WHEN LAGRANGEAN AND QUASI-ARITHMETIC MEANS COINCIDE

JUSTYNA JARCZYK

Faculty of Mathematics, Computer Science and Econometrics, University of Zielona Góra Szafrana 4a, PL-65-516 Zielona Góra, Poland EMail: j.jarczyk@wmie.uz.zgora.pl

Received:	16 July, 2007
Accepted:	06 September, 2007
Communicated by:	Zs. Páles
2000 AMS Sub. Class.:	Primary 26E60, Secondary 39B22.
Key words:	Mean, Lagrangean mean, Quasi-arithmetic mean, Jensen equation, Convexity.
Abstract:	We give a complete characterization of functions f generating the same La- grangean mean L_f and quasi-arithmetic mean Q_f . We also solve the equation $L_f = Q_g$ imposing some additional conditions on f and g .

Lagrangean and Quasi-arithmetic Means

Justyna Jarczyk		
vol. 8, iss. 3,	art. 71, 2007	
Title	Page	
Cont	tents	
••	••	
•		
Page 1	-	
	1 of 11	
Page 1	l of 11 Back	

journal of inequalities in pure and applied mathematics

Contents

1	Introduction	3
2	Some Definitions and Auxiliary Results	4
3	The Case of Common Generators	5
4	Equality of Lagrangean and Quasi-arithmetic Means Under Some Convexity Assumptions	8

journal of inequalities in pure and applied mathematics

1. Introduction

We consider the problem when the Lagrangean and quasi-arithmetic means coincide. The Lagrangean means are related to the basic mean value theorem. The family of quasi-arithmetic means naturally generalizes all the classical means. Thus these two types of means, coming from different roots, are not closely related. On the other hand they enjoy a common property, namely, each of them is generated by a single variable function. With this background, the question: *When do these two types of means coincide?* seems to be interesting.

To present the main results we recall some definitions.

Let $I \subset \mathbb{R}$ be a real interval and $f : I \to \mathbb{R}$ be a continuous and strictly monotonic function. The function $L_f : I^2 \to \mathbb{R}$, defined by

$$L_f(x, y) := \begin{cases} f^{-1}\left(\frac{1}{y-x}\int_x^y f\left(\xi\right)d\xi\right), & \text{if } x \neq y, \\ x, & \text{if } x = y, \end{cases}$$

is a strict symmetric mean, and it is called a *Lagrangean* one (cf. P.S. Bullen, D.S. Mitrinović, P.M. Vasić [3], Chap. VII, p. 343; L. R. Berrone, J. Moro [2], and the references therein). The function $Q_f : I^2 \to \mathbb{R}$, given by

$$Q_f(x, y) := f^{-1}\left(\frac{f(x) + f(y)}{2}\right)$$

is called a *quasi-arithmetic mean* (cf., for instance, J. Aczél [1], Chap. VI, p. 276; P. S. Bullen, D. S. Mitrinović, P. M. Vasić [3], Chap. IV, p. 215; M. Kuczma [4], Chap. VIII, p. 189). In both cases, we say that f is the *generator* of the mean.

In Section 3 we give a complete solution of the equation $L_f = Q_f$. We show that this happens if and only if both the means are simply the arithmetic mean A. The general problem when $L_f = Q_g$ turns out to be much more difficult. We solve it in Section 4, imposing some conditions on the generators f and g.

journal of inequalities in pure and applied mathematics

2. Some Definitions and Auxiliary Results

Let $I \subset \mathbb{R}$ be an interval. A function $M: I^2 \to \mathbb{R}$ is said to be a *mean on* I if

$$\min(x, y) \le M(x, y) \le \max(x, y), \qquad x, y \in I$$

If, in addition, these inequalities are sharp whenever $x \neq y$, the mean M is called *strict*, and M is called *symmetric* if M(x, y) = M(y, x) for all $x, y \in I$.

Note that if $M : I^2 \to \mathbb{R}$ is a mean, then for every interval $J \subset I$ we have $M(J^2) = J$; in particular, $M(I^2) = I$. Moreover, M is *reflexive*, that is M(x, x) = x for all $x \in I$.

By A we denote the restriction of the *arithmetic* mean to the set I^2 , i.e.

$$A(x, y) := \frac{x+y}{2}, \qquad x, y \in I$$

We shall need the following basic result about the Jensen functional equation (cf. [4], Th. XIII.2.2).

Theorem 2.1. Let $I \subset \mathbb{R}$ be an interval. A function $f : I \to \mathbb{R}$ is a continuous solution of the equation

(2.1)
$$f\left(\frac{x+y}{2}\right) = \frac{f(x) + f(y)}{2}$$

if and only if

$$f(x) = ax + b, \qquad x, y \in I,$$

with some $a, b \in \mathbb{R}$.

journal of inequalities in pure and applied mathematics

3. The Case of Common Generators

It is well known that $Q_f = Q_g$, i.e., f and g are equivalent generators of the quasiarithmetic mean if and only if g = af + b for some $a, b \in \mathbb{R}$, $a \neq 0$ (cf. [1], Sec. 6.4.3, Th. 2; [3], Chap. VI, p. 344). Similarly, $L_f = L_g$ if and only if g = cf + dfor some $c, d \in \mathbb{R}$, $c \neq 0$ (cf. [2], Cor. 7; [3], Chap. VI, p. 344).

