ON CLASS $w F(p, r, q)$ OPERATORS AND QUASISIMILARITY

CHANGSEN YANG

College of Mathematics and Information Science
Henan Normal University,
Xinxiang 453007,
People's Republic of China
EMail: yangchangsen117@yahoo.com.cn

YULIANG ZHAO

Department of Mathematics
Anyang Institute of Technology
Anyang City, Henan Province 455000
People's Republic of China
EMail: zhaoyuliang512@163.com

Class $w F(p, r, q)$ Operators and Quasisimilarity
Changsen Yang and Yuliang Zhao vol. 8, iss. 3, art. 90, 2007

Title Page

Contents

44

Page 1 of 15
Go Back
Full Screen

Close

journal of inequalities in pure and applied mathematics

Contents

1 Introduction 3
2 Preliminaries 5
3 Main Theorem 10

Changsen Yang and Yuliang Zhao vol. 8, iss. 3, art. 90, 2007

Title Page
Contents

$\mathbf{4}$	
$\mathbf{4}$	
Page 2 of 15	
Go Back	
Full Screen	
Close	

journal of inequalities in pure and applied mathematics
issn: 1443-575b

1. Introduction

Let X denote a Banach space, $T \in B(X)$ is said to be generalized scalar ([3]) if there exists a continuous algebra homomorphism (called a spectral distribution of $T) \Phi: \varepsilon(\mathcal{C}) \rightarrow B(X)$ with $\Phi(1)=I$ and $\Phi(z)=T$, where $\varepsilon(\mathcal{C})$ denotes the algebra of all infinitely differentiable functions on the complex plane \mathcal{C} with the topology defined by uniform convergence of such functions and their derivatives ([2]). An operator similar to the restriction of a generalized scalar (decomposable) operator to one of its closed invariant subspaces is said to be subscalar (subdecomposable). Subscalar operators are subdecomposable operators ([3]). Let H, K be complex Hilbert spaces and $B(H), B(K)$ be the algebra of all bounded linear operators in H and K respectively, $B(H, K)$ denotes the algebra of all bounded linear operators from H to K. A capital letter (such as T) means an element of $B(H)$. An operator T is said to be positive (denoted by $T \geq 0$) if $(T x, x) \geq 0$ for any $x \in H$. An operator T is said to be p-hyponormal if $\left(T^{*} T\right)^{p} \geq\left(T T^{*}\right)^{p}, 0<p \leq 1$.

Definition 1.1 ([10]). For $p>0, r \geq 0$, and $q \geq 1$, an operator T belongs to class $w F(p, r, q)$ if

$$
\left(\left|T^{*}\right|^{r}|T|^{2 p}\left|T^{*}\right|^{r}\right)^{\frac{1}{q}} \geq\left|T^{*}\right|^{\frac{2(p+r)}{q}}
$$

and

$$
|T|^{2(p+r)\left(1-\frac{1}{q}\right)} \geq\left(|T|^{p}\left|T^{*}\right|^{2 r}|T|^{p}\right)^{1-\frac{1}{q}} .
$$

Let $T=U|T|$ be the polar decomposition of T. We define

$$
\widetilde{T}_{p, r}=|T|^{p} U|T|^{r}(p+r=1) .
$$

The operator $\widetilde{T}_{p, r}$ is known as the generalized Aluthge transform of T. We define $\left(\widetilde{T}_{p, r}\right)^{(1)}=\widetilde{T}_{p, r},\left(\widetilde{T}_{p, r}\right)^{(n)}=\left[\left(\widetilde{\left.T_{p, r}\right)^{(n-1)}}\right]_{p, r}\right.$, where $n \geq 2$.

Class $w F(p, r, q)$ Operators and Quasisimilarity
Changsen Yang and Yuliang Zhao vol. 8, iss. 3, art. 90, 2007

Title Page
Contents

Page 3 of 15
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

The following Fuglede-Putnam's theorem is famous. We extend this theorem for class $w F(p, r, q)$ operators.

