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Univalent functions, starlike functions, varying arguments, coefficient estimates.

In terms of Wright generalized hypergeometric function we define a class of an-
alytic functions. The class generalize well known classés sifarlike functions

and k-uniformly convex functions. Necessary and sufficient coefficient bounds
are given for functions in this class. Further distortion bounds, extreme points
and results on partial sums are investigated.
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1. Introduction

Let A denote the class of functions of the form
(1.2) f(z)=z+ Z an 2"
n=2

which are analytic in the open unit di$¢ = {z : |z| < 1}. We denote byS the
subclass ofA consisting of functiong which are univalent iri/.

Also we denote by, the class of analytic functions with varying arguments
(introduced by Silvermarifg]) consisting of functiong of the form (L.1) for which
there exists a real numbersuch that

1.2) 6,4+ (n—1)np=mn(mod 27), where arg(a,)=20, foral n>2.
Let k, v be real parameters with> 0, —1 <~ < 1.

Definition 1.1. Afunctionf € A is said to be in the clasSCV (k, ) of k-uniformly
convex functions of order if it satisfies the condition

) 21(2)
Re{“ 702 7}” e

In particular, the classdsC'V := UCV (1,0), k — UCV := UCV (k,0) were
introduced by Goodmar6] (see also 10, 13]), and Kanas and Wisniowsk&][(see

, zel.

also [7]), respectively, where their geometric definition and connections with the

conic domains were considered.
Related to the classCV (k,v) by means of the well-known Alexander equiva-

lence between the usual classes of convex and starlike functions, we define the class

SP(k,~) of k-starlike functions of ordey.
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Definition 1.2. A functionf € A is said to be in the clas§ P(k,~) of k-starlike
functions of ordery if it satisfies the condition

2f () } 2f (2)

Re — >k
{ e f2)
The classesS, := SP(1,0), k— ST := SP(k,0) were investigated by Rgnning

[13, 14], Kanas and Wisniowsk&®], Kanas and Srivastavd]|
Note that the classes

-1

, zeU.

ST := SP(0,0), CV :=UCV(0,0)

are the well known classes of starlike and convex functions, respectively.
For functionsf € A given by (L.1) andg € A given by

g(z) =2+ anz”, zeUl,
n=2
we define the Hadamard product (or convolution) @&ndg by

(f*g)(2) :z—l—Zanbnz”, zeU.
n=2

For positive real parameters,, A;,...,a,, A, and 5y, By,..., B, B, (p,q €
N =1,2,3,...) such that
q p
(1.3) 1+ B,—> A, >0,
n=1 n=1
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the Wright generalized hypergeometric functi@d]

P‘PQ[(alvAl)a R (ap7Ap); (ﬁbBl)v R (6% Bq)§ ]

= p\I/qKO‘na )1pa (671’ )1 Q5 ]
is defined by
p [(atuAt>1 p)(ﬁta Bt)l,qyz]
< (P q -
:Z HF(atJrnAt} {HF(ﬁHrnBt} g zeU
n=0 \t=0 t=0

fp<qg+1, A, =1(n=1,...,p)andB, =1 (n = 1, q), we have the
relationship:
(14) Qp\pq[(ana )1p7 (ﬁm )1(17 ] - qu(ala"'7ap; ﬁla-"aﬁq;z)a YAS U7
where, F, (o, ..., ap; b1, ..., By 2) is the generalized hypergeometric function and
p -1 q
(1.5) = (H F(at>> (H F(@)) :
t=0 t=0

In [3] Dziok and Raina defined the linear operator by using Wright generalized
hypergeometric function. Let

p@al(cs Ap)1p; (Bry Bi)gs 2]

and

=Qz quq[(at7 At)l,p(ﬁh Bt)l,q; Z]a FAAS U7

W = Wl(an,

An)l,p; (ﬁna Bn)l,q] tA— A
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be a linear operator defined by

WE(2) = z pbgl(ar, A)1ps (Brs Bi)igs 2] * f(2),

We observe that, fof of the form (L.1), we have

zeU.

(1.6) WHz) =24 ona,2", z€U,
n=2

where

QT + Ai(n—1)) - - T'(ap + Ap(n — 1))
(n—IT(By + Bi(n—1))---T(B;+ By(n — 1))’
and(? is given by (L.5).

