
Volume 8 (2007), Issue 3, Article 71, 5 pp.

WHEN LAGRANGEAN AND QUASI-ARITHMETIC MEANS COINCIDE

JUSTYNA JARCZYK

FACULTY OF MATHEMATICS, COMPUTERSCIENCE AND ECONOMETRICS,
UNIVERSITY OF ZIELONA GÓRA

SZAFRANA 4A , PL-65-516 ZIELONA GÓRA, POLAND

j.jarczyk@wmie.uz.zgora.pl

Received 16 July, 2007; accepted 06 September, 2007
Communicated by Z. Páles

ABSTRACT. We give a complete characterization of functionsf generating the same Lagrangean
meanLf and quasi-arithmetic meanQf . We also solve the equationLf = Qg imposing some
additional conditions onf andg.
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1. I NTRODUCTION

We consider the problem when the Lagrangean and quasi-arithmetic means coincide. The
Lagrangean means are related to the basic mean value theorem. The family of quasi-arithmetic
means naturally generalizes all the classical means. Thus these two types of means, coming
from different roots, are not closely related. On the other hand they enjoy a common property,
namely, each of them is generated by a single variable function. With this background, the
question:When do these two types of means coincide?seems to be interesting.

To present the main results we recall some definitions.
Let I ⊂ R be a real interval andf : I → R be a continuous and strictly monotonic function.

The functionLf : I2 → R, defined by

Lf (x, y) :=

 f−1
(

1
y−x

∫ y

x
f (ξ) dξ

)
, if x 6= y,

x, if x = y,

is a strict symmetric mean, and it is called aLagrangeanone (cf. P.S. Bullen, D.S. Mitrinović,
P.M. Vasíc [3], Chap. VII, p. 343; L. R. Berrone, J. Moro [2], and the references therein). The
functionQf : I2 → R, given by

Qf (x, y) := f−1

(
f (x) + f (y)

2

)
,
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is called aquasi-arithmetic mean(cf., for instance, J. Aczél [1], Chap. VI, p. 276; P. S. Bullen,
D. S. Mitrinović, P. M. Vasíc [3], Chap. IV, p. 215; M. Kuczma [4], Chap. VIII, p. 189). In
both cases, we say thatf is thegeneratorof the mean.

In Section 3 we give a complete solution of the equationLf = Qf . We show that this happens
if and only if both the means are simply the arithmetic meanA. The general problemwhen
Lf = Qg turns out to be much more difficult. We solve it in Section 4, imposing some conditions
on the generatorsf andg.

2. SOME DEFINITIONS AND AUXILIARY RESULTS

Let I ⊂ R be an interval. A functionM : I2 → R is said to be amean onI if

min(x, y) ≤M(x, y) ≤ max(x, y), x, y ∈ I.

If, in addition, these inequalities are sharp wheneverx 6= y, the meanM is calledstrict, andM
is calledsymmetricif M(x, y) = M(y, x) for all x, y ∈ I.

Note that ifM : I2 → R is a mean, then for every intervalJ ⊂ I we haveM(J2) = J ; in
particular,M (I2) = I. Moreover,M is reflexive, that isM(x, x) = x for all x ∈ I.

By A we denote the restriction of thearithmeticmean to the setI2, i.e.

A(x, y) :=
x + y

2
, x, y ∈ I.

We shall need the following basic result about the Jensen functional equation (cf. [4], Th.
XIII.2.2).

Theorem 2.1. Let I ⊂ R be an interval. A functionf : I → R is a continuous solution of the
equation

f

(
x + y

2

)
=

f (x) + f (y)

2
(2.1)

if and only if

f (x) = ax + b, x, y ∈ I,

with somea, b ∈ R.

3. THE CASE OF COMMON GENERATORS

It is well known thatQf = Qg, i.e.,f andg are equivalent generators of the quasi-arithmetic
mean if and only ifg = af + b for somea, b ∈ R, a 6= 0 (cf. [1], Sec. 6.4.3, Th. 2; [3], Chap.
VI, p. 344). Similarly,Lf = Lg if and only if g = cf + d for somec, d ∈ R, c 6= 0 (cf. [2],
Cor. 7; [3], Chap. VI, p. 344).

The main result of this section gives a complete characterization of functionsf such that
Lf = Qf . Two different proofs are presented. The first is based on an elementary theory of
differential equations; in the second one we apply Theorem 2.1.

Theorem 3.1. Let I ⊂ R be an interval andf : I → R be a continuous strictly monotonic
function. Then the following conditions are pairwise equivalent:

(i) Lf = Qf ;
(ii) there area, b ∈ R, a 6= 0, such that

f (x) = ax + b, x ∈ I;

(iii) Lf = Qf = A.
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First Proof. We only show the implication (i)⇒(ii), as the remaining are obvious. Assume that
(i) holds true. From the definition ofLf andQf we have

f−1

(
f (x) + f (y)

2

)
= f−1

(
1

y − x

∫ y

x

f (ξ) dξ

)
, x, y ∈ I, x 6= y,

or, equivalently,

f (x) + f (y)

2
=

1

y − x

∫ y

x

f (ξ) dξ, x, y ∈ I, x 6= y.