Theorem 1.2 (Fuglede-Putnam's Theorem [7]). Let A and B be normal operators and X be an operator on a Hilbert space. Then the following hold and follow from each other:
(i) (Fuglede) If $A X=X A$, then $A^{*} X=X A^{*}$.
(ii) (Putnam) If $A X=X B$, then $A^{*} X=X B^{*}$.

Changsen Yang and Yuliang Zhao vol. 8, iss. 3, art. 90, 2007

Title Page
Contents

$\boldsymbol{4}$	
$\mathbf{4}$	
Page 4 of 15	
Go Back	
Full Screen	
Close	

journal of inequalities in pure and applied mathematics
issn: 1443-575b

2. Preliminaries

Lemma 2.1 ([9]). If N is a normal operator on H, then we have

$$
\bigcap_{\lambda \in \mathcal{C}}(N-\lambda) \mathcal{H}=\{0\} .
$$

Lemma 2.2 ([5]). Let $T=U|T|$ be the polar decomposition of a p-hyponormal operator for $p>0$. Then the following assertions hold:
(i) $\widetilde{T}_{s, t}=|T|^{s} U|T|^{t}$ is $\frac{p+\min (s, t)}{s+t}$-hyponormal for any $s>0$ and $t>0$ such that $\max \{s, t\} \geq p$.
(ii) $\widetilde{T}_{s, t}=|T|^{s} U|T|^{t}$ is hyponormal for any $s>0$ and $t>0$ such that $\max \{s, t\} \leq$ p.

Lemma 2.3 ([8]). Let $T \in B(H), D \in B(H)$ with $0 \leq D \leq M(T-\lambda)(T-\lambda)^{*}$ for all λ in \mathcal{C}, where M is a positive real number. Then for every $x \in D^{\frac{1}{2}} H$ there exists a bounded function $f: \mathcal{C} \rightarrow H$ such that $(T-\lambda) f(\lambda) \equiv x$.
Lemma 2.4 ([10]). If $T \in w F(p, r, q)$, then $\left|\widetilde{T}_{p, r}\right|^{2 m} \geq|T|^{2 m} \geq\left.\left|\left(\widetilde{T}_{p, r}\right)^{*}\right|\right|^{2 m}$, where $m=\min \left\{\frac{1}{q}, \max \left\{\frac{p}{p+r}, 1-\frac{1}{q}\right\}\right\}$, i.e., $\widetilde{T}_{p, r}=|T|^{p} U|T|^{r}$ is m-hyponormal operator.
Lemma 2.5 ([11]). Let $A, B \geq 0, \alpha_{0}, \beta_{0}>0$ and $-\beta_{0} \leq \delta \leq \alpha_{0},-\beta_{0} \leq \bar{\delta} \leq \alpha_{0}$, if $0 \leq \delta \leq \alpha_{0}$ and $\left(B^{\frac{\beta_{0}}{2}} A^{\alpha_{0}} B^{\frac{\beta_{0}}{2}}\right)^{\frac{\beta_{0}+\delta}{\alpha_{0}+\beta_{0}}} \geq B^{\beta_{0}+\delta}$, then

$$
\left(B^{\frac{\beta}{2}} A^{\alpha} B^{\frac{\beta}{2}}\right)^{\frac{\beta+\delta}{\alpha+\beta}} \geq B^{\beta+\delta}
$$

Class $w F(p, r, q)$ Operators and Quasisimilarity
Changsen Yang and Yuliang Zhao vol. 8, iss. 3, art. 90, 2007

