG(v, e) for all 0 ≤ e ≤ m. By Theorem2.8, if (2v − 5)2 −
2(2k − 3)2 + 1 ≥ 0, thenS(v, e) ≥ C(v, e) (and the quasi-star graph is optimal) for
0 ≤ e ≤ m. Thus, if the lattice point(v, k) is betweenHhigh and the hyperbola

H : (2v − 5)2 − 2(2k − 3)2 = −1,

then the quasi-star graph is optimal inG(v, e) for all 0 ≤ e ≤ m. But if the lattice
point (v, k0) is betweenH andHlow, then there exists a value ofe in the interval
4 ≤ e ≤ m such that the quasi-complete graph is optimal and the quasi-star graph
is not optimal. Of course, if the lattice point(v, k0) is on H, then the quasi-star
graph is optimal for all0 ≤ e ≤ m but the quasi-complete graph is also optimal for(

k0

2

)
≤ e ≤ m. Apparently, the density limit

lim
v→∞

n(v)

v

http://jipam.vu.edu.au
mailto:
mailto:
http://jipam.vu.edu.au


Sum of Squares of Degrees
in a Graph

B.M. Ábrego, S. Fernández-Merchant,
M.G. Neubauer and W. Watkins

vol. 10, iss. 3, art. 64, 2009

Title Page

Contents

JJ II

J I

Page 56 of 69

Go Back

Full Screen

Close

5 10 15 20
k

5

10

15

20

25

v

Figure 10: Hyperbolas(2v − 1)2 − 2(2k − 1)2 = −1, (2v − 1)2 − 2(2k + 1)2 = −17, (2v − 5)2 −
2(2k − 3)2 = −1

from Corollary 2.11 depends on the density of lattice points(v, k) in the region
betweenHhigh andH.
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We can give a heuristic argument to suggest that the limit is2−
√

2. The asymp-
totes for the three hyperbolas are

A : v − 5

2
=
√

2

(
k − 3

2

)
,

Alow : v − 1

2
=
√

2

(
k − 1

2

)
,

Ahigh : v − 1

2
=
√

2

(
k +

1

2

)
,

and intersect thek-axis at

k =
6− 5

√
2

4
,

klow =
2−

√
2

4
,

khigh =
−2−

√
2

4
.

The horizontal distance betweenAhigh andAlow is

klow − khigh = 1

and the horizontal distance betweenAhigh andA is

k − khigh = 2−
√

2.

To make the plausibility argument rigorous, we need a theorem of Weyl [15, Satz
13, page 334], [9, page 92]:
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For any real numberr, let 〈r〉 denote the fractional part ofr. That is,〈r〉 is the
unique number in the half-open interval[0, 1) such thatr−〈r〉 is an integer. Now let
β be an irrational real number. Then the sequence〈nβ〉, n = 1, 2, 3, . . ., is uniformly
distributed on the interval[0, 1).

In our problem, the point(v, k0) is between the hyperbolasHlow andHhigh and,
with few exceptions,(v, k0) is also between the asymptotesAlow andAhigh. To be
precise, suppose that(v, k0) satisfies Inequalities (7.1). We need an easy fact from
number theory here. Namely thaty2 − 2x2 ≡ −1 (mod 8) for all odd integersx, y.
Thus

2(2k0 − 1)2 < (2v − 1)2 < 2(2k0 + 1)2,

unless(2v − 1)2 − 2(2k0 − 1)2 = −1 (these are the exceptions). But for all other
points(v, k0) we have

√
2

(
k0 −

1

2

)
< v − 1

2
<
√

2

(
k0 +

1

2

)
.

Thus

0 <

√
2

2

(
v − 1

2

)
+

1

2
− k0 < 1

and so √
2

2

(
v − 1

2

)
+

1

2
− k0 =

〈√
2

2

(
v − 1

2

)
+

1

2

〉
.

