ON CLASS wF(p, r, q) OPERATORS AND QUASISIMILARITY

CHANGSEN YANG

College of Mathematics and Information Science Henan Normal University, Xinxiang 453007, People's Republic of China EMail: yangchangsen117@yahoo.com.cn

YULIANG ZHAO

Department of Mathematics Anyang Institute of Technology Anyang City, Henan Province 455000 People's Republic of China EMail: zhaoyuliang512@163.com

Received:	17 October, 2006	
Accepted:	15 June, 2007	
Communicated by:	C.K. Li	
2000 AMS Sub. Class.:	47B20, 47A30.	
Key words:	Class $wF(p,r,q)$ operators, Fuglede-Putnam's theorem, Property $(\beta)_{\varepsilon}$, Subscalar, Subdecomposable.	
Abstract:	Let T be a bounded linear operator on a complex Hilbert space H. In this paper, we show that if T belongs to class $wF(p, r, q)$ operators, then we have (i) $T^*X = XN^*$ whenever $TX = XN$ for some $X \in B(H)$, where N is normal and X is injective with dense range. (ii) T satisfies the property $(\beta)_{\varepsilon}$, i.e., T is subscalar, moreover, T is subdecomposable. (iii) Quasisimilar class $wF(p, r, q)$ operators have the same spectra and essential spectra.	j
Acknowledgements:	The authors are grateful to the referee for comments which improved the paper.	r

Class wF(p, r, q) Operators and Quasisimilarity Changsen Yang and Yuliang Zhao vol. 8, iss. 3, art. 90, 2007

Title Page			
Contents			
••	••		
•	►		
Page 1 of 15			
Go Back			
Full Screen			
Close			

journal of inequalities in pure and applied mathematics

Contents

1	Introduction	3
2	Preliminaries	5
3	Main Theorem	10

journal of inequalities in pure and applied mathematics

issn: 1443-5756

© 2007 Victoria University. All rights reserved.

1. Introduction

Let X denote a Banach space, $T \in B(X)$ is said to be generalized scalar ([3]) if there exists a continuous algebra homomorphism (called a spectral distribution of T) $\Phi : \varepsilon(\mathcal{C}) \to B(X)$ with $\Phi(1) = I$ and $\Phi(z) = T$, where $\varepsilon(\mathcal{C})$ denotes the algebra of all infinitely differentiable functions on the complex plane \mathcal{C} with the topology defined by uniform convergence of such functions and their derivatives ([2]). An operator similar to the restriction of a generalized scalar (decomposable) operator to one of its closed invariant subspaces is said to be subscalar (subdecomposable). Subscalar operators are subdecomposable operators ([3]). Let H, K be complex Hilbert spaces and B(H), B(K) be the algebra of all bounded linear operators in H and K respectively, B(H, K) denotes the algebra of all bounded linear operator from H to K. A capital letter (such as T) means an element of B(H). An operator Tis said to be positive (denoted by $T \ge 0$) if $(Tx, x) \ge 0$ for any $x \in H$. An operator T is said to be p-hyponormal if $(T^*T)^p \ge (TT^*)^p, 0 .$

Definition 1.1 ([10]). For $p > 0, r \ge 0$, and $q \ge 1$, an operator T belongs to class wF(p, r, q) if

 $(|T^*|^r|T|^{2p}|T^*|^r)^{\frac{1}{q}} \ge |T^*|^{\frac{2(p+r)}{q}}$

and

$$|T|^{2(p+r)(1-\frac{1}{q})} \ge (|T|^p |T^*|^{2r} |T|^p)^{1-\frac{1}{q}}$$

Let T = U|T| be the polar decomposition of T. We define

$$\widetilde{T}_{p,r} = |T|^p U |T|^r (p+r=1)$$

The operator $\widetilde{T}_{p,r}$ is known as the generalized Aluthge transform of T. We define $(\widetilde{T}_{p,r})^{(1)} = \widetilde{T}_{p,r}, (\widetilde{T}_{p,r})^{(n)} = [(\widetilde{T}_{p,r})^{(n-1)}]_{p,r}$, where $n \ge 2$.

issn: 1443-5756

The following Fuglede-Putnam's theorem is famous. We extend this theorem for class wF(p, r, q) operators.