Title Page
Contents

$\mathbf{4}$	
$\mathbf{4}$	
Page 5 of 15	
Go Back	
Full Screen	
Close	

journal of inequalities in pure and applied mathematics
issn: 1443-575b
and

$$
A^{\alpha-\bar{\delta}} \geq\left(A^{\frac{\alpha}{2}} B^{\beta} A^{\frac{\alpha}{2}}\right)^{\frac{\alpha-\bar{\delta}}{\alpha+\beta}}
$$

hold for each $\alpha \geq \alpha_{0}, \beta \geq \beta_{0}$ and $0 \leq \bar{\delta} \leq \alpha$.
Lemma 2.6 ([6]). Let $A \geq 0, B \geq 0$, if $B^{\frac{1}{2}} A B^{\frac{1}{2}} \geq B^{2}$ and $A^{\frac{1}{2}} B A^{\frac{1}{2}} \geq A^{2}$ then $A=B$.

Lemma 2.7. Let $A, B \geq 0, s, t \geq 0$, if $B^{s} A^{2 t} B^{s}=B^{2 s+2 t}, A^{t} B^{2 s} A^{t}=A^{2 s+2 t}$ then $A=B$.
Proof. We choose $k>\max \left\{s, t\right.$. Since $B^{s} A^{2 t} B^{s}=B^{2 s+2 t}, A^{t} B^{2 s} A^{t}=A^{2 s+2 t}$ it follows from Lemma 2.5 that:

$$
\begin{aligned}
& \left(B^{k} A^{2 k} B^{k}\right)^{\frac{2 k+2 t}{4 k}} \geq B^{2 k+2 t} \\
& A^{2 k-2 t} \geq\left(A^{k} B^{2 k} A^{k}\right)^{\frac{2 k-2 t}{4 k}}
\end{aligned}
$$

and

$$
\begin{aligned}
& \left(A^{k} B^{2 k} A^{k}\right)^{\frac{2 k+2 s}{4 k}} \geq A^{2 k+2 s} \\
& B^{2 k-2 s} \geq\left(B^{k} A^{2 k} B^{k}\right)^{\frac{2 k-2 s}{4 k}}
\end{aligned}
$$

So

$$
A^{k} B^{2 k} A^{k}=A^{4 k}, \quad B^{k} A^{2 k} B^{k}=B^{4 k}
$$

by Lemma 2.6

$$
A=B
$$

Lemma 2.8 ([11]). Let T be a class $w F(p, r, q)$ operator, if $\widetilde{T}_{p, r}=|T|^{p} U|T|^{r}$ is normal, then T is normal.

Class $w F(p, r, q)$ Operators and Quasisimilarity
Changsen Yang and Yuliang Zhao vol. 8, iss. 3, art. 90, 2007

Title Page
Contents
44

Page 6 of 15
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

The following theorem have been shown by T. Huruya in [3], here we give a simple proof.
Theorem 2.9 (Furuta inequality [4]). If $A \geq B \geq 0$, then for each $r>0$,
(i) $\left(B^{\frac{r}{2}} A^{p} B^{\frac{r}{2}}\right)^{\frac{1}{q}} \geq\left(B^{\frac{r}{2}} B^{p} B^{\frac{r}{2}}\right)^{\frac{1}{q}}$ and
(ii) $\left(A^{\frac{r}{2}} A^{p} A^{\frac{r}{2}}\right)^{\frac{1}{q}} \geq\left(A^{\frac{r}{2}} B^{p} A^{\frac{r}{2}}\right)^{\frac{1}{q}}$
hold for $p \geq 0$ and $q \geq 1$ with $(1+r) q \geq p+r$.
Theorem 2.10. Let T be a p-hyponormal operator on H and let $T=U|T|$ be the polar decomposition of T, if $\widetilde{T}_{s, t}=|T|^{s} U|T|^{t}(s+t=1)$ is normal, then T is normal.

