WHEN LAGRANGEAN AND QUASI-ARITHMETIC MEANS COINCIDE

JUSTYNA JARCZYK

Faculty of Mathematics, Computer Science and Econometrics,
University of Zielona Góra
Szafrana 4a, PL-65-516 Zielona Góra, Poland
EMail: j.jarczyk@wmie.uz.zgora.pl

Lagrangean and Quasi-arithmetic Means

Justyna Jarczyk
vol. 8, iss. 3, art. 71, 2007

Title Page
Contents

Received:
Accepted:
Communicated by:
2000 AMS Sub. Class.
Key words:
Abstract:

16 July, 2007
06 September, 2007
Zs. Páles
Primary 26E60, Secondary 39B22.
Mean, Lagrangean mean, Quasi-arithmetic mean, Jensen equation, Convexity.
We give a complete characterization of functions f generating the same Lagrangean mean L_{f} and quasi-arithmetic mean Q_{f}. We also solve the equation $L_{f}=Q_{g}$ imposing some additional conditions on f and g.

44

Page 1 of 11
Go Back
Full Screen

Close

journal of inequalities in pure and applied mathematics
issn: 1443-575b

Contents

1 Introduction 3
2 Some Definitions and Auxiliary Results 4
3 The Case of Common Generators 5
4 Equality of Lagrangean and Quasi-arithmetic Means Under Some Convexity Assumptions 8

Lagrangean and Quasi-arithmetic Means Justyna Jarczyk vol. 8, iss. 3, art. 71, 2007

Title Page
Contents

$\mathbf{4}$	
$\mathbf{~ P a g e ~} 2$ of 11	
Go Back	
Full Screen	
Close	

journal of inequalities in pure and applied mathematics
issn: 1443-575b

1. Introduction

We consider the problem when the Lagrangean and quasi-arithmetic means coincide. The Lagrangean means are related to the basic mean value theorem. The family of quasi-arithmetic means naturally generalizes all the classical means. Thus these two types of means, coming from different roots, are not closely related. On the other hand they enjoy a common property, namely, each of them is generated by a single variable function. With this background, the question: When do these two types of means coincide? seems to be interesting.

To present the main results we recall some definitions.
Let $I \subset \mathbb{R}$ be a real interval and $f: I \rightarrow \mathbb{R}$ be a continuous and strictly monotonic function. The function $L_{f}: I^{2} \rightarrow \mathbb{R}$, defined by

$$
L_{f}(x, y):= \begin{cases}f^{-1}\left(\frac{1}{y-x} \int_{x}^{y} f(\xi) d \xi\right), & \text { if } x \neq y \\ x, & \text { if } x=y\end{cases}
$$

is a strict symmetric mean, and it is called a Lagrangean one (cf. P.S. Bullen, D.S. Mitrinović, P.M. Vasić [3], Chap. VII, p. 343; L. R. Berrone, J. Moro [2], and the references therein). The function $Q_{f}: I^{2} \rightarrow \mathbb{R}$, given by

$$
Q_{f}(x, y):=f^{-1}\left(\frac{f(x)+f(y)}{2}\right)
$$

is called a quasi-arithmetic mean (cf., for instance, J. Aczél [1], Chap. VI, p. 276; P. S. Bullen, D. S. Mitrinović, P. M. Vasić [3], Chap. IV, p. 215; M. Kuczma [4], Chap. VIII, p. 189). In both cases, we say that f is the generator of the mean.

In Section 3 we give a complete solution of the equation $L_{f}=Q_{f}$. We show that this happens if and only if both the means are simply the arithmetic mean A. The general problem when $L_{f}=Q_{g}$ turns out to be much more difficult. We solve it in Section 4, imposing some conditions on the generators f and g.