Theorem 1.2 (Fuglede-Putnam's Theorem [7]). Let A and B be normal operators and X be an operator on a Hilbert space. Then the following hold and follow from each other:

(i) (Fuglede) If AX = XA, then $A^*X = XA^*$.

(ii) (Putnam) If AX = XB, then $A^*X = XB^*$.

in pure and applied mathematics

2. Preliminaries

Lemma 2.1 ([9]). If N is a normal operator on H, then we have

$$\bigcap_{\lambda \in \mathcal{C}} (N - \lambda)\mathcal{H} = \{0\}.$$

Lemma 2.2 ([5]). Let T = U|T| be the polar decomposition of a p-hyponormal operator for p > 0. Then the following assertions hold:

(i)
$$\widetilde{T}_{s,t} = |T|^s U|T|^t$$
 is $\frac{p+\min(s,t)}{s+t}$ -hyponormal for any $s > 0$ and $t > 0$ such that $\max\{s,t\} \ge p$.

(ii)
$$\widetilde{T}_{s,t} = |T|^s U|T|^t$$
 is hyponormal for any $s > 0$ and $t > 0$ such that $\max\{s, t\} \le p$.

Lemma 2.3 ([8]). Let $T \in B(H)$, $D \in B(H)$ with $0 \le D \le M(T - \lambda)(T - \lambda)^*$ for all λ in C, where M is a positive real number. Then for every $x \in D^{\frac{1}{2}}H$ there exists a bounded function $f : C \to H$ such that $(T - \lambda)f(\lambda) \equiv x$.

Lemma 2.4 ([10]). If $T \in wF(p, r, q)$, then $\left|\widetilde{T}_{p,r}\right|^{2m} \geq |T|^{2m} \geq |(\widetilde{T}_{p,r})^*||^{2m}$, where $m = \min\left\{\frac{1}{q}, \max\left\{\frac{p}{p+r}, 1-\frac{1}{q}\right\}\right\}$, i.e., $\widetilde{T}_{p,r} = |T|^p U|T|^r$ is m-hyponormal operator.

Lemma 2.5 ([11]). Let $A, B \ge 0, \alpha_0, \beta_0 > 0$ and $-\beta_0 \le \delta \le \alpha_0, -\beta_0 \le \overline{\delta} \le \alpha_0$, if $0 \le \delta \le \alpha_0$ and $\left(B^{\frac{\beta_0}{2}}A^{\alpha_0}B^{\frac{\beta_0}{2}}\right)^{\frac{\beta_0+\delta}{\alpha_0+\beta_0}} \ge B^{\beta_0+\delta}$, then

$$\left(B^{\frac{\beta}{2}}A^{\alpha}B^{\frac{\beta}{2}}\right)^{\frac{p+s}{\alpha+\beta}} \ge B^{\beta+\delta}$$

journal of inequalities in pure and applied mathematics

and

$$A^{\alpha-\bar{\delta}} \ge \left(A^{\frac{\alpha}{2}}B^{\beta}A^{\frac{\alpha}{2}}\right)^{\frac{\alpha-\bar{\delta}}{\alpha+\beta}}$$

hold for each $\alpha \geq \alpha_0, \beta \geq \beta_0$ and $0 \leq \overline{\delta} \leq \alpha$.

Lemma 2.6 ([6]). Let $A \ge 0$, $B \ge 0$, if $B^{\frac{1}{2}}AB^{\frac{1}{2}} \ge B^2$ and $A^{\frac{1}{2}}BA^{\frac{1}{2}} \ge A^2$ then A = B.

