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Abstract

In this paper, we define and introduce some new concepts of strongly ϕ-preinvex
(ϕ-invex) functions and strongly ϕη-monotone operators. We establish some
new relationships among various concepts of ϕ-preinvex (ϕ-invex) functions. As
special cases, one can obtain various new and known results from our results.
Results obtained in this paper can be viewed as refinement and improvement
of previously known results.
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1. Introduction
In recent years, several extensions and generalizations have been considered
for classical convexity. A significant generalization of convex functions is that
of invex functions introduced by Hanson [1]. Hanson’s initial result inspired
a great deal of subsequent work which has greatly expanded the role and ap-
plications of invexity in nonlinear optimization and other branches of pure and
applied sciences. Weir and Mond [9] have studied the basic properties of the
preinvex functions and their role in optimization. It is well-known that the prein-
vex functions and invex sets may not be convex functions and convex sets. In
recent years, these concepts and results have been investigated extensively in
[2], [4], [6] – [9].

Equally important is another generalization of the convex function called the
ϕ-convex function which was introduced and studied by Noor [3]. In particu-
lar, these generalizations of the convex functions are quite different and do not
contain each other. In this paper, we introduce and consider another class of
nonconvex functions, which include these generalizations as special cases. This
class of nonconvex functions is called the stronglyϕ-preinvex (ϕ-invex) func-
tions. Several new concepts ofϕη-monotonicity are introduced. We establish
the relationship between these classes and derive some new results. As special
cases, one can obtain some new and correct versions of known results. Re-
sults obtained in this paper present a refinement and improvement of previously
known results.
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2. Preliminaries
Let K be a nonempty closed set in a real Hilbert spaceH. We denote by〈·, ·〉
and‖ · ‖ the inner product and norm respectively. LetF : K → H andη(·, ·) :
K × K → R be continuous functions. Letϕ : K −→ R be a continuous
function.

Definition 2.1 ([5]). Letu ∈ K. Then the setK is said to beϕ-invex atu with
respect toη(·, ·) andϕ(·), if

u + teiϕη(v, u) ∈ K, ∀u, v ∈ K, t ∈ [0, 1].

K is said to be anϕ-invex set with respect toη andϕ, if K is ϕ-invex at each
u ∈ K. Theϕ-invex setK is also called aϕη-connected set. Note that the
convex set withϕ = 0 andη(v, u) = v− u is anϕ-invex set, but the converse is
not true. For example, the setK = R −

(
−1

2
, 1

2

)
is anϕ-invex set with respect

to η andϕ = 0, where

η(v, u) =

{
v − u, for v > 0, u > 0 or v < 0, u < 0

u− v, for v < 0, u > 0 or v < 0, u < 0.

It is clear thatK is not a convex set.

Remark 1.

(i) If ϕ = 0, then the setK is called the invex (η-connected) set, see [2, 4, 9].

(ii) If η(v, u) = v− u, then the setK is called theϕ-convex set, see Noor [3].

(iii) If ϕ = 0 andη(v, u) = v − u, then the setK is called the convex set.
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From now onwardK is a nonempty closedϕ-invex set inH with respect to
ϕ andη(·, ·), unless otherwise specified.

Definition 2.2. The functionF on theϕ-invex setK is said to be stronglyϕ-
preinvex with respect toη andϕ, if there exists a constantµ > 0 such that

F (u + teiϕη(v, u)) ≤ (1− t)F (u) + tF (v)− µt(1− t)‖η(v, u)‖2,

∀u, v ∈ K, t ∈ [0, 1].

The functionF is said to be stronglyϕ-preconcave if and only if−F is ϕ-
preinvex. Note that every strongly convex function is a stronglyϕ-preinvex
function, but the converse is not true.