Proof. First, consider the case $\max \{s, t\} \geq p$. Let $A=|T|^{2 p}$ and $B=\left|T^{*}\right|^{2 p}$, p-hyponormality of T ensures $A \geq B \geq 0$. Applying Theorem 2.9 to $A \geq B \geq 0$, since

$$
\left(1+\frac{t}{p}\right) \frac{s+t}{p+\min (s, t)} \geq \frac{s}{p}+\frac{t}{p} \quad \text { and } \quad \frac{s+t}{p+\min (s, t)} \geq 1
$$

we have

$$
\begin{aligned}
\left(\widetilde{T}_{s, t}^{*} \widetilde{T}_{s, t}\right)^{\frac{p+\min (s, t)}{s+t}} & =\left(|T|^{t} U^{*}|T|^{2 s} U|T|^{t}\right)^{\frac{p+\min (s, t)}{s+t}} \\
& =\left(U^{*} U|T|^{t} U^{*}|T|^{2 s} U|T|^{t} U^{*} U\right)^{\frac{p+\min (s, t)}{s+t}} \\
& =\left(U^{*}\left|T^{*}\right| t|T|^{2 s}\left|T^{*}\right|^{t} U\right)^{\frac{p+\min (s, t)}{s+t}} \\
& =U^{*}\left(\left|T^{*}\right| t|T|^{2 s}\left|T^{*}\right|^{t}\right)^{\frac{p+\min (s, t)}{s+t}} U \\
& =U^{*}\left(B^{\frac{t}{2 p}} A^{\frac{s}{p}} B^{\frac{t}{2 p}}\right)^{\frac{p+\min (s, t)}{s+t}} U \\
& \geq U^{*} B^{\frac{p+\min (s, t)}{p}} U=U^{*}\left|T^{*}\right|^{2(p+\min (s, t))} U=|T|^{2(p+\min (s, t))} .
\end{aligned}
$$

Class $w F(p, r, q)$ Operators and Quasisimilarity

Changsen Yang and Yuliang Zhao vol. 8, iss. 3, art. 90, 2007

Title Page
Contents

Page 7 of 15
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

Similarly, we also have

$$
\left(\widetilde{T}_{s, t} \widetilde{T}_{s, t}^{*}\right)^{\frac{p+\min (s, t)}{s+t}} \leq|T|^{2(p+\min (s, t))}
$$

Therefore, we have

$$
\left(\widetilde{T}_{s, t}^{*} \widetilde{t}_{s, t}\right)^{\frac{p+\min (s, t)}{s+t}} \geq|T|^{2(p+\min (s, t))} \geq\left(\widetilde{T}_{s, t} \widetilde{T}_{s, t}^{*}\right)^{\frac{p+\min (s, t)}{s+t}}
$$

If

$$
\widetilde{T}_{s, t}=|T|^{s} U|T|^{t} \quad(s+t=1)
$$

is normal, then

$$
\left(\widetilde{T}_{s, t}^{*} \widetilde{t}_{s, t}\right)^{\frac{p+\min (s, t)}{s+t}}=|T|^{2(p+\min (s, t))}=\left(\widetilde{T}_{s, t} \widetilde{T}_{s, t}^{*}\right)^{\frac{p+\min (s, t)}{s+t}},
$$

which implies

$$
\left|T^{*}\right|^{t}|T|^{2 s}\left|T^{*}\right|^{t}=\left|T^{*}\right|^{2(s+t)} \quad \text { and } \quad|T|^{s}\left|T^{*}\right|^{2 t}|T|^{s}=|T|^{2(s+t)}
$$

then $\left|T^{*}\right|=|T|$ by Lemma 2.7. Next, consider the case $\max \{s, t\} \leq p$. Firstly, p-hyponormality of T ensures $|T|^{2 s} \geq\left|T^{*}\right|^{2 s}$ and $|T|^{2 t} \geq\left|T^{*}\right|^{2 t}$ for $\max \{s, t\} \leq p$ by the Löwner-Heinz theorem. Then we have

$$
\begin{aligned}
\widetilde{T}_{s, t}^{*} \widetilde{T}_{s, t} & =|T|^{t} U^{*}|T|^{2 s} U|T|^{t} \geq|T|^{t} U^{*}\left|T^{*}\right|^{2 s} U|T|^{t} \\
& =|T|^{2(s+t)} \\
\widetilde{T}_{s, t} \widetilde{T}_{s, t}^{*} & =|T|^{s} U|T|^{2 t} U^{*}|T|^{s} \\
& \leq|T|^{2(s+t)}
\end{aligned}
$$