Lemma 2.7. Let $A, B \ge 0$, $s, t \ge 0$, if $B^s A^{2t} B^s = B^{2s+2t}$, $A^t B^{2s} A^t = A^{2s+2t}$ then A = B.

Proof. We choose $k > \max\{s, t. \text{ Since } B^s A^{2t} B^s = B^{2s+2t}, A^t B^{2s} A^t = A^{2s+2t} \text{ it follows from Lemma 2.5 that:}$

$$B^{k}A^{2k}B^{k})^{\frac{2k+2t}{4k}} \ge B^{2k+2t},$$
$$A^{2k-2t} \ge (A^{k}B^{2k}A^{k})^{\frac{2k-2t}{4k}},$$

and

$$(A^k B^{2k} A^k)^{\frac{2k+2s}{4k}} \ge A^{2k+2s},$$

$$B^{2k-2s} \ge (B^k A^{2k} B^k)^{\frac{2k-2s}{4k}}.$$

So

$$A^k B^{2k} A^k = A^{4k}, \qquad B^k A^{2k} B^k = B^{4k},$$

by Lemma 2.6

A = B.

Lemma 2.8 ([11]). Let T be a class wF(p,r,q) operator, if $\widetilde{T}_{p,r} = |T|^p U|T|^r$ is normal, then T is normal.

nangsen Yang and Yuliang Zhao						
vol. 8, iss. 3, art. 90, 2007						
Title Page						
Contents						
44	••					
◀	►					
Page <mark>6</mark> of 15						
Go Back						
Full Screen						
Close						

journal of inequalities in pure and applied mathematics issn: 1443-5756

The following theorem have been shown by T. Huruya in [3], here we give a simple proof.

Theorem 2.9 (Furuta inequality [4]). If $A \ge B \ge 0$, then for each r > 0,

- (i) $\left(B^{\frac{r}{2}}A^{p}B^{\frac{r}{2}}\right)^{\frac{1}{q}} \ge \left(B^{\frac{r}{2}}B^{p}B^{\frac{r}{2}}\right)^{\frac{1}{q}}$ and
- (*ii*) $\left(A^{\frac{r}{2}}A^{p}A^{\frac{r}{2}}\right)^{\frac{1}{q}} \ge \left(A^{\frac{r}{2}}B^{p}A^{\frac{r}{2}}\right)^{\frac{1}{q}}$

hold for $p \ge 0$ and $q \ge 1$ with $(1+r)q \ge p+r$.

Theorem 2.10. Let T be a p-hyponormal operator on H and let T = U|T| be the polar decomposition of T, if $\widetilde{T}_{s,t} = |T|^s U|T|^t$ (s + t = 1) is normal, then T is normal.

Proof. First, consider the case $\max\{s,t\} \ge p$. Let $A = |T|^{2p}$ and $B = |T^*|^{2p}$, *p*-hyponormality of *T* ensures $A \ge B \ge 0$. Applying Theorem 2.9 to $A \ge B \ge 0$, since

$$\left(1+\frac{t}{p}\right)\frac{s+t}{p+\min(s,t)} \ge \frac{s}{p} + \frac{t}{p} \quad \text{and} \quad \frac{s+t}{p+\min(s,t)} \ge 1,$$

we have

$$\begin{split} (\widetilde{T}_{s,t}^*\widetilde{T}_{s,t})^{\frac{p+\min(s,t)}{s+t}} &= (|T|^t U^* |T|^{2s} U |T|^t)^{\frac{p+\min(s,t)}{s+t}} \\ &= (U^* U |T|^t U^* |T|^{2s} U |T|^t U^* U)^{\frac{p+\min(s,t)}{s+t}} \\ &= (U^* |T^*|^t |T|^{2s} |T^*|^t U)^{\frac{p+\min(s,t)}{s+t}} \\ &= U^* (|T^*|^t |T|^{2s} |T^*|^t)^{\frac{p+\min(s,t)}{s+t}} U \\ &= U^* (B^{\frac{t}{2p}} A^{\frac{s}{p}} B^{\frac{t}{2p}})^{\frac{p+\min(s,t)}{s+t}} U \\ &\ge U^* B^{\frac{p+\min(s,t)}{p}} U = U^* |T^*|^{2(p+\min(s,t))} U = |T|^{2(p+\min(s,t))}. \end{split}$$