Lagrangean and Quasi-arithmetic Means

Justyna Jarczyk
vol. 8, iss. 3, art. 71, 2007

Title Page
Contents

Page 3 of 11
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

2. Some Definitions and Auxiliary Results

Let $I \subset \mathbb{R}$ be an interval. A function $M: I^{2} \rightarrow \mathbb{R}$ is said to be a mean on I if

$$
\min (x, y) \leq M(x, y) \leq \max (x, y), \quad x, y \in I
$$

If, in addition, these inequalities are sharp whenever $x \neq y$, the mean M is called strict, and M is called symmetric if $M(x, y)=M(y, x)$ for all $x, y \in I$.

Note that if $M: I^{2} \rightarrow \mathbb{R}$ is a mean, then for every interval $J \subset I$ we have $M\left(J^{2}\right)=J$; in particular, $M\left(I^{2}\right)=I$. Moreover, M is reflexive, that is $M(x, x)=$ x for all $x \in I$.

By A we denote the restriction of the arithmetic mean to the set I^{2}, i.e.

$$
A(x, y):=\frac{x+y}{2}, \quad x, y \in I
$$

We shall need the following basic result about the Jensen functional equation (cf. [4], Th. XIII.2.2).
Theorem 2.1. Let $I \subset \mathbb{R}$ be an interval. A function $f: I \rightarrow \mathbb{R}$ is a continuous solution of the equation

$$
\begin{equation*}
f\left(\frac{x+y}{2}\right)=\frac{f(x)+f(y)}{2} \tag{2.1}
\end{equation*}
$$

Go Back
Full Screen
if and only if

$$
f(x)=a x+b, \quad x, y \in I
$$

with some $a, b \in \mathbb{R}$.

Close
journal of inequalities in pure and applied mathematics

3. The Case of Common Generators

It is well known that $Q_{f}=Q_{g}$, i.e., f and g are equivalent generators of the quasiarithmetic mean if and only if $g=a f+b$ for some $a, b \in \mathbb{R}, a \neq 0$ (cf. [1], Sec. 6.4.3, Th. 2; [3], Chap. VI, p. 344). Similarly, $L_{f}=L_{g}$ if and only if $g=c f+d$ for some $c, d \in \mathbb{R}, c \neq 0$ (cf. [2], Cor. 7; [3], Chap. VI, p. 344).

The main result of this section gives a complete characterization of functions f such that $L_{f}=Q_{f}$. Two different proofs are presented. The first is based on an elementary theory of differential equations; in the second one we apply Theorem 2.1.

Theorem 3.1. Let $I \subset \mathbb{R}$ be an interval and $f: I \rightarrow \mathbb{R}$ be a continuous strictly monotonic function. Then the following conditions are pairwise equivalent:
(i) $L_{f}=Q_{f}$;
(ii) there are $a, b \in \mathbb{R}, a \neq 0$, such that

$$
f(x)=a x+b, \quad x \in I
$$

(iii) $L_{f}=Q_{f}=A$.

First Proof. We only show the implication (i) \Rightarrow (ii), as the remaining are obvious. Assume that (i) holds true. From the definition of L_{f} and Q_{f} we have

$$
f^{-1}\left(\frac{f(x)+f(y)}{2}\right)=f^{-1}\left(\frac{1}{y-x} \int_{x}^{y} f(\xi) d \xi\right), \quad x, y \in I, \quad x \neq y
$$

or, equivalently,

$$
\frac{f(x)+f(y)}{2}=\frac{1}{y-x} \int_{x}^{y} f(\xi) d \xi, \quad x, y \in I, \quad x \neq y
$$

Lagrangean and Quasi-arithmetic Means

Justyna Jarczyk
vol. 8, iss. 3, art. 71, 2007

Title Page

Contents

Page 5 of 11
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

Let $F: I \rightarrow \mathbb{R}$ be any primitive function of f. Then the condition above can be written in the form

$$
\begin{equation*}
\frac{f(x)+f(y)}{2}=\frac{F(y)-F(x)}{y-x}, \quad x, y \in I, \quad x \neq y \tag{3.1}
\end{equation*}
$$