The main result of this section gives a complete characterization of functions f such that $L_f = Q_f$. Two different proofs are presented. The first is based on an elementary theory of differential equations; in the second one we apply Theorem 2.1.

Theorem 3.1. Let $I \subset \mathbb{R}$ be an interval and $f : I \to \mathbb{R}$ be a continuous strictly monotonic function. Then the following conditions are pairwise equivalent:

- (i) $L_f = Q_f;$
- (ii) there are $a, b \in \mathbb{R}$, $a \neq 0$, such that

$$f(x) = ax + b, \qquad x \in I;$$

 $(iii) L_f = Q_f = A.$

First Proof. We only show the implication (i) \Rightarrow (ii), as the remaining are obvious. Assume that (i) holds true. From the definition of L_f and Q_f we have

$$f^{-1}\left(\frac{f(x) + f(y)}{2}\right) = f^{-1}\left(\frac{1}{y - x}\int_{x}^{y} f(\xi) \, d\xi\right), \qquad x, y \in I, \quad x \neq y,$$

or, equivalently,

$$\frac{f(x) + f(y)}{2} = \frac{1}{y - x} \int_{x}^{y} f(\xi) d\xi, \qquad x, y \in I, \quad x \neq y.$$

		-	
Title Page			
Contents			
44	••		
•	►		
Page <mark>5</mark> of 11			
Go Back			
Full Screen			
Close			
ournal of inequalities pure and applied pathematics			

Let $F: I \to \mathbb{R}$ be any primitive function of f. Then the condition above can be written in the form

(3.1)
$$\frac{f(x) + f(y)}{2} = \frac{F(y) - F(x)}{y - x}, \qquad x, y \in I, \quad x \neq y.$$

This implies that f is differentiable and, consequently, F is twice differentiable. Fix an arbitrary $y \in I$. Differentiating both sides of this equality with respect to x, we obtain

$$\frac{f'(x)}{2} = \frac{F'(x)(x-y) - F(x) + F(y)}{(x-y)^2}, \qquad x, y \in I, \quad x \neq y.$$

Hence, using the relation f' = F'', we get

$$F''(x) (x - y)^2 = 2F'(x) (x - y) - 2F(x) + 2F(y), \qquad x \in I.$$

Solving this differential equation of the second order on two disjoint intervals $(-\infty, y) \cap I$ and $(y, \infty) \cap I$, and then using the twice differentiability of F at the point y, we obtain

$$F(x) = \frac{a}{2}x^2 + bx + p, \qquad x \in I$$

with some $a, b, p \in \mathbb{R}, a \neq 0$. Since F is a primitive function of f, we get

$$f(x) = F'(x) = ax + b, \qquad x \in I,$$

which completes the proof.

Second Proof. Again, let F be a primitive function of f. In the same way, as is in the previous proof, we show that (3.1) is satisfied. It follows that

$$2[F(y) - F(x)] = (y - x)[f(x) + f(y)], \qquad x, y \in I,$$

in pure and applied mathematics

issn: 1443-5756

and, consequently, since

$$2[F(y) - F(z)] + 2[F(z) - F(x)] = 2[F(y) - F(x)], \qquad x, y, z \in I,$$

we get

$$(y-z)[f(z) + f(y)] + (z-x)[f(x) + f(z)] = (y-x)[f(x) + f(y)]$$

for all $x, y, z \in I$. Setting here $z = \frac{x+y}{2}$, we have

$$\frac{y-x}{2}\left[f\left(\frac{x+y}{2}\right)+f(y)\right]+\frac{y-x}{2}\left[f\left(x\right)+f\left(\frac{x+y}{2}\right)\right]=(y-x)\left[f(x)+f(y)\right]$$

for all $x, y \in I$, i.e., f satisfies equation (2.1). In view of Theorem 2.1, the continuity of f implies that f(x) = ax + b, $x \in I$, for some $a, b \in \mathbb{R}$. Since f is strictly monotonic we infer that $a \neq 0$.

Lagrangean and

Quasi-arithmetic Means

Justyna Jarczyk vol. 8, iss. 3, art. 71, 2007				
Title Page				
Contents				
••	••			
•	•			
Page 7 of 11				
Go Back				
Full Screen				
Close				

journal of inequalities in pure and applied mathematics

4. Equality of Lagrangean and Quasi-arithmetic Means Under Some Convexity Assumptions

In this section we examine the equation $L_f = Q_g$, imposing some additional conditions on f and g.