in pure and applied mathematics

Similarly, we also have

$$\left(\widetilde{T}_{s,t}\widetilde{T}_{s,t}^*\right)^{\frac{p+\min(s,t)}{s+t}} \le |T|^{2(p+\min(s,t))}.$$

Therefore, we have

$$\left(\widetilde{T}_{s,t}^*\widetilde{T}_{s,t}\right)^{\frac{p+\min(s,t)}{s+t}} \ge |T|^{2(p+\min(s,t))} \ge \left(\widetilde{T}_{s,t}\widetilde{T}_{s,t}^*\right)^{\frac{p+\min(s,t)}{s+t}}$$

If

$$\widetilde{T}_{s,t} = |T|^s U|T|^t \quad (s+t=1)$$

is normal, then

$$\left(\widetilde{T}_{s,t}^*\widetilde{T}_{s,t}\right)^{\frac{p+\min(s,t)}{s+t}} = |T|^{2(p+\min(s,t))} = \left(\widetilde{T}_{s,t}\widetilde{T}_{s,t}^*\right)^{\frac{p+\min(s,t)}{s+t}},$$

which implies

$$|T^*|^t |T|^{2s} |T^*|^t = |T^*|^{2(s+t)}$$
 and $|T|^s |T^*|^{2t} |T|^s = |T|^{2(s+t)}$,

then $|T^*| = |T|$ by Lemma 2.7. Next, consider the case $\max\{s,t\} \leq p$. Firstly, p-hyponormality of T ensures $|T|^{2s} \geq |T^*|^{2s}$ and $|T|^{2t} \geq |T^*|^{2t}$ for $\max\{s,t\} \leq p$ by the Löwner-Heinz theorem. Then we have

$$\widetilde{T}_{s,t}^* \widetilde{T}_{s,t} = |T|^t U^* |T|^{2s} U |T|^t \ge |T|^t U^* |T^*|^{2s} U |T|^t$$

= $|T|^{2(s+t)}$
$$\widetilde{T}_{s,t} \widetilde{T}_{s,t}^* = |T|^s U |T|^{2t} U^* |T|^s$$

 $\le |T|^{2(s+t)}.$

If $\widetilde{T}_{s,t} = |T|^s U |T|^t (s+t=1)$ is normal, then

$$\widetilde{T}_{s,t}^*\widetilde{T}_{s,t} = |T|^{2((s+t))} = \widetilde{T}_{s,t}\widetilde{T}_{s,t}^*,$$

Class wF(p, r, q) Operators and Quasisimilarity Changsen Yang and Yuliang Zhao vol. 8, iss. 3, art. 90, 2007 **Title Page** Contents 44 ◀ Page 8 of 15 Go Back **Full Screen**

journal of inequalities in pure and applied mathematics

Close

which implies

$$|T^*|^t |T|^{2s} |T^*|^t = |T^*|^{2(s+t)}$$
 and $|T|^s |T^*|^{2t} |T|^s = |T|^{2(s+t)}$,

then $|T^*| = |T|$ by Lemma 2.7.

journal of inequalities in pure and applied mathematics

3. Main Theorem

Theorem 3.1. Assume that T is a class wF(p, r, q) operator with $Ker(T) \subset Ker(T^*)$, and N is a normal operator on H and K respectively. If $X \in B(K, H)$ is injective with dense range which satisfies TX = XN, then $T^*X = XN^*$.