This implies that f is differentiable and, consequently, F is twice differentiable. Fix an arbitrary $y \in I$. Differentiating both sides of this equality with respect to x, we obtain

$$
\frac{f^{\prime}(x)}{2}=\frac{F^{\prime}(x)(x-y)-F(x)+F(y)}{(x-y)^{2}}, \quad x, y \in I, \quad x \neq y
$$

Hence, using the relation $f^{\prime}=F^{\prime \prime}$, we get

$$
F^{\prime \prime}(x)(x-y)^{2}=2 F^{\prime}(x)(x-y)-2 F(x)+2 F(y), \quad x \in I
$$

Solving this differential equation of the second order on two disjoint intervals $(-\infty, y) \cap$ I and $(y, \infty) \cap I$, and then using the twice differentiability of F at the point y, we obtain

$$
F(x)=\frac{a}{2} x^{2}+b x+p, \quad x \in I
$$

with some $a, b, p \in \mathbb{R}, a \neq 0$. Since F is a primitive function of f, we get

$$
f(x)=F^{\prime}(x)=a x+b, \quad x \in I
$$

Lagrangean and Quasi-arithmetic Means

Justyna Jarczyk
vol. 8, iss. 3, art. 71, 2007

Title Page
Contents

Page 6 of 11
Go Back
Full Screen
Close
which completes the proof .
Second Proof. Again, let F be a primitive function of f. In the same way, as is in the previous proof, we show that (3.1) is satisfied. It follows that

$$
2[F(y)-F(x)]=(y-x)[f(x)+f(y)], \quad x, y \in I
$$

journal of inequalities in pure and applied mathematics
issn: 1443-575b
and, consequently, since

$$
2[F(y)-F(z)]+2[F(z)-F(x)]=2[F(y)-F(x)], \quad x, y, z \in I
$$

we get

$$
(y-z)[f(z)+f(y)]+(z-x)[f(x)+f(z)]=(y-x)[f(x)+f(y)]
$$

for all $x, y, z \in I$. Setting here $z=\frac{x+y}{2}$, we have

$$
\frac{y-x}{2}\left[f\left(\frac{x+y}{2}\right)+f(y)\right]+\frac{y-x}{2}\left[f(x)+f\left(\frac{x+y}{2}\right)\right]=(y-x)[f(x)+f(y)]
$$

for all $x, y \in I$, i.e., f satisfies equation (2.1). In view of Theorem 2.1, the continuity of f implies that $f(x)=a x+b, x \in I$, for some $a, b \in \mathbb{R}$. Since f is strictly monotonic we infer that $a \neq 0$.

Title Page
Contents

Page 7 of 11
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

4. Equality of Lagrangean and Quasi-arithmetic Means Under Some Convexity Assumptions

In this section we examine the equation $L_{f}=Q_{g}$, imposing some additional conditions on f and g.

Theorem 4.1. Let $I \subset \mathbb{R}$ be an interval, and $f, g: I \rightarrow \mathbb{R}$ be continuous and strictly monotonic functions. Assume that $g \circ f^{-1}$ and g are of the same type of convexity. Then the following conditions are pairwise equivalent:
(i) $L_{f}=Q_{g}$;
(ii) there are $a, b, c, d \in \mathbb{R}, a \neq 0, c \neq 0$, such that

$$
f(x)=a x+b, \quad g(x)=c x+d, \quad x \in I
$$

(iii) $L_{f}=Q_{g}=A$.

Proof. Assume, for instance, that $g \circ f^{-1}$ and g are convex. Let $F: I \rightarrow \mathbb{R}$ be any primitive function of f. Then the condition $L_{f}=Q_{g}$ can be written in the form

$$
\begin{equation*}
f^{-1}\left(\frac{F(y)-F(x)}{y-x}\right)=g^{-1}\left(\frac{g(x)+g(y)}{2}\right), \quad x, y \in I, \quad x \neq y \tag{4.1}
\end{equation*}
$$