Theorem 4.1. Let $I \subset \mathbb{R}$ be an interval, and $f, g : I \to \mathbb{R}$ be continuous and strictly monotonic functions. Assume that $g \circ f^{-1}$ and g are of the same type of convexity. Then the following conditions are pairwise equivalent:

(*i*) $L_f = Q_g;$

(ii) there are $a, b, c, d \in \mathbb{R}$, $a \neq 0, c \neq 0$, such that

$$f(x) = ax + b,$$
 $g(x) = cx + d,$ $x \in I$

 $(iii) L_f = Q_g = A.$

Proof. Assume, for instance, that $g \circ f^{-1}$ and g are convex. Let $F : I \to \mathbb{R}$ be any primitive function of f. Then the condition $L_f = Q_g$ can be written in the form

(4.1)
$$f^{-1}\left(\frac{F(y) - F(x)}{y - x}\right) = g^{-1}\left(\frac{g(x) + g(y)}{2}\right), \quad x, y \in I, \quad x \neq y,$$

or, equivalently,

$$F(y) - F(x) = f \circ g^{-1}\left(\frac{g(x) + g(y)}{2}\right)(y - x), \qquad x, y \in I.$$

Using the identity

$$F(y) - F(x) = [F(y) - F(z)] + [F(z) - F(x)],$$

Lagrangean and Quasi-arithmetic Means				
Justyna Jarczyk				
vol. 8, iss. 3, art. 71, 2007				
			-	
	Title	Page		
	Cont	tents		
	•	••		
		Þ		
F	Page 8 of 11			
	Go E	Back		
I	Full Screen			
	Close			
ournal of inequalities				

in pure and applied mathematics

we get

$$\begin{split} f \circ g^{-1} \left(\frac{g\left(x \right) + g\left(y \right)}{2} \right) \left(y - x \right) &= f \circ g^{-1} \left(\frac{g\left(z \right) + g\left(y \right)}{2} \right) \left(y - z \right) \\ &+ f \circ g^{-1} \left(\frac{g\left(x \right) + g\left(z \right)}{2} \right) \left(z - x \right) \end{split}$$

for all $x, y, z \in I$. Putting here $\lambda = \frac{y-z}{y-x}$ and $z = \lambda x + (1 - \lambda) y$, we have

$$\frac{g\left(x\right)+g\left(y\right)}{2} = \left(f \circ g^{-1}\right)^{-1} \left(\lambda \left(f \circ g^{-1}\right) \left(\frac{g\left(\lambda x + (1-\lambda)y\right)+g\left(y\right)}{2}\right) + (1-\lambda)\left(f \circ g^{-1}\right) \left(\frac{g\left(x\right)+g\left(\lambda x + (1-\lambda)y\right)}{2}\right)\right)$$

for all $x, y \in I$ and $\lambda \in [0, 1]$. Using the convexity of $(f \circ g^{-1})^{-1}$, we obtain

 $\lambda g(x) + (1 - \lambda) g(y) \le g(\lambda x + (1 - \lambda) y), \qquad x, y \in I, \ \lambda \in [0, 1],$

i.e, g is concave. On the other hand, by the assumption, g is convex. Hence we infer that there are $c, d \in \mathbb{R}, c \neq 0$, such that

$$g(x) = cx + d, \qquad x \in I$$

Making use of (4.1), we obtain

$$f^{-1}\left(\frac{F(y) - F(x)}{y - x}\right) = \frac{x + y}{2},$$

whence

$$F(y) - F(x) = (y - x) f\left(\frac{x + y}{2}\right)$$

Lagrangean and **Quasi-arithmetic Means** Justyna Jarczyk vol. 8, iss. 3, art. 71, 2007 **Title Page** Contents 44 ◀ Page 9 of 11 Go Back **Full Screen** Close

journal of inequalities in pure and applied mathematics

for all $x, y \in I$. In particular, we deduce that f is differentiable. Differentiating both sides with respect to x and then with respect to y we get

$$-f(x) = -f\left(\frac{x+y}{2}\right) + \frac{y-x}{2}f'\left(\frac{x+y}{2}\right)$$

and

$$f(y) = f\left(\frac{x+y}{2}\right) + \frac{y-x}{2}f'\left(\frac{x+y}{2}\right)$$

for all $x, y \in I$, which means that f satisfies the Jensen equation. Now, using Theorem 2.1, we complete the proof.

in pure and applied mathematics

References

- [1] J. ACZÉL, *Lectures on Functional Equations and their Applications*, Academic Press, New York, 1966.
- [2] L.R. BERRONE AND J. MORO, Lagrangian means, Aequationes Math., 55 (1998), 217–226.
- [3] P.S. BULLEN, D.S. MITRINOVIĆ AND P.M. VASIĆ, *Means and their Inequalities*, D. Reidel Publishing Company, Dordrecht, 1988.
- [4] M. KUCZMA, An Introduction to the Theory of Functional Equations and Inequalities. Cauchy's Equation and Jensens Inequality, Państwowe Wydawnictwo Naukowe, Uniwersytet Śląski, Warszawa-Kraków-Katowice, 1985.

in pure and applied mathematics