Next, consider the conditionq0(v, k0) ≥ 0, which is equivalent to

(2v − 5)2 − 2(2k0 − 3)2 ≥ −1.
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Unless(2v − 5)2 − 2(2k0 − 3)2 = −1, q0(v, k0) ≥ 0 is equivalent to〈√
2

2

(
v − 1

2

)
+

1

2

〉
>
√

2− 1.

To summarize, if(v, k0) does not satisfy either of these Pell’s Equations

(2v − 1)2 − 2(2k0 − 1)2 = −1, (2v − 5)2 − 2(2k0 − 3)2 = −1,

thenq0(v, k0) ≥ 0 if and only if

√
2− 1 <

〈√
2

2

(
v − 1

2

)
+

1

2

〉
< 1.

From Weyl’s Theorem, we know that the fractional part in the above inequality is
uniformly distributed in the interval[0, 1). Since the density of the values ofv
for which (v, k0) is a solution to one of the Pell’s Equations above is zero, then
limv→∞ n(v)/v = 1− (

√
2−1) = 2−

√
2. The proof of Corollary2.11is complete.
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8. Proofs of Theorems2.5, 2.6, and 2.7

We first prove Theorem2.5. If π1.2 andπ1.3 are optimal partitions, then according to
Theorem2.4, j′ = 3, k′ ≥ j′ + 2 = 5, and sov ≥ 2k′ − j′ ≥ 7. In addition, the
quasi-star partition is optimal, that is,S(v, e) ≥ C(v, e). Thus by Corollary2.10,
eithere ≥

(
v
2

)
− 3 or e ≤ m + v/2 =

(
v
2

)
/2 + v/2. If e ≥

(
v
2

)
− 3 and sincej′ = 3,

thenk′ ≤ 3, contradictingk′ ≥ 5. Thuse ≤ 1
2

(
v
2

)
+ v

2
. Since2k′ − 3 ≤ v and

e =
(

v
2

)
−

(
k′+1

2

)
+ 3, then

3 +
1

2

(
v

2

)
≤

(
k′ + 1

2

)
+

v

2
≤

(
(v + 3) /2 + 1

2

)
+

v

2
.

Therefore7 ≤ v ≤ 13. In this range ofv, the only pairs(v, e) that satisfy all the
required inequalities are(v, e) = (7, 9) or (9, 18).

Using the relation between a graph and its complement described below, Equation
(1.2), we conclude that ifπ2.2 andπ2.3 are optimal partitions, then(v, e) = (7, 12) or
(9, 18).

As a consequence, we see that the pair(9, 18) is the only candidate to have six
different optimal partitions. This in fact is the case. The six graphs and partitions
are depicted in Figure11. We note here that Byer [3] also observed that the pair
(v, e) = (9, 18) yields six different optimal graphs. Another consequence is that
the pairs(7, 9) and (7, 12) are the only candidates to have five different optimal
partitions. For the pair(7, 9), the partitionsπ1.1, π1.2, π1.3, π2.1 andπ2.2 all exist and
are optimal. However,π1.3 = π2.2. Thus the pair(7, 9) only has four distinct optimal
partitions. Similarly, for the pair(7, 12) the partitionsπ1.1, π1.2, π2.1, π2.2 andπ2.3

all exist and are optimal, butπ1.2 = π2.3. So there are no pairs with five optimal
partitions, and thus all other pairs have at most four optimal partitions. Moreover,
S(v, e) = C(v, e) is a necessary condition to have more than two optimal partitions,
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since any pair other than(7, 9) or (7, 12) must satisfy that bothπ1.1 andπ2.1 are
optimal. The proof of Theorem2.5 is complete.