Definition 2.3. The functionF on theϕ-invex setK is called strongly quasi
ϕ-preinvex with respect toϕ andη, if there exists a constantµ > 0 such that

F (u + teiϕη(v, u)) ≤ max{F (u), F (v)} − µt(1− t)‖η(v, u)‖2,

∀u, v ∈ K, t ∈ [0, 1].

Definition 2.4. The functionF on theϕ-invex setK is said to be logarithmic
ϕ-preinvex with respect toϕ andη, if there exists a constantµ > 0 such that

F (u + teiϕη(v, u)) ≤ (F (u))1−t(F (v))t − µt(1− t)‖η(v, u)‖2,

u, v ∈ K, t ∈ [0, 1],

whereF (·) > 0.
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From the above definitions, we have

F (u + teiϕη(v, u)) ≤ (F (u))1−t(F (v))t − µt(1− t)‖η(v, u)‖2

≤ (1− t)F (u) + tF (v)− µt(1− t)‖η(v, u)‖2

≤ max{F (u), F (v)} − µt(1− t)‖η(v, u)‖2

< max{F (u), F (v)} − µt(1− t)‖η(v, u)‖2.

For t = 1, Definitions2.2and2.4reduce to the following, which is mainly due
to Noor and Noor [5].

Condition A.
F (u + eiϕη(v, u)) ≤ F (v), ∀u, v ∈ K,

which plays an important part in studying the properties of theϕ-preinvex (ϕ-
invex) functions.

Forϕ = 0, ConditionA reduces to the following for preinvex functions

Condition B.
F (u + η(v, u)) ≤ F (v), ∀u, v ∈ K.

For the applications of ConditionB, see [2, 4, 7, 8].

Definition 2.5. The differentiable functionF on theϕ-invex setK is said to be
a stronglyϕ-invex function with respect toϕ andη(·, ·), if there exists a constant
µ > 0 such that

F (v)− F (u) ≥ 〈F ′
ϕ(u), η(v, u)〉+ µ‖η(v, u)‖2, ∀u, v ∈ K,

whereF ′
ϕ(u) is the differential ofF at u in the direction ofv − u ∈ K. Note

that forϕ = 0, we obtain the original definition of strongly invexity.
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It is well known that the concepts of preinvex and invex functions play a
significant role in mathematical programming and optimization theory, see [1]
– [9] and the references therein.

Remark 2. Note that forµ = 0, Definitions2.2– 2.5reduce to the ones in [5].

Definition 2.6. An operatorT : K −→ H is said to be:

(i) stronglyη-monotone, iff there exists a constantα > 0 such that

〈Tu, η(v, u)〉+〈Tv, η(u, v)〉 ≤ −α{‖η(v, u)‖2+‖η(u, v)‖2}, ∀u, v ∈ K.

(ii) η-monotone, iff

〈Tu, η(v, u)〉+ 〈Tv, η(u, v)〉 ≤ 0, ∀u, v ∈ K.

(iii) stronglyη-pseudomonotone, iff there exists a constantν > 0 such that

〈Tu, η(v, u)〉+ ν‖η(v, u)‖2 ≥ 0 =⇒ −〈Tv, η(u, v)〉 ≥ 0, ∀u, v ∈ K.

(iv) strongly relaxedη-pseudomonotone, iff, there exists a constantµ > 0 such
that

〈Tu, η(v, u)〉 ≥ 0 =⇒ −〈Tv, η(u, v)〉+ µ‖η(u, v)‖2 ≥ 0, ∀u, v ∈ K.

(v) strictly η-monotone, iff,

〈Tu, η(v, u)〉+ 〈Tv, η(u, v)〉 < 0, ∀u, v ∈ K.
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(vi) η-pseudomonotone, iff,

〈Tu, η(v, u)〉 ≥ 0 =⇒ 〈Tv, η(u, v)〉 ≤ 0, ∀u, v ∈ K.

(vii) quasiη-monotone, iff,

〈Tu, η(v, u)〉 > 0 =⇒ 〈Tv, η(u, v)〉 ≤ 0, ∀u, v ∈ K.