If $\widetilde{T}_{s, t}=|T|^{s} U|T|^{t}(s+t=1)$ is normal, then

$$
\widetilde{T}_{s, t}^{*} \widetilde{T}_{s, t}=|T|^{2((s+t)}=\widetilde{T}_{s, t} \widetilde{T}_{s, t}^{*}
$$

Class $w F(p, r, q)$ Operators and Quasisimilarity
Changsen Yang and Yuliang Zhao vol. 8, iss. 3, art. 90, 2007

Title Page
Contents

Page 8 of 15

Go Back

Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
which implies

$$
\left|T^{*}\right|^{t}|T|^{2 s}\left|T^{*}\right|^{t}=\left|T^{*}\right|^{2(s+t)} \quad \text { and } \quad|T|^{s}\left|T^{*}\right|^{2 t}|T|^{s}=|T|^{2(s+t)}
$$

then $\left|T^{*}\right|=|T|$ by Lemma 2.7.

Class $w F(p, r, q)$ Operators and Quasisimilarity
Changsen Yang and Yuliang Zhao vol. 8, iss. 3, art. 90, 2007

Title Page
Contents
44

Page 9 of 15
Go Back
Full Screen

Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

3. Main Theorem

Theorem 3.1. Assume that T is a class $w F(p, r, q)$ operator with $\operatorname{Ker}(T) \subset \operatorname{Ker}\left(T^{*}\right)$, and N is a normal operator on H and K respectively. If $X \in B(K, H)$ is injective with dense range which satisfies $T X=X N$, then $T^{*} X=X N^{*}$.
Proof. $\operatorname{Ker}(T) \subset \operatorname{Ker}\left(T^{*}\right)$ implies $\operatorname{Ker}(T)$ reduces T. Also $\operatorname{Ker}(N)$ reduces N since N is normal. Using the orthogonal decompositions $H=\overline{\operatorname{Ran}(|T|)} \bigoplus \operatorname{Ker}(T)$ and $H=\overline{\operatorname{Ran}(N)} \bigoplus \operatorname{Ker}(N)$, we can represent T and N as follows.

$$
\begin{aligned}
& T=\left(\begin{array}{cc}
T_{1} & 0 \\
0 & 0
\end{array}\right), \\
& N=\left(\begin{array}{cl}
N_{1} & 0 \\
0 & 0
\end{array}\right),
\end{aligned}
$$

where T_{1} is an injective class $w F(p, r, q)$ operator on $\overline{\operatorname{Ran}(|T|)}$ and N_{1} is injective normal on $\overline{\operatorname{Ran}(N)}$. The assumption $T X=X N$ asserts that X maps $\operatorname{Ran}(N)$ to $\operatorname{Ran}(T) \subset \overline{\operatorname{Ran}(|T|)}$ and $\operatorname{Ker}(N)$ to $\operatorname{Ker}(T)$, hence X is of the form:

