WHEN LAGRANGEAN AND QUASI-ARITHMETIC MEANS COINCIDE

JUSTYNA JARCZYK
Faculty of Mathematics, Computer Science and Econometrics, University of Zielona Góra Szafrana 4a, PL-65-516 Zielona Góra, Poland
j.jarczyk@wmie.uz.zgora.pl

Received 16 July, 2007; accepted 06 September, 2007
Communicated by Z. Páles

Abstract

We give a complete characterization of functions f generating the same Lagrangean mean L_{f} and quasi-arithmetic mean Q_{f}. We also solve the equation $L_{f}=Q_{g}$ imposing some additional conditions on f and g.

Key words and phrases: Mean, Lagrangean mean, Quasi-arithmetic mean, Jensen equation, Convexity.
2000 Mathematics Subject Classification. Primary 26E60, Secondary 39B22.

1. Introduction

We consider the problem when the Lagrangean and quasi-arithmetic means coincide. The Lagrangean means are related to the basic mean value theorem. The family of quasi-arithmetic means naturally generalizes all the classical means. Thus these two types of means, coming from different roots, are not closely related. On the other hand they enjoy a common property, namely, each of them is generated by a single variable function. With this background, the question: When do these two types of means coincide? seems to be interesting.

To present the main results we recall some definitions.
Let $I \subset \mathbb{R}$ be a real interval and $f: I \rightarrow \mathbb{R}$ be a continuous and strictly monotonic function. The function $L_{f}: I^{2} \rightarrow \mathbb{R}$, defined by

$$
L_{f}(x, y):= \begin{cases}f^{-1}\left(\frac{1}{y-x} \int_{x}^{y} f(\xi) d \xi\right), & \text { if } x \neq y \\ x, & \text { if } x=y\end{cases}
$$

is a strict symmetric mean, and it is called a Lagrangean one (cf. P.S. Bullen, D.S. Mitrinović, P.M. Vasić [3], Chap. VII, p. 343; L. R. Berrone, J. Moro [2], and the references therein). The function $Q_{f}: I^{2} \rightarrow \mathbb{R}$, given by

$$
Q_{f}(x, y):=f^{-1}\left(\frac{f(x)+f(y)}{2}\right),
$$

is called a quasi-arithmetic mean (cf., for instance, J. Aczél [1], Chap. VI, p. 276; P. S. Bullen, D. S. Mitrinović, P. M. Vasić [3], Chap. IV, p. 215; M. Kuczma [4], Chap. VIII, p. 189). In both cases, we say that f is the generator of the mean.
In Section 3 we give a complete solution of the equation $L_{f}=Q_{f}$. We show that this happens if and only if both the means are simply the arithmetic mean A. The general problem when $L_{f}=Q_{g}$ turns out to be much more difficult. We solve it in Section 4 , imposing some conditions on the generators f and g.

2. Some Definitions and Auxiliary Results

Let $I \subset \mathbb{R}$ be an interval. A function $M: I^{2} \rightarrow \mathbb{R}$ is said to be a mean on I if

$$
\min (x, y) \leq M(x, y) \leq \max (x, y), \quad x, y \in I
$$

If, in addition, these inequalities are sharp whenever $x \neq y$, the mean M is called strict, and M is called symmetric if $M(x, y)=M(y, x)$ for all $x, y \in I$.

Note that if $M: I^{2} \rightarrow \mathbb{R}$ is a mean, then for every interval $J \subset I$ we have $M\left(J^{2}\right)=J$; in particular, $M\left(I^{2}\right)=I$. Moreover, M is reflexive, that is $M(x, x)=x$ for all $x \in I$.

By A we denote the restriction of the arithmetic mean to the set I^{2}, i.e.

$$
A(x, y):=\frac{x+y}{2}, \quad x, y \in I .
$$

We shall need the following basic result about the Jensen functional equation (cf. [4], Th. XIII.2.2).

Theorem 2.1. Let $I \subset \mathbb{R}$ be an interval. A function $f: I \rightarrow \mathbb{R}$ is a continuous solution of the equation

$$
\begin{equation*}
f\left(\frac{x+y}{2}\right)=\frac{f(x)+f(y)}{2} \tag{2.1}
\end{equation*}
$$

if and only if

$$
f(x)=a x+b, \quad x, y \in I,
$$

with some $a, b \in \mathbb{R}$.