(viii) strictly η-pseudomonotone, iff,

〈Tu, η(v, u)〉 ≥ 0 =⇒ 〈Tv, η(u, v)〉 < 0, ∀u, v ∈ K.

Note forϕ = 0, ∀u, v ∈ K, theϕ-invex setK becomes an invex set. In
this case, Definition2.7 is exactly the same as in [4, 5, 6, 8]. In addition, if
ϕ = 0 andη(v, u) = v − u, then theϕ-invex setK is the convex setK. This
clearly shows that Definition2.7 is more general than and includes the ones in
[4, 5, 6, 7, 8] as special cases.

Definition 2.7. A differentiable functionF on anϕ-invex setK is said to be
strongly pseudoϕη-invex function, iff, there exists a constantµ > 0 such that

〈F ′
ϕ(u), η(v, u)〉+ µ‖η(u, v)‖2 ≥ 0 =⇒ F (v)− F (u) ≥ 0, ∀u, v ∈ K.

Definition 2.8. A differentiable functionF on K is said to be strongly quasi
ϕ-invex, if there exists a constantµ > 0 such that

F (v) ≤ F (u) =⇒ 〈F ′
ϕ(u), η(v, u)〉+ µ‖η(v, u)‖2 ≤ 0, ∀u, v ∈ K.
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Definition 2.9. The functionF on the setK is said to be pseudoα-invex, if

〈F ′
ϕ(u), η(v, u)〉 ≥ 0, =⇒ F (v) ≥ F (u), ∀u, v ∈ K.

Definition 2.10. A differentiable functionF on theK is said to be quasiϕ-
invex, if such that

F (v) ≤ F (u) =⇒ 〈F ′
ϕ(u), η(v, u)〉 ≤ 0, ∀u, v ∈ K.

Note that ifϕ = 0, then theϕ-invex setK is exactly the invex setK and con-
sequently Definitions2.8– 2.10are exactly the same as in [6, 7]. In particular,
if ϕ = 0 and η(v, u) = −η(v, u),∀u, v ∈ K, that is, the functionη(·, ·) is
skew-symmetric, then Definitions2.7– 2.10reduce to the ones in [6, 7, 8]. This
shows that the concepts introduced in this paper represent an improvement of
the previously known ones. All the concepts defined above play important and
fundamental parts in mathematical programming and optimization problems.

We also need the following assumption regarding the functionη(·, ·), andϕ,
which is due to Noor and Noor [5].

Condition C. Letη(·, ·) : K ×K −→ H andϕ satisfy the assumptions

η(u, u + teiϕη(v, u)) = −tη(v, u)

η(v, u + teiϕη(v, u)) = (1− t)η(v, u), ∀u, v ∈ K, t ∈ [0, 1].

Clearly for t = 0, we haveη(u, v) = 0, if and only ifu = v, ∀u, v ∈ K. One
can easily show [7, 8] that η(u + teiϕη(v, u), u) = tη(v, u), ∀u, v ∈ K.

Note that forϕ = 0, ConditionC collapses to the following condition, which
is due to Mohan and Neogy [2].
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Condition D. Letη(·, ·) : K ×K −→ H satisfy the assumptions

η(u, u + tη(v, u)) = −tη(v, u),

η(v, u + tη(v, u)) = (1− t)η(v, u), ∀u, v ∈ K, t ∈ [0, 1].

For applications of ConditionD, see [2], [4] – [8].
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3. Main Results
In this section, we consider some basic properties of strongϕ-preinvex func-
tions and stronglyϕ-invex functions on the invex setK.

Theorem 3.1.LetF be a differentiable function on theϕ-invex setK in H and
let ConditionC hold. Then the functionF is a stronglyϕ-preinvex function if
and only ifF is a stronglyϕ-invex function.