Proof. $\operatorname{Ker}(T) \subset \operatorname{Ker}(T^*)$ implies $\operatorname{Ker}(T)$ reduces T. Also $\operatorname{Ker}(N)$ reduces N since N is normal. Using the orthogonal decompositions $H = \overline{\operatorname{Ran}}(|T|) \bigoplus \operatorname{Ker}(T)$ and $H = \overline{\operatorname{Ran}}(N) \bigoplus \operatorname{Ker}(N)$, we can represent T and N as follows.

$$T = \left(\begin{array}{cc} T_1 & 0\\ 0 & 0 \end{array}\right),$$
$$N = \left(\begin{array}{cc} N_1 & 0\\ 0 & 0 \end{array}\right),$$

where T_1 is an injective class wF(p, r, q) operator on $\overline{\text{Ran}(|T|)}$ and N_1 is injective normal on $\overline{\text{Ran}(N)}$. The assumption TX = XN asserts that X maps Ran(N) to $\text{Ran}(T) \subset \overline{\text{Ran}(|T|)}$ and Ker(N) to Ker(T), hence X is of the form:

$$X = \left(\begin{array}{cc} X_1 & 0\\ 0 & X_2 \end{array}\right),$$

where $X_1 \in B(\overline{\operatorname{Ran}(N)}, \overline{\operatorname{Ran}(|T|)})$, $X_2 \in B(\operatorname{Ker}(N), \operatorname{Ker}(T))$. Since TX = XN, we have that $T_1X_1 = X_1N_1$. Since X is injective with dense range, X_1 is also injective with dense range. Put $W_1 = |T_1|^p X_1$, then W_1 is also injective with dense range and satisfies $(T_1)_{p,r}W_1 = W_1N$. Put $W_n = \left| (\widetilde{T_1})_{p,r}^{(n)} \right|^p W_{(n-1)}$, then W_n is also injective with dense range and satisfies $(\widetilde{T_1})_{p,r}^{(n)}W_n = W_nN$. From Lemma 2.2 and Lemma 2.4, if there is an integer α_0 such that $(\widetilde{T_1})_{p,r}^{(\alpha_0)}$ is a hyponormal operator, then

Go Back Full Screen Close

journal of inequalities in pure and applied mathematics

© 2007 Victoria University. All rights reserved.

 $(\widetilde{T}_1)_{p,r}^{(n)}$ is a hyponormal operator for $n \ge \alpha_0$. It follows from Lemma 2.3 that there exists a bounded function $f : \mathcal{C} \to H$ such that

$$\left(\left(\left(\widetilde{T}_{1}\right)_{p,r}^{(n)}\right)^{*}-\lambda\right)f(\lambda) \equiv x, \text{ for every}$$
$$x \in \left(\left(\left(\widetilde{T}_{1}\right)_{p,r}^{(n)}\right)^{*}\left(\widetilde{T}_{1}\right)_{p,r}^{(n)}-\left(\widetilde{T}_{1}\right)_{p,r}^{(n)}\left(\left(\widetilde{T}_{1}\right)_{p,r}^{(n)}\right)^{*}\right)^{\frac{1}{2}}H.$$

Hence

$$\begin{split} W_n^* x &= W_n^* \left(\left(\left(\widetilde{T}_1 \right)_{p,r}^{(n)} \right)^* - \lambda \right) f(\lambda) \\ &= (N_1^* - \lambda) W_n^* f(\lambda) \in \operatorname{Ran}(N_1^* - \lambda) \quad \text{for all } \lambda \in \mathcal{C} \end{split}$$

By Lemma 2.1, we have $W_n^* x = 0$, and hence x = 0 because W_n^* is injective. This implies that $(\tilde{T}_1)_{p,r}^{(n)}$ is normal. By Lemma 2.8 and Theorem 2.10, T_1 is normal and therefore $T = T_1 \bigoplus 0$ is also normal. The assertion is immediate from Fuglede-Putnam's theorem.