$$
X=\left(\begin{array}{cc}
X_{1} & 0 \\
0 & X_{2}
\end{array}\right)
$$

where $X_{1} \in B(\overline{\operatorname{Ran}(N)}, \overline{\operatorname{Ran}(|T|)}), X_{2} \in B(\operatorname{Ker}(N), \operatorname{Ker}(T))$. Since $T X=X N$, we have that $T_{1} X_{1}=X_{1} N_{1}$. Since X is injective with dense range, X_{1} is also injective with dense range. Put $W_{1}=\left|T_{1}\right|^{p} X_{1}$, then W_{1} is also injective with dense range and satisfies $\widetilde{\left(T_{1}\right)_{p, r}} W_{1}=W_{1} N$. Put $W_{n}=\left|\left(\widetilde{T}_{1}\right)_{p, r}^{(n)}\right|^{p} W_{(n-1)}$, then W_{n} is also injective with dense range and satisfies $\left(\widetilde{T}_{1}\right)_{p, r}^{(n)} W_{n}=W_{n} N$. From Lemma 2.2 and Lemma 2.4, if there is an integer α_{0} such that $\left(\widetilde{T}_{1}\right)_{p, r}^{\left(\alpha_{0}\right)}$ is a hyponormal operator, then

Changsen Yang and Yuliang Zhao vol. 8, iss. 3, art. 90, 2007

Title Page
Contents

Page 10 of 15
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
$\left(\widetilde{T}_{1}\right)_{p, r}^{(n)}$ is a hyponormal operator for $n \geq \alpha_{0}$. It follows from Lemma 2.3 that there exists a bounded function $f: \mathcal{C} \rightarrow H$ such that

$$
\begin{aligned}
& \left(\left(\left(\widetilde{T}_{1}\right)_{p, r}^{(n)}\right)^{*}-\lambda\right) f(\lambda) \equiv x, \text { for every } \\
& x \in\left(\left(\left(\widetilde{T}_{1}\right)_{p, r}^{(n)}\right)^{*}\left(\widetilde{T}_{1}\right)_{p, r}^{(n)}-\left(\widetilde{T}_{1}\right)_{p, r}^{(n)}\left(\left(\widetilde{T}_{1}\right)_{p, r}^{(n)}\right)^{*}\right)^{\frac{1}{2}} H
\end{aligned}
$$

Hence

$$
\begin{aligned}
W_{n}^{*} x & =W_{n}^{*}\left(\left(\left(\widetilde{T}_{1}\right)_{p, r}^{(n)}\right)^{*}-\lambda\right) f(\lambda) \\
& =\left(N_{1}^{*}-\lambda\right) W_{n}^{*} f(\lambda) \in \operatorname{Ran}\left(N_{1}^{*}-\lambda\right) \text { for all } \lambda \in \mathcal{C}
\end{aligned}
$$

By Lemma 2.1, we have $W_{n}^{*} x=0$, and hence $x=0$ because W_{n}^{*} is injective. This implies that $\left(\widetilde{T}_{1}\right)_{p, r}^{(n)}$ is normal. By Lemma 2.8 and Theorem 2.10, T_{1} is nomal and therefore $T=T_{1} \bigoplus 0$ is also normal. The assertion is immediate from FugledePutnam's theorem.

Let X be a Banach space, U be an open subset of $\mathcal{C} . \varepsilon(U, X)$ denotes the Fréchet space of all X-valued \mathcal{C}^{∞}-functions, i.e., infinitely differentiable functions on U ([3]). $T \in B(X)$ is said to satisfy property $(\beta)_{\varepsilon}$ if for each open subset U of \mathcal{C}, the map

$$
T_{z}: \varepsilon(U, X) \rightarrow \varepsilon(U, X), \quad f \mapsto(T-z) f
$$

is a topological monomorphism, i.e., $T_{z} f_{n} \rightarrow 0(n \rightarrow \infty)$ in $\varepsilon(U, X)$ implies $f_{n} \rightarrow$ $0(n \rightarrow \infty)$ in $\varepsilon(U, X)$ ([3]).
Lemma 3.2 ([1]). Let $T \in B(X)$. T is subscalar if and only if T satisfies property $(\beta)_{\varepsilon}$.