Proof. Let F be a stronglyϕ-preinvex function on the invex setK. Then there
exists a functionη(·, ·) : K ×K −→ R and a constantµ > 0 such that

F (u+ teiϕη(v, u)) ≤ (1− t)F (u)+ tF (v)− t(1− t)µ‖η(v, u)‖2, ∀u, v ∈ K,

which can be written as

F (v)− F (u) ≥ F (u + teiϕη(v, u))− F (u)

t
+ (1− t)µ‖η(v, u)‖2.

Letting t −→ 0 in the above inequality, we have

F (v)− F (u) ≥ 〈F ′
ϕ(u), η(v, u)〉+ µ‖η(v, u)‖2,

which implies thatF is a stronglyϕ-invex function.
Conversely, letF be a stronglyϕ-invex function on theϕ-invex functionK.

Then∀u, v ∈ K, t ∈ [0, 1], vt = u + teiϕη(v, u) ∈ K and using ConditionC,
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we have

F (v)− F (u + teiϕη(v, u)) ≥ 〈F ′
ϕ(u + teiϕη(v, u)), η(v, u + teiϕη(v, u))〉

+ µ‖η(v, u + teiϕη(v, u))‖2

= (1− t)〈F ′
ϕ(u + teiϕη(v, u)), η(v, u)〉

+ µ(1− t)2‖η(v, u)‖2.(3.1)

In a similar way, we have

F (u)− F (u + teiϕη(v, u)) ≥ 〈F ′
ϕ(u + teiϕη(v, u)), η(u, u + teiϕη(v, u))

+ µ‖η(u, u + teiϕη(v, u))‖
= −t〈F ′

ϕ(u + teiϕη(v, u)), η(v, u))〉+ t2‖η(v, u)‖2.(3.2)

Multiplying (3.1) by t and (3.2) by (1− t) and adding the resultant, we have

F (u + teiϕη(v, u)) ≤ (1− t)F (u) + tF (v)− µt(1− t)‖η(v, u)‖2,

showing thatF is a stronglyϕ-preinvex function.

Theorem 3.2. Let F be differntiable on theϕ-invex setK. Let ConditionA
and ConditionC hold. ThenF is a stronglyϕ-invex function if and only if its
differentialF ′

ϕ is stronglyϕη-monotone.

Proof. Let F be a stronglyϕ-invex function on theϕ-invex setK. Then

(3.3) F (v)− F (u) ≥ 〈F ′
ϕ(u), η(v, u)〉+ µ‖η(v, u)‖2, ∀u, v ∈ K.
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Changing the role ofu andv in (3.3), we have

(3.4) F (u)− F (v) ≥ 〈F ′
ϕ(v), η(u, v)〉+ µ‖η(u, v)‖2, ∀u, v ∈ K.

Adding (3.3) and (3.4), we have

(3.5) 〈F ′
ϕ(u), η(v, u)〉+ 〈F ′

ϕ(v), η(u, v)〉 ≤ −µ{‖η(v, u)‖2 + ‖η(u, v)‖2},

which shows thatF ′
ϕ is stronglyϕη-monotone.

Conversely, letF ′
ϕ be stronglyϕη-monotone. From (3.5), we have

(3.6) 〈F ′
ϕ(v), η(u, v)〉 ≤ 〈F ′

ϕ(u), η(v, u)〉 − µ{‖η(v, u)‖2 + ‖η(u, v)‖2}.

SinceK is anϕ-invex set,∀u, v ∈ K, t ∈ [0, 1] vt = u + teiϕη(v, u) ∈ K.
Takingv = vt in (3.6) and using ConditionC, we have

〈F ′
ϕ(vt), η(u, u + teiϕη(v, u)〉

≤ 〈F ′
ϕ(u), η(u + teiϕη(v, u), u)〉 − µ{‖η(u + teiϕη(v, u), u)‖2

+ ‖η(u, u + teiϕη(v, u)‖2}
= −t〈F ′

ϕ(u), η(v, u)〉 − 2t2µ‖η(v, u)‖2,

which implies that

(3.7) 〈F ′
ϕ(vt), η(v, u)〉 ≥ 〈F ′

ϕ(u), η(v, u)〉+ 2µt‖η(v, u)‖2.