Lagrangean and Quasi-arithmetic Means

Justyna Jarczyk
vol. 8, iss. 3, art. 71, 2007

Title Page
Contents

Page 8 of 11
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

$$
F(y)-F(x)=[F(y)-F(z)]+[F(z)-F(x)]
$$

we get

$$
\begin{aligned}
f \circ g^{-1}\left(\frac{g(x)+g(y)}{2}\right)(y-x)=f \circ g^{-1} & \left(\frac{g(z)+g(y)}{2}\right)(y-z) \\
& +f \circ g^{-1}\left(\frac{g(x)+g(z)}{2}\right)(z-x)
\end{aligned}
$$

for all $x, y, z \in I$. Putting here $\lambda=\frac{y-z}{y-x}$ and $z=\lambda x+(1-\lambda) y$, we have

$$
\begin{aligned}
\frac{g(x)+g(y)}{2}=\left(f \circ g^{-1}\right)^{-1} & \left(\lambda\left(f \circ g^{-1}\right)\left(\frac{g(\lambda x+(1-\lambda) y)+g(y)}{2}\right)\right. \\
& \left.+(1-\lambda)\left(f \circ g^{-1}\right)\left(\frac{g(x)+g(\lambda x+(1-\lambda) y)}{2}\right)\right)
\end{aligned}
$$

for all $x, y \in I$ and $\lambda \in[0,1]$. Using the convexity of $\left(f \circ g^{-1}\right)^{-1}$, we obtain

$$
\lambda g(x)+(1-\lambda) g(y) \leq g(\lambda x+(1-\lambda) y), \quad x, y \in I, \lambda \in[0,1]
$$

i.e, g is concave. On the other hand, by the assumption, g is convex. Hence we infer that there are $c, d \in \mathbb{R}, c \neq 0$, such that

$$
g(x)=c x+d, \quad x \in I .
$$

Making use of (4.1), we obtain

$$
f^{-1}\left(\frac{F(y)-F(x)}{y-x}\right)=\frac{x+y}{2},
$$

whence

$$
F(y)-F(x)=(y-x) f\left(\frac{x+y}{2}\right)
$$

Lagrangean and Quasi-arithmetic Means

Justyna Jarczyk
vol. 8, iss. 3, art. 71, 2007

Title Page
Contents

4

Page 9 of 11
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
for all $x, y \in I$. In particular, we deduce that f is differentiable. Differentiating both sides with respect to x and then with respect to y we get

$$
-f(x)=-f\left(\frac{x+y}{2}\right)+\frac{y-x}{2} f^{\prime}\left(\frac{x+y}{2}\right)
$$

and

$$
f(y)=f\left(\frac{x+y}{2}\right)+\frac{y-x}{2} f^{\prime}\left(\frac{x+y}{2}\right)
$$

for all $x, y \in I$, which means that f satisfies the Jensen equation. Now, using Theorem 2.1, we complete the proof.

Lagrangean and Quasi-arithmetic Means

Justyna Jarczyk
vol. 8, iss. 3, art. 71, 2007

Title Page
Contents

$\mathbf{4}$	
$\mathbf{4}$	
Page 10 of 11	
Go Back	
Full Screen	
Close	

journal of inequalities in pure and applied mathematics
issn: 1443-575b

References

[1] J. ACZÉL, Lectures on Functional Equations and their Applications, Academic Press, New York, 1966.
[2] L.R. BERRONE AND J. MORO, Lagrangian means, Aequationes Math., 55 (1998), 217-226.
[3] P.S. BULLEN, D.S. MITRINOVIĆ AND P.M. VASIĆ, Means and their Inequalities, D. Reidel Publishing Company, Dordrecht, 1988.
[4] M. KUCZMA, An Introduction to the Theory of Functional Equations and Inequalities. Cauchy's Equation and Jensens Inequality, Państwowe Wydawnictwo Naukowe, Uniwersytet Śląski, Warszawa-Kraków-Katowice, 1985.

Lagrangean and Quasi-arithmetic Means

Justyna Jarczyk
vol. 8, iss. 3, art. 71, 2007

Title Page
Contents

Page 11 of 11
Go Back
Full Screen

Close
journal of inequalities in pure and applied mathematics