Lemma 3.3. Let $T \in B(X)$. T satisfies property $(\beta)_{\varepsilon}$ if and only if $\widetilde{T}_{p, r}$ satisfies property $(\beta)_{\varepsilon}$.
Proof. First, we suppose that T satisfies property $(\beta)_{\varepsilon}, U$ is an open subset of \mathcal{C}, $f_{n} \in \varepsilon(U, X)$ and

$$
\begin{equation*}
\left(\widetilde{T}_{p, r}-z\right) f_{n} \rightarrow 0 \quad(n \rightarrow \infty) \tag{3.1}
\end{equation*}
$$

in $\varepsilon(U, X)$, then

$$
(T-z) U|T|^{r} f_{n}=U|T|^{r}\left(\widetilde{T}_{p, r}-z\right) f_{n} \rightarrow 0 \quad(n \rightarrow \infty)
$$

Since T satisfies property $(\beta)_{\varepsilon}$, we have $U|T|^{r} f_{n} \rightarrow 0(n \rightarrow \infty)$. and therefore

$$
\begin{equation*}
\widetilde{T}_{p, r} f_{n} \rightarrow 0 \quad(n \rightarrow \infty) \tag{3.2}
\end{equation*}
$$

(3.1) and (3.2) imply that

$$
\begin{equation*}
z f_{n}=\widetilde{T}_{p, r} f_{n}-\left(\widetilde{T}_{p, r}-z\right) f_{n} \rightarrow 0 \quad(n \rightarrow \infty) \tag{3.3}
\end{equation*}
$$

in $\varepsilon(U, X)$. Notice that $T=0$ is a subscalar operator and hence satisfies property $(\beta)_{\varepsilon}$ by Lemma 3.2. Now we have

$$
\begin{equation*}
f_{n} \rightarrow 0 \quad(n \rightarrow \infty) \tag{3.4}
\end{equation*}
$$

(3.1) and (3.4) imply that $\widetilde{T}_{p, r}$ satisfies property $(\beta)_{\varepsilon}$. Next we suppose that $\widetilde{T}_{p, r}$ satisfies property $(\beta)_{\varepsilon}, U$ is an open subset of $\mathcal{C}, f_{n} \in \varepsilon(U, X)$ and

$$
\begin{equation*}
(T-z) f_{n} \rightarrow 0 \quad(n \rightarrow \infty) \tag{3.5}
\end{equation*}
$$

in $\varepsilon(U, X)$. Then

$$
\left(\widetilde{T}_{p, r}-z\right)|T|^{p} f_{n}=|T|^{p}(T-z) f_{n} \rightarrow 0 \quad(n \rightarrow \infty)
$$

Class $w F(p, r, q)$ Operators and Quasisimilarity
Changsen Yang and Yuliang Zhao vol. 8, iss. 3, art. 90, 2007

Title Page
Contents

Page 12 of 15
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

Since $\widetilde{T}_{p, r}$ satisfies property $(\beta)_{\varepsilon}$, we have $|T|^{p} f_{n} \rightarrow 0(n \rightarrow \infty)$, and therefore

$$
\begin{equation*}
T f_{n} \rightarrow 0 \quad(n \rightarrow \infty) \tag{3.6}
\end{equation*}
$$

(3.5) and (3.6) imply

$$
z f_{n}=T f_{n}-(T-z) f_{n} \rightarrow 0 \quad(n \rightarrow \infty)
$$

So $f_{n} \rightarrow 0(n \rightarrow \infty)$. Hence T satisfies property $(\beta)_{\varepsilon}$.
Lemma 3.4 ([1]). Suppose that T is a p-hyponormal operator, then T is subscalar.
Theorem 3.5. Let $T \in w F(p, r, q)$ and $p+r=1$, then T is subdecomposable.
Proof. If $T \in w F(p, r, q)$, then $\widetilde{T}_{p, r}$ is a m-hyponormal operator by Lemma 2.4, and it follows from Lemma 3.4 that $\widetilde{T}_{p, r}$ is subscalar. So we have T is subscalar by Lemma 3.2 and Lemma 3.3. It is well known that subscalar operators are subdecomposable operators ([3]). Hence T is subdecomposable.