Let g(t) = F (u + teiϕη(v, u)). Then from (3.7), we have

g′(t) = 〈F ′
ϕ(u + teiϕη(v, u)), η(v, u)〉

≥ 〈F ′
ϕ(u), η(v, u)〉+ 2µt‖η(v, u)‖2.(3.8)
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Integrating (3.8) between0 and1, we have

g(1)− g(0) ≥ 〈F ′
ϕ(u), η(v, u)〉+ µ‖η(v, u)‖2,

that is,

F (u + eiϕη(v, u))− F (u) ≥ 〈F ′(u), η(v, u)〉+ µ‖η(v, u)‖2.

By using ConditionA, we have

F (v)− F (u) ≥ 〈F ′
ϕ(u), η(v, u)〉+ µ‖η(v, u)‖2,

which shows thatF is a stronglyϕ-invex function on the invex setK.

From Theorem3.1and Theorem3.2, we have:
stronglyϕ-preinvex functionsF =⇒ stronglyϕ-invex functionsF =⇒
stronglyϕη-monotonicity of the differentialF ′

ϕ and conversely if ConditionsA
andC hold.

For µ = 0, Theorems3.1and3.2 reduce to the following results, which are
mainly due to Noor and Noor [5].

Theorem 3.3.LetF be a differentiable function on theϕ-invex setK in H and
let ConditionC hold. Then the functionF is a ϕ-preinvex function if and only
if F is aϕ-invex function.

Theorem 3.4. Let F be differentiable function and let ConditionC hold. Then
the functionF is ϕ-preinvex (invex) function if and only if its differentialF ′

ϕ is
ϕη-monotone.
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We now give a necessary condition for stronglyϕη-pseudo-invex function.

Theorem 3.5. LetF ′
ϕ be strongly relaxedϕη-pseudomonotone and Conditions

A andC hold. ThenF is stronglyϕη-pseudo-invex function.

Proof. Let F ′
ϕ be strongly relaxedϕη-pseudomonotone. Then,∀u, v ∈ K,

〈F ′
ϕ(u), η(v, u)〉 ≥ 0,

implies that

(3.9) −〈F ′
ϕ(v), η(u, v)〉 ≥ α‖η(u, v)‖2.

SinceK is anϕ-invex set,∀u, v ∈ K, t ∈ [0, 1], vt = u + teiϕη(v, u) ∈ K.
Takingv = vt in (3.9) and using ConditionC, we have

(3.10) 〈F ′
ϕ(u + teiϕη(v, u)), η(v, u)〉 ≥ tα‖η(v, u)‖2.

Let
g(t) = F (u + teiϕη(v, u)), ∀u, v ∈ K, t ∈ [0, 1].

Then, using (3.10), we have

g′(t) = 〈F ′
ϕ(u + teiϕη(v, u)), η(v, u)〉 ≥ tα‖η(v, u)‖2.

Integrating the above relation between0 and1, we have

g(1)− g(0) ≥ α

2
‖η(v, u)‖2,
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that is,
F (u + eiϕη(v, u))− F (u) ≥ α

2
‖η(v, u)‖2,

which implies, using ConditionA,

F (v)− F (u) ≥ α

2
‖η(v, u)‖2,

showing thatF is stronglyϕη-pseudo-invex function.

As special cases of Theorem3.5, we have the following:

Theorem 3.6. Let the differentialF ′
ϕ(u) of a functionF (u) on theϕ-invex set

K be ϕη-pseudomonotone. If ConditionsA and C hold, thenF is a pseudo
ϕη-invex function.