Let X be a *Banach* space, U be an open subset of \mathcal{C} . $\varepsilon(U, X)$ denotes the *Fréchet* space of all X-valued \mathcal{C}^{∞} -functions, i.e., infinitely differentiable functions on U ([3]). $T \in B(X)$ is said to satisfy property $(\beta)_{\varepsilon}$ if for each open subset U of C, the map

$$T_z: \varepsilon(U, X) \to \varepsilon(U, X), \quad f \mapsto (T - z)f$$

is a topological monomorphism, i.e., $T_z f_n \to 0 \ (n \to \infty)$ in $\varepsilon(U, X)$ implies $f_n \to 0 \ (n \to \infty)$ in $\varepsilon(U, X)$ ([3]).

Lemma 3.2 ([1]). Let $T \in B(X)$. T is subscalar if and only if T satisfies property $(\beta)_{\varepsilon}$.

journal of inequalities in pure and applied mathematics

Lemma 3.3. Let $T \in B(X)$. T satisfies property $(\beta)_{\varepsilon}$ if and only if $T_{p,r}$ satisfies property $(\beta)_{\varepsilon}$.

Proof. First, we suppose that T satisfies property $(\beta)_{\varepsilon}$, U is an open subset of C, $f_n \in \varepsilon(U, X)$ and

(3.1)
$$(\widetilde{T}_{p,r}-z)f_n \to 0 \quad (n \to \infty),$$

in $\varepsilon(U, X)$, then

$$(T-z)U|T|^r f_n = U|T|^r (\widetilde{T}_{p,r} - z)f_n \to 0 \quad (n \to \infty)$$

Since T satisfies property $(\beta)_{\varepsilon}$, we have $U|T|^r f_n \to 0 \ (n \to \infty)$. and therefore

(3.2)
$$\widetilde{T}_{p,r}f_n \to 0 \quad (n \to \infty).$$

(3.1) and (3.2) imply that

(3.3)
$$zf_n = \widetilde{T}_{p,r}f_n - (\widetilde{T}_{p,r} - z)f_n \to 0 \quad (n \to \infty)$$

in $\varepsilon(U, X)$. Notice that T = 0 is a subscalar operator and hence satisfies property $(\beta)_{\varepsilon}$ by Lemma 3.2. Now we have

(3.4) $f_n \to 0 \quad (n \to \infty).$

(3.1) and (3.4) imply that $\widetilde{T}_{p,r}$ satisfies property $(\beta)_{\varepsilon}$. Next we suppose that $\widetilde{T}_{p,r}$ satisfies property $(\beta)_{\varepsilon}$, U is an open subset of \mathcal{C} , $f_n \in \varepsilon(U, X)$ and

(3.5)
$$(T-z)f_n \to 0 \quad (n \to \infty),$$

in $\varepsilon(U, X)$. Then

$$(\widetilde{T}_{p,r}-z)|T|^p f_n = |T|^p (T-z) f_n \to 0 \quad (n \to \infty).$$

mathematics

© 2007 Victoria University. All rights reserved.

Since $\widetilde{T}_{p,r}$ satisfies property $(\beta)_{\varepsilon}$, we have $|T|^p f_n \to 0 \ (n \to \infty)$, and therefore (3.6) $Tf_n \to 0 \quad (n \to \infty)$.

(3.5) and (3.6) imply

$$zf_n = Tf_n - (T - z)f_n \to 0 \quad (n \to \infty)$$

So $f_n \to 0 \ (n \to \infty)$. Hence T satisfies property $(\beta)_{\varepsilon}$.

Lemma 3.4 ([1]). Suppose that T is a p-hyponormal operator, then T is subscalar. **Theorem 3.5.** Let $T \in wF(p, r, q)$ and p + r = 1, then T is subdecomposable.