Recall that an operator $X \in B(H)$ is called a quasiaffinity if X is injective and has dense range. For $T_{1}, T_{2} \in B(H)$, if there exist quasiaffinities $X \in B\left(H_{2}, H_{1}\right)$ and $Y \in B\left(H_{1}, H_{2}\right)$ such that $T_{1} X=X T_{2}$ and $Y T_{1}=T_{2} Y$ then we say that T_{1} and T_{2} are quasisimilar.

Lemma 3.6 ([2]). Let $S \in B(H)$ be subdecomposable, $T \in B(H)$. If $X \in$ $B(K, H)$ is injective with dense range which satisfies $X T=S X$, then $\sigma(S) \subset$ $\sigma(T)$; if T and S are quasisimilar, then $\sigma_{e}(S) \subseteq \sigma_{e}(T)$.
Theorem 3.7. Let $T_{1}, T_{2} \in w F(p, r, q)$. If T_{1} and T_{2} are quasisimilar then $\sigma\left(T_{1}\right)=$ $\sigma\left(T_{2}\right)$ and $\sigma_{e}\left(T_{1}\right)=\sigma_{e}\left(T_{2}\right)$.
Proof. Obvious from Theorem 3.5 and Lemma 3.6.

Class $w F(p, r, q)$ Operators and Quasisimilarity
Changsen Yang and Yuliang Zhao vol. 8, iss. 3, art. 90, 2007

Title Page
Contents

Page 13 of 15
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

References

[1] L. CHEN, R. YINGBIN and Y. ZIKUN, w-Hyponormal operators are subscalar, Integr. Equat. Oper. Th., 50 (2004), 165-168.
[2] L. CHEN AND Y. ZIKUN, Bishop's property (β) and essential spectra of quasisimilar operators, Proc. Amer. Math. Soc., 128 (2000), 485-493.
[3] I. COLOJOARĀ And C. FOIAS, Theory of Generalized Spectral Operators, New York, Gordon and Breach, 1968.
[4] T. FURUTA, Invitation to Linear Operators - From Matrices to Bounded Linear Operators on a Hilbert Space, London: Taylor \& Francis, 2001.
[5] T. HURUYA, A note on p-hyponormal operators, Proc. Amer. Math. Soc., 125 (1997), 3617-3624.
[6] M. ITO AND T. YAMAZAKI, Relations between two inequalities $\left(B^{\frac{r}{2}} A^{p} B^{\frac{r}{2}}\right)^{\frac{r}{p+r}} \geq B^{r}$ and $\left(A^{\frac{p}{2}} B^{r} A^{\frac{p}{2}}\right)^{\frac{p}{p+r}} \leq A^{p}$ and its applications, Integr. Equat. Oper. Th., 44 (2002), 442-450.
[7] C.R. PUTNAM, On normal operators in Hilbert space, Amer. J. Math., 73 (1951), 357-362.
[8] C.R. PUTNAM, Hyponormal contractions and strong power convergence, Pa cific J. Math., 57 (1975), 531-538.
[9] C.R. PUTNAM, Ranges of normal and subnormal operators, Michigan Math. J., 18 (1971) 33-36.
[10] C. YANG AND J. YUAN, Spectrum of class $w F(p, r, q)$ operators for $p+r \leq 1$ and $q \geq 1$, Acta. Sci. Math. (Szeged), 71 (2005), 767-779.
J

Changsen Yang and Yuliang Zhao vol. 8, iss. 3, art. 90, 2007

Title Page
Contents

Page 14 of 15
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-5756
[11] C. YANG and J. YUAN, On class $w F(p, r, q)$ operators, preprint.

Title Page
Contents 44

Page 15 of 15
Go Back
Full Screen
Close

journal of inequalities in pure and applied mathematics
issn: 1443-575b
© 2007 Victoria University. All rights reserved.