In view of the relationship 1.4), the linear operatorl(6) includes the Dziok-
Srivastava operator (segj] and other operators. For more details on these operators,
see 1], [2], [4], [11], [12], [15] and [19].

Motivated by the earlier works of Kanas and Srivastaja$rivastava and Mishra
[20] and Vijaya and Murugusundaramoorti&8], we define a new class of functions
based on generalized hypergeometric functions.

Corresponding to the famil§ P(v, k), we define the clas#’?(k,~) for a func-
tion f of the form (L.1) such that

e {2V |08

WE(2)
VWP (k,y) = V N WPk, 7).

The classV?(k,~) generalizes the classes/oliniformly convex functions and
k-starlike functions. Ifp =2, g =1, Ay = Ay = By = a1 = ;1 = 1, then for

Op —

(1.7)

We also let
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oy = 2 We have
W2(k,0) =k —UQYV,

and fora, = 1 we have
W2(k,0) =k — ST.

In this paper we obtain a sufficient coefficient condition for functidrggven by
(1.1) to be in the clas$V?(k, ) and we show that it is also a necessary condition
for functions to belong to this class. Distortion results and extreme points for func-
tions in VIWP(k,~) are obtained. Finally, we investigate partial sums for the class
VWE(k, 7).
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2. Main Results

First we obtain a sufficient condition for functions from the clast® belong to the

classWy(k, ).
Theorem 2.1.Let f be given by {.1). If

[e.9]

(2.1) D (kn+n—k—v)oula, <1-7,

n=2
thenf € WP(k, ).
Proof. By definition of the clas$V? ([ ], ), it suffices to show that
2WIR) 1‘ ke {Z<Wf(2>)’
Wf(z) Wf(z)

Simple calculations give

k

z(Wf(z)) 2(Wf(2))
"W _1‘ _Re{ W) _”}
< (k+1) —Z(x}f((j))) —1‘

2 onea(n = Donan||2|"""
1=3 0 onlan][2[*!

Now the last expression is bounded above by v) if (2.1) holds.

< (k+1)

In the next theorem, we show that the conditi@nl) is also necessary for func-

tions from the clas¥ WP (k, ).

—1}31—7, zeU.

]
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Theorem 2.2.Let f be given by 1.1) and satisfy {.2).Then the functiorf belongs
to the class/WP(k, ) if and only if ¢.1) holds.

Proof. In view of Theorem2.1we need only to show that € VIW2(k, v) satisfies
the coefficient inequalityA.1). If f € VWP(k,~) then by definition, we have

24D NOan 2" Z4D 0 noyanz"
59 n S Re £9) n e
z+ 5 n—2 OnQnZ z+ § ne2 OnQnZ

k -1

or

Sl = Dot () 4 T o
L+ opanz™t | L+, opanz ! '

In view of (1.2), we setz = r* in the above inequality to obtain
Yo k(n = Donlan[r"™t _ (1=7) = 327250 = y)on|an|r" ™

1= s onlanfrt — 1 =370, onfag|rmt
Thus
(2.2) D (kn+n—k—)oulanl <1-7,
n=2
and lettingr — 1~ in (2.2), we obtain the desired inequality.(). O

Corollary 2.3. If a function f of the form (..1) belongs to the clasg W2 (k, v), then
L

n < 3 — 2, gee e
|a|_(k‘n+n—k—7)an " s
The equality holds for the functions
1 — i(1-n)n
(2.3) hyp(z) = 2 — (I=v)e 2" zelU; 0<n<2m,n=23,....

(kn+n—Fk—~)o,
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Next we obtain the distortion bounds for functions belonging to the ¢la&g (%, ).

Theorem 2.4.Let f be in the clas$/ WP (k,v), |z| = r < 1. If the sequence
{(kn+n—k—7)on},,

is nondecreasing, then

-y -7
2.4 -7 < <r+ :
2.4) " (k‘—’y—i—Q)chT el =r (k:—’y—l—Q)OQr

If the sequencé"=*=25 1> is nondecreasing, then

2(1 —1) 2(1 —1)

(2:5) b= (k—7v+2)o, (k—~+ 2)02T'

<|f()l <1+

The result is sharp. The extremal functions are the functignsof the form ¢.3).