Proof. If $T \in wF(p, r, q)$, then $\widetilde{T}_{p,r}$ is a *m*-hyponormal operator by Lemma 2.4, and it follows from Lemma 3.4 that $\widetilde{T}_{p,r}$ is subscalar. So we have *T* is subscalar by Lemma 3.2 and Lemma 3.3. It is well known that subscalar operators are subdecomposable operators ([3]). Hence *T* is subdecomposable.

Recall that an operator $X \in B(H)$ is called a quasiaffinity if X is injective and has dense range. For $T_1, T_2 \in B(H)$, if there exist quasiaffinities $X \in B(H_2, H_1)$ and $Y \in B(H_1, H_2)$ such that $T_1X = XT_2$ and $YT_1 = T_2Y$ then we say that T_1 and T_2 are quasisimilar.

Lemma 3.6 ([2]). Let $S \in B(H)$ be subdecomposable, $T \in B(H)$. If $X \in B(K, H)$ is injective with dense range which satisfies XT = SX, then $\sigma(S) \subset \sigma(T)$; if T and S are quasisimilar, then $\sigma_e(S) \subseteq \sigma_e(T)$.

Theorem 3.7. Let $T_1, T_2 \in wF(p, r, q)$. If T_1 and T_2 are quasisimilar then $\sigma(T_1) = \sigma(T_2)$ and $\sigma_e(T_1) = \sigma_e(T_2)$.

Proof. Obvious from Theorem 3.5 and Lemma 3.6.

 \square

References

- [1] L. CHEN, R. YINGBIN AND Y. ZIKUN, *w*-Hyponormal operators are subscalar, *Integr. Equat. Oper. Th.*, **50** (2004), 165–168.
- [2] L. CHEN AND Y. ZIKUN, Bishop's property (β) and essential spectra of quasisimilar operators, *Proc. Amer. Math. Soc.*, **128** (2000), 485–493.
- [3] I. COLOJOARĀ AND C. FOIAS, *Theory of Generalized Spectral Operators*, New York, Gordon and Breach, 1968.
- [4] T. FURUTA, Invitation to Linear Operators From Matrices to Bounded Linear Operators on a Hilbert Space, London: Taylor & Francis, 2001.
- [5] T. HURUYA, A note on *p*-hyponormal operators, *Proc. Amer. Math. Soc.*, **125** (1997), 3617–3624.
- [6] M. ITO AND T. YAMAZAKI, Relations between two inequalities $(B^{\frac{r}{2}}A^{p}B^{\frac{r}{2}})^{\frac{r}{p+r}} \ge B^{r}$ and $(A^{\frac{p}{2}}B^{r}A^{\frac{p}{2}})^{\frac{p}{p+r}} \le A^{p}$ and its applications, *Integr. Equat. Oper. Th.*, **44** (2002), 442–450.
- [7] C.R. PUTNAM, On normal operators in Hilbert space, Amer. J. Math., 73 (1951), 357–362.
- [8] C.R. PUTNAM, Hyponormal contractions and strong power convergence, *Pacific J. Math.*, 57 (1975), 531–538.
- [9] C.R. PUTNAM, Ranges of normal and subnormal operators, *Michigan Math. J.*, **18** (1971) 33–36.
- [10] C. YANG AND J. YUAN, Spectrum of class wF(p, r, q) operators for $p+r \le 1$ and $q \ge 1$, Acta. Sci. Math. (Szeged), **71** (2005), 767–779.

`	and Quasisimilarity					
h	hangsen Yang and Yuliang Zhao					
	vol. 8, iss. 3, art. 90, 2007					
			-			
	Title Page					
	Contents					
	44	••				
	•	•				
	Page 14 of 15					
	Go Back					
	Full Screen					
	Close					

journal of inequalities in pure and applied mathematics

[11] C. YANG AND J. YUAN, On class wF(p, r, q) operators, preprint.

journal of inequalities in pure and applied mathematics

issn: 1443-5756

© 2007 Victoria University. All rights reserved.