3. The Case of Common Generators

It is well known that $Q_{f}=Q_{g}$, i.e., f and g are equivalent generators of the quasi-arithmetic mean if and only if $g=a f+b$ for some $a, b \in \mathbb{R}, a \neq 0$ (cf. [1], Sec. 6.4.3, Th. 2; [3], Chap. VI, p. 344). Similarly, $L_{f}=L_{g}$ if and only if $g=c f+d$ for some $c, d \in \mathbb{R}, c \neq 0$ (cf. [2], Cor. 7; [3], Chap. VI, p. 344).
The main result of this section gives a complete characterization of functions f such that $L_{f}=Q_{f}$. Two different proofs are presented. The first is based on an elementary theory of differential equations; in the second one we apply Theorem 2.1.

Theorem 3.1. Let $I \subset \mathbb{R}$ be an interval and $f: I \rightarrow \mathbb{R}$ be a continuous strictly monotonic function. Then the following conditions are pairwise equivalent:
(i) $L_{f}=Q_{f}$;
(ii) there are $a, b \in \mathbb{R}, a \neq 0$, such that

$$
f(x)=a x+b, \quad x \in I ;
$$

(iii) $L_{f}=Q_{f}=A$.

First Proof. We only show the implication (i) \Rightarrow (ii), as the remaining are obvious. Assume that (i) holds true. From the definition of L_{f} and Q_{f} we have

$$
f^{-1}\left(\frac{f(x)+f(y)}{2}\right)=f^{-1}\left(\frac{1}{y-x} \int_{x}^{y} f(\xi) d \xi\right), \quad x, y \in I, \quad x \neq y
$$

or, equivalently,

$$
\frac{f(x)+f(y)}{2}=\frac{1}{y-x} \int_{x}^{y} f(\xi) d \xi, \quad x, y \in I, \quad x \neq y .
$$

Let $F: I \rightarrow \mathbb{R}$ be any primitive function of f. Then the condition above can be written in the form

$$
\begin{equation*}
\frac{f(x)+f(y)}{2}=\frac{F(y)-F(x)}{y-x}, \quad x, y \in I, \quad x \neq y \tag{3.1}
\end{equation*}
$$

This implies that f is differentiable and, consequently, F is twice differentiable. Fix an arbitrary $y \in I$. Differentiating both sides of this equality with respect to x, we obtain

$$
\frac{f^{\prime}(x)}{2}=\frac{F^{\prime}(x)(x-y)-F(x)+F(y)}{(x-y)^{2}}, \quad x, y \in I, \quad x \neq y
$$

Hence, using the relation $f^{\prime}=F^{\prime \prime}$, we get

$$
F^{\prime \prime}(x)(x-y)^{2}=2 F^{\prime}(x)(x-y)-2 F(x)+2 F(y), \quad x \in I
$$

Solving this differential equation of the second order on two disjoint intervals $(-\infty, y) \cap I$ and $(y, \infty) \cap I$, and then using the twice differentiability of F at the point y, we obtain

$$
F(x)=\frac{a}{2} x^{2}+b x+p, \quad x \in I,
$$

with some $a, b, p \in \mathbb{R}, a \neq 0$. Since F is a primitive function of f, we get

$$
f(x)=F^{\prime}(x)=a x+b, \quad x \in I,
$$

which completes the proof.
Second Proof. Again, let F be a primitive function of f. In the same way, as is in the previous proof, we show that 3.1 is satisfied. It follows that

$$
2[F(y)-F(x)]=(y-x)[f(x)+f(y)], \quad x, y \in I,
$$

and, consequently, since

$$
2[F(y)-F(z)]+2[F(z)-F(x)]=2[F(y)-F(x)], \quad x, y, z \in I
$$

we get

$$
(y-z)[f(z)+f(y)]+(z-x)[f(x)+f(z)]=(y-x)[f(x)+f(y)]
$$

for all $x, y, z \in I$. Setting here $z=\frac{x+y}{2}$, we have

$$
\frac{y-x}{2}\left[f\left(\frac{x+y}{2}\right)+f(y)\right]+\frac{y-x}{2}\left[f(x)+f\left(\frac{x+y}{2}\right)\right]=(y-x)[f(x)+f(y)]
$$

for all $x, y \in I$, i.e., f satisfies equation 2.1). In view of Theorem 2.1, the continuity of f implies that $f(x)=a x+b, x \in I$, for some $a, b \in \mathbb{R}$. Since f is strictly monotonic we infer that $a \neq 0$.

4. Equality of Lagrangean and Quasi-arithmetic Means Under Some Convexity Assumptions

In this section we examine the equation $L_{f}=Q_{g}$, imposing some additional conditions on f and g.