Let F : I → R be any primitive function off . Then the condition above can be written in the
form

(3.1)
f (x) + f (y)

2
=

F (y)− F (x)

y − x
, x, y ∈ I, x 6= y.

This implies thatf is differentiable and, consequently,F is twice differentiable. Fix an arbitrary
y ∈ I. Differentiating both sides of this equality with respect tox, we obtain

f ′ (x)

2
=

F ′(x) (x− y)− F (x) + F (y)

(x− y)2 , x, y ∈ I, x 6= y.

Hence, using the relationf ′ = F ′′, we get

F ′′(x) (x− y)2 = 2F ′(x) (x− y)− 2F (x) + 2F (y), x ∈ I.

Solving this differential equation of the second order on two disjoint intervals(−∞, y)∩ I and
(y,∞) ∩ I, and then using the twice differentiability ofF at the pointy, we obtain

F (x) =
a

2
x2 + bx + p, x ∈ I,

with somea, b, p ∈ R, a 6= 0. SinceF is a primitive function off, we get

f(x) = F ′(x) = ax + b, x ∈ I,

which completes the proof . �

Second Proof.Again, letF be a primitive function off. In the same way, as is in the previous
proof, we show that (3.1) is satisfied. It follows that

2 [F (y)− F (x)] = (y − x) [f(x) + f(y)] , x, y ∈ I,

and, consequently, since

2 [F (y)− F (z)] + 2 [F (z)− F (x)] = 2 [F (y)− F (x)] , x, y, z ∈ I,

we get

(y − z) [f(z) + f(y)] + (z − x) [f(x) + f(z)] = (y − x) [f(x) + f(y)]

for all x, y, z ∈ I. Setting herez = x+y
2

, we have

y − x

2

[
f

(
x + y

2

)
+ f(y)

]
+

y − x

2

[
f (x) + f

(
x + y

2

)]
= (y − x) [f(x) + f(y)]

for all x, y ∈ I, i.e., f satisfies equation (2.1). In view of Theorem 2.1, the continuity off
implies thatf(x) = ax + b, x ∈ I, for somea, b ∈ R. Since f is strictly monotonic we infer
thata 6= 0. �
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4. EQUALITY OF L AGRANGEAN AND QUASI-ARITHMETIC M EANS

UNDER SOME CONVEXITY ASSUMPTIONS

In this section we examine the equationLf = Qg, imposing some additional conditions onf
andg.

Theorem 4.1.LetI ⊂ R be an interval, andf, g : I → R be continuous and strictly monotonic
functions. Assume thatg ◦ f−1 and g are of the same type of convexity. Then the following
conditions are pairwise equivalent:

(i) Lf = Qg;
(ii) there area, b, c, d ∈ R, a 6= 0, c 6= 0, such that

f(x) = ax + b, g(x) = cx + d, x ∈ I;

(iii) Lf = Qg = A.

Proof. Assume, for instance, thatg ◦ f−1 andg are convex. LetF : I → R be any primitive
function of f . Then the conditionLf = Qg can be written in the form

(4.1) f−1

(
F (y)− F (x)

y − x

)
= g−1

(
g (x) + g (y)

2

)
, x, y ∈ I, x 6= y,

or, equivalently,

F (y)− F (x) = f ◦ g−1

(
g (x) + g (y)

2

)
(y − x) , x, y ∈ I.

Using the identity

F (y)− F (x) = [F (y)− F (z)] + [F (z)− F (x)] ,

we get

f ◦ g−1

(
g (x) + g (y)

2

)
(y − x) = f ◦ g−1

(
g (z) + g (y)

2

)
(y − z)

+ f ◦ g−1

(
g (x) + g (z)

2

)
(z − x)

for all x, y, z ∈ I. Putting hereλ = y−z
y−x

and z = λx + (1− λ) y, we have

g (x) + g (y)

2
=

(
f ◦ g−1

)−1
(

λ
(
f ◦ g−1

) (
g (λx + (1− λ) y) + g (y)

2

)
+ (1− λ)

(
f ◦ g−1

) (
g (x) + g (λx + (1− λ) y)

2

))
for all x, y ∈ I andλ ∈ [0, 1]. Using the convexity of(f ◦ g−1)

−1
, we obtain

λg (x) + (1− λ) g (y) ≤ g (λx + (1− λ) y) , x, y ∈ I, λ ∈ [0, 1],

i.e, g is concave. On the other hand, by the assumption,g is convex. Hence we infer that there
are c, d ∈ R, c 6= 0, such that

g(x) = cx + d, x ∈ I.

Making use of (4.1), we obtain

f−1

(
F (y)− F (x)

y − x

)
=

x + y

2
,
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whence

F (y)− F (x) = (y − x) f

(
x + y

2

)
for all x, y ∈ I. In particular, we deduce thatf is differentiable. Differentiating both sides with
respect tox and then with respect toy we get

−f(x) = −f

(
x + y

2

)
+

y − x

2
f ′

(
x + y

2

)
and

f(y) = f

(
x + y

2

)
+

y − x

2
f ′

(
x + y

2

)
for all x, y ∈ I, which means thatf satisfies the Jensen equation. Now, using Theorem 2.1, we
complete the proof. �
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