Theorem 3.7. Let the differentialF ′
ϕ(u) of a functionF (u) on the invex setK

be stronglyη-pseudomonotone. If ConditionsA andC hold, thenF is a strongly
pseudoη-invex function.

Theorem 3.8. Let the differentialF ′
ϕ(u) of a functionF (u) on the invex setK

be stronglyη-pseudomonotone. If ConditionsB andD hold, thenF is a strongly
pseudoη-invex function.

Theorem 3.9. Let the differentialF ′
ϕ(u) of a functionF (u) on the invex setK

be η-pseudomonotone. If ConditionsB and D hold, thenF is a pseudo invex
function.

Theorem 3.10.Let the differentialF ′
ϕ(u) of a differentiableϕ-preinvex function

F (u) be Lipschitz continuous on theϕ-invex setK with a constantβ > 0. If
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ConditionA holds, then

F (v)− F (u) ≤ 〈F ′
ϕ(u), η(v, u)〉+

β

2
‖η(v, u)‖2, ∀u, v ∈ K.

Proof. ∀u, v ∈ K, t ∈ [0, 1], u + teiϕη(v, u) ∈ K, sinceK is anϕ-invex set.
Now we consider the function

ϕ(t) = F (u + teiϕη(v, u))− F (u)− t〈F ′
ϕ(u), η(v, u)〉.

from which it follows thatϕ(0) = 0 and

(3.11) ϕ′(t) = 〈F ′
ϕ(u + teiϕη(v, u)), η(v, u)〉 − 〈F ′

ϕ(u), η(v, u)〉.

Integrating (3.10) between0 and1, we have

ϕ(1) = F (u + eiϕη(v, u))− F (u)− 〈F ′
ϕ(u), η(v, u)〉

≤
∫ 1

0

|ϕ′(t)|dt

=

∫ 1

0

∣∣〈F ′
ϕ(u + teiϕη(v, u)), η(v, u)〉 − 〈F ′

ϕ(u), η(v, u)〉
∣∣ dt

≤ β

∫ 1

0

t‖η(v, u)‖2dt =
β

2
‖η(v, u)‖2,

which implies that

(3.12) F (u + eiϕη(v, u))− F (u) ≤ 〈F ′
ϕ(u), η(v, u)〉+

β

2
‖η(v, u)‖2.
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from which, using ConditionA, we obtain

F (v)− F (u) ≤ 〈F ′
ϕ(u), η(v, u)〉+

β

2
‖η(v, u)‖2.

Remark 3. For η(v, u) = v − u andα(v, u) = 1, theα-invex setK becomes a
convex set and consequently Theorem3.10reduces to the well known result in
convexity.

Definition 3.1. The functionF is said to be sharply strongly pseudoϕ-preinvex,
if there exists a constantµ > 0 such that

〈F ′
ϕ(u), η(v, u)〉 ≥ 0

=⇒ F (v) ≥ F (v+teiϕη(v, u))+µt(1−t)‖η(v, u)‖2, ∀u, v ∈ K, t ∈ [0, 1].

Theorem 3.11.Let F be a sharply strong pseudoϕ-preinvex function onK
with a constantµ > 0. Then

−〈F ′
ϕ(v), η(v, u)〉 ≥ µ‖η(v, u)‖2, ∀u, v ∈ K.

Proof. Let F be a sharply strongly pseudoϕ-preinvex function onK. Then

F (v) ≥ F (v + teiϕη(v, u)) + µt(1− t)‖η(v, u)‖2,∀u, v ∈ K, t ∈ [0, 1].

from which we have

F (v + teiϕη(v, u))− F (v)

t
+ µ(1− t)‖η(v, u)‖2 ≤ 0.
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Taking the limit in the above inequality, ast −→ 0, we have

−〈F ′
ϕ(v), η(v, u)〉 ≥ µ‖η(v, u)‖2,

the required result.
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