Figure 11: (v, e) = (9, 18) is the only pair with six different optimal graphs. For all graphs,
P2(Th(πi.j)) = max(v, e) = C(v, e) = S(v, e) = 192

In Theorem2.6, e =
(

k
2

)
=

(
k+1
2

)
− k and thusj = k. Note that, ifv > 5

and k satisfy Equation (2.1), thenk + 2 < v < 2k − 1, and sok ≥ 4. Thus
e =

(
v
2

)
−

(
k+2
2

)
+ (2k + 2 − v) with 4 ≤ 2k + 2 − v ≤ k + 1, that is,k′ = k + 1

andj′ = 2k + 2 − v. Hence,π1.1 = (v − 1, v − 2, . . . , k + 2, 2k + 2 − v) and
π2.1 = (k − 1, ..., 1) (which always exist) are different because2k + 2− v ≥ 4 > 1.
The partitionπ1.2 = (v− 2, ..., k) exists becausek ≤ v− 3, and it is different toπ2.1

becausek ≥ 4 > 1 (π1.2 6= π1.1 by definition). Finally, the partitionsπ1.3, π2.2, and
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π2.3 do not exist becausej′ = 2k + 2 − v ≥ 4, k + 1 > k − 1 = 2k − j − 1, and
j = k ≥ 4, respectively. Theorem2.6 is proved.

Now, if v andk satisfy Equation (2.2), then 1
2

(
v
2

)
=

(
k+1
2

)
− 3. Moreover, since

v > 9, thenk > (v + 3)/2. Hence, in Theorem2.7, e = m = 1
2

(
v
2

)
=

(
k+1
2

)
− 3 =(

v
2

)
−

(
k+1
2

)
+ 3, with k ≥ 3 becausev > 1. That is,k = k′ and j = j′ = 3.

Thusπ1.1 = (v − 1, v − 2, ..., k + 1, 3), π1.3 = (v − 1, v − 2, ..., k + 1, 2, 1), π2.1 =
(k− 1, k− 2, ..., 4, 3), andπ2.3 = (k− 1, k− 2, ..., 4, 2, 1) all exist and are different
becausek = v does not yield a solution to (2.2). Also π1.2 andπ2.2 do not exist
because2k − j − 1 = 2k′ − j′ − 1 = 2k − 4 > v − 1. Theorem2.7 is proved.

http://jipam.vu.edu.au
mailto:
mailto:
http://jipam.vu.edu.au


Sum of Squares of Degrees
in a Graph

B.M. Ábrego, S. Fernández-Merchant,
M.G. Neubauer and W. Watkins

vol. 10, iss. 3, art. 64, 2009

Title Page

Contents

JJ II

J I

Page 63 of 69

Go Back

Full Screen

Close

9. Pell’s Equation

Pell’s Equation

(9.1) V 2 − 2J2 = P,

whereP ≡ −1 (mod 8), appears several times in this paper. For example, a con-
dition for the equality ofS(v, e) and C(v, e) in Theorem2.8 involves the Pell’s
Equation(2v− 5)2 − 2(2k0 − 3)2 = −1. And in Theorem2.7, we have(2v− 1)2 −
2(2k + 1)2 = −49. There are infinitely many solutions to each of these equations.
In each instance,V andJ in Equation (9.1) are positive odd integers andP ≡ −1
(mod 8) . The following lemma describes the solutions to the fundamental Pell’s
Equation.

Lemma 9.1 ([7]). All positive integral solutions of

(9.2) V 2 − 2J2 = −1

are given by
V + J

√
2 = (1 +

√
2)(3 + 2

√
2)n,

wheren is a nonnegative integer.

It follows from the lemma that if(V, J) is a solution to Equation (9.2), then both
V andJ are odd. We list the first several solutions to Equation (9.2):

V 1 7 41 239 1393
J 1 5 29 169 985

.

Now let us consider the equation(2v − 3)2 − 2(2k − 1)2 = −1 from Theorem
2.6. Since all of the positive solutions(V, J) consist of odd integers, the pair(v, k)
defined by

v =
V + 3

2
, k =

J + 1

2
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are integers and satisfy Equation (2.1). Thus there is an infinite family of values for
v > 5 such that there are exactly 3 optimal partitions in Dis(v, e), wheree =

(
k
2

)
.

The following is a list of the first three values ofv, k, e in this family:

v 22 121 698
k 15 85 493
e 105 3570 121278

Next, consider Equation (2.2) from Theorem2.7 and the corresponding Pell’s
Equation:

V 2 − 2J2 = −49.