Theorem 4.1. Let $I \subset \mathbb{R}$ be an interval, and $f, g: I \rightarrow \mathbb{R}$ be continuous and strictly monotonic functions. Assume that $g \circ f^{-1}$ and g are of the same type of convexity. Then the following conditions are pairwise equivalent:
(i) $L_{f}=Q_{g}$;
(ii) there are $a, b, c, d \in \mathbb{R}, a \neq 0, c \neq 0$, such that

$$
f(x)=a x+b, \quad g(x)=c x+d, \quad x \in I ;
$$

(iii) $L_{f}=Q_{g}=A$.

Proof. Assume, for instance, that $g \circ f^{-1}$ and g are convex. Let $F: I \rightarrow \mathbb{R}$ be any primitive function of f. Then the condition $L_{f}=Q_{g}$ can be written in the form

$$
\begin{equation*}
f^{-1}\left(\frac{F(y)-F(x)}{y-x}\right)=g^{-1}\left(\frac{g(x)+g(y)}{2}\right), \quad x, y \in I, \quad x \neq y \tag{4.1}
\end{equation*}
$$

or, equivalently,

$$
F(y)-F(x)=f \circ g^{-1}\left(\frac{g(x)+g(y)}{2}\right)(y-x), \quad x, y \in I .
$$

Using the identity

$$
F(y)-F(x)=[F(y)-F(z)]+[F(z)-F(x)],
$$

we get

$$
\begin{aligned}
& f \circ g^{-1}\left(\frac{g(x)+g(y)}{2}\right)(y-x)=f \circ g^{-1}\left(\frac{g(z)+g(y)}{2}\right)(y-z) \\
& \quad+f \circ g^{-1}\left(\frac{g(x)+g(z)}{2}\right)(z-x)
\end{aligned}
$$

for all $x, y, z \in I$. Putting here $\lambda=\frac{y-z}{y-x}$ and $z=\lambda x+(1-\lambda) y$, we have

$$
\begin{aligned}
& \frac{g(x)+g(y)}{2}=\left(f \circ g^{-1}\right)^{-1}\left(\lambda\left(f \circ g^{-1}\right)\left(\frac{g(\lambda x+(1-\lambda) y)+g(y)}{2}\right)\right. \\
&\left.+(1-\lambda)\left(f \circ g^{-1}\right)\left(\frac{g(x)+g(\lambda x+(1-\lambda) y)}{2}\right)\right)
\end{aligned}
$$

for all $x, y \in I$ and $\lambda \in[0,1]$. Using the convexity of $\left(f \circ g^{-1}\right)^{-1}$, we obtain

$$
\lambda g(x)+(1-\lambda) g(y) \leq g(\lambda x+(1-\lambda) y), \quad x, y \in I, \lambda \in[0,1]
$$

i.e, g is concave. On the other hand, by the assumption, g is convex. Hence we infer that there are $c, d \in \mathbb{R}, c \neq 0$, such that

$$
g(x)=c x+d, \quad x \in I .
$$

Making use of (4.1), we obtain

$$
f^{-1}\left(\frac{F(y)-F(x)}{y-x}\right)=\frac{x+y}{2}
$$

whence

$$
F(y)-F(x)=(y-x) f\left(\frac{x+y}{2}\right)
$$

for all $x, y \in I$. In particular, we deduce that f is differentiable. Differentiating both sides with respect to x and then with respect to y we get

$$
-f(x)=-f\left(\frac{x+y}{2}\right)+\frac{y-x}{2} f^{\prime}\left(\frac{x+y}{2}\right)
$$

and

$$
f(y)=f\left(\frac{x+y}{2}\right)+\frac{y-x}{2} f^{\prime}\left(\frac{x+y}{2}\right)
$$

for all $x, y \in I$, which means that f satisfies the Jensen equation. Now, using Theorem 2.1, we complete the proof.

References

[1] J. ACZÉL, Lectures on Functional Equations and their Applications, Academic Press, New York, 1966.
[2] L.R. BERRONE AND J. MORO, Lagrangian means, Aequationes Math., 55 (1998), 217-226.
[3] P.S. BULLEN, D.S. MITRINOVIĆ AND P.M. VASIĆ, Means and their Inequalities, D. Reidel Publishing Company, Dordrecht, 1988.
[4] M. KUCZMA, An Introduction to the Theory of Functional Equations and Inequalities. Cauchy's Equation and Jensens Inequality, Państwowe Wydawnictwo Naukowe, Uniwersytet Śląski, Warszawa-Kraków-Katowice, 1985.