A simple argument using the norm function,N(V + J
√

2) = V 2 − 2J2 shows that
all positive integral solutions are given by

V + J
√

2 = (1 + 5
√

2)(3 + 2
√

2)n, (7 + 7
√

2)(3 + 2
√

2)n, or

(17 + 13
√

2)(3 + 2
√

2)n,

wheren is a nonnegative integer. The first several solutions are

V 1 7 17 23 49 103 137
J 5 7 13 17 35 73 97

.

Thus the pairs(v, k), defined by

v =
V + 1

2
, k =

J − 1

2

satisfy Equation (2.2). The first three members,(v, k, e) of this infinite family of
partitions Dis(v, e) with v > 9, e =

(
v
2

)
/2, and exactly 4 optimal partitions are:

v 12 25 52 69
k 8 17 36 48
e 33 150 663 1173
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The Pell’s Equation

(9.3) 4q0(v) = (2v − 5)2 − 2(2k0 − 3)2 + 1 = 0

appears in Theorem2.8. Here again there are infinitely many solutions to the equa-
tion (2v − 5)2 − 2(2k − 3)2 = −1 starting with:

v 2 2 3 3 6 23 122
k 1 2 1 2 4 16 86

.

The proof of Corollary2.9 requires infinitely many solutions to the equation
q0(v) = −2, which is equivalent to the Pell’s Equation

(9.4) (2v − 5)2 − 2(2k − 3)2 = −9.

All its positive integral solutions are given by

v =
V + 5

2
, k =

J + 3

2
, V + J

√
2 = (3 + 3

√
2)(3 + 2

√
2)n,

wheren is a nonnegative integer. The first several solutions are

v 3 12 63 360 2091
k 2 8 44 254 1478

The proof of Corollary2.10requires infinitely many solutions to the Pell’s Equation

(9.5) (2v − 3)2 − 2(2k − 1)2 = 7,

and infinitely many solutions to the Pell’s Equation

(9.6) (2v − 3)2 − 2(2k − 1)2 = −1.
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All positive integral solutions to (9.5) are given by

v =
V + 3

2
, k =

J + 1

2
, V +J

√
2 = (3+

√
2)(3+2

√
2)n, (5+3

√
2)(3+2

√
2)n,

wheren is a nonnegative integer. The first several solutions are

v 3 4 8 15 39 80
k 1 2 5 10 27 56

We have shown that Equation (9.6) has infinitely many solutions, as it is the same
equation that appears in Theorem2.6. However, in Corollary2.10, k must bek0,
the unique integer that satisfies Inequality (1.3). This condition is also necessary
for Equations (9.3), (9.4), and (9.5). In other words, we must show that forv large
enough, every solution(v, k) to one of the Equations (9.3), (9.4), or (9.5), satisfies
Inequality (1.3). We do this only for Equation (9.3) as all other cases are similar.

Lemma 9.2. Let (v, k) be a positive integral solution to Equation (9.3) with v > 3.
Then(v, k) satisfies Inequality (1.3). That is,k = k0.

Proof. Suppose that(v, k) is a solution to Equation (9.3) with v > 3. Thenk < v <
2k. Inequality (1.3) consists of two parts, the first of which is(

k

2

)
≤ 1

2

(
v

2

)
.

To prove this part, we compute

1

2

(
v

2

)
−

(
k

2

)
=

1

2

(
v

2

)
−

(
k

2

)
−

(
(2v − 5)2 − 2(2k − 3)2 + 1

)
/16

= (v − k)− 1

2
> 0.
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The second part of Inequality (1.3) is

1

2

(
v

2

)
≤

(
k + 1

2

)
.

This time, we have(
k + 1

2

)
− 1

2

(
v

2

)
=

(
k + 1

2

)
− 1

2

(
v

2

)
+

(
(2v − 5)2 − 2(2k − 3)2 + 1

)
/16

= 2k − v +
1

2
> 0.
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