Proof. Sincef € VIWP(k,~), we apply Theoren2.2to obtain

(k—7+2)02) lag <Y (kn+n—k—7)oula, <1—17.

n=2 n=2
Thus
z §z+22 an§7“+—r2.
FEN S el + e 3 lenl <74 G
Also we have
2)| > |z| — |22 Q| > 17— —1?
G 2 el = e 3 el 27 = G
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and @.4) follows. In similar manner forf’, the inequalities

PR <1+ nlalle" <1+ 2 na,
n=2 n=2

and .
Y nla,| < _ 2=
—2 (k=7 +2)o2
lead to ¢.5). This completes the proof. O

Corollary 2.5. Let f be in the clas$’ WP(k,v), |z| =r < 1. If
(26) p>q, Oéq-i—lz]-a agZﬁ] and A]ZBJ (j:277q)7
then the assertiong(4), (2.5) hold true.

Proof. From @.6) we have that the sequencd$in+n —k —v)o,} -, and

{frin=k= 5, 1™ | are nondecreasing. Thus, by Theorém, we have Corollary
2.5. =

Theorem 2.6.Let f be given by1.1) and satisfy {.2). Then the functiorf belongs
to the class/WP(k, ) if and only if f can be expressed in the form

(2.7) F(2) = pinhng(2), o >0 and Y g, =1,
n=1 n=1

whereh,(z) = z andh,, , are defined by4.3).
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Proof. If a function f is of the form ¢.7), then by (..2) we have

— (L—y)e

f<z):z+;(lm+n—k:—7)an’unz , zeU.
Since
k —k—7)o, n
;(n—i—n "o (kn+n—k—7)anu

=D (=) =1 —m)(1—-9) <1-7,

by Theoren?.2 we havef € VWP(k, 7).

Conversely, iff is in the class/WP(k, v), then we may set,, = W’
n > 2andu; = 1—> 7, u,. Then the functionf is of the form ¢.7) and this

completes the proof. O
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3. Partial Sums

For a functionf € A given by (L.1), Silverman 7] and Silvia [L8] investigated the
partial sumsf; and f,, defined by

(3.1) fi(z) =2z and f,.(z)=z+ Z az", (m=2/3...).

. . . ) ; A i A Class Of Starlike Functions
We consider in this section partial sums of functions in the clagg’(k, ) and J. Dziok, G. Murugusundaramoorthy

obtain sharp lower bounds for the ratios of the real payt tuf £,,,(2) and f’ to f . and . Vieya

Theorem 3.1.Let a functionf of the form (..1) belong to the clas¥ WP (k,~) and
assumeZ.6). Then

vol. 10, iss. 3, art. 66, 2009

f(z) 1 Title Page
(3.2) Re {fm(z)} >1- Aot zelU meN Contents
and 4« »
fm(z) dm—i—l
3.3 > N < >
39 Re{f(z) T 1t dn’ cetymen,
where Page 13 of 18
—k — Go Back
(3.4) d, = hntn =k f)/an. o
-7 Full Screen
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Setting

3.7) g(2) = dm+1{ f(2) _ (1 . 1 )} 14 (o1 Zzo:mﬂ anz”_l7

fm(2)

it suffices to show that

o L+, a2t

Reg(z) >0, zeUl.
Applying (3.6), we find that
9(z) — 1‘ A1 D1 |l -1
9(2) +1] 7 2=2370, [an| — dpir Zfzmﬂ jan| =
which readily yields the assertiofi.¢) of Theorem3.1. In order to see that
szrl

zeU,

(3.8) f(z)=z+

T z e U,
m+1

gives sharp the result, we observe thatfet re'™/™ we have

f2) 2 ey L
fm(z) dm+1 dm+1

Similarly, if we take
fm(z) dm+1 }

iz) = (Lt dna) { 72 1+ dn

—1_ (1 + dn—l—l) Zqomo:m—l-l anzn_l el
L4 3 a2 7 ’
and making use of3(6), we can deduce that
Ax) - 1| _ (Lt dons) o e ]
h(z) +1

T 2- 22:?:2 || — (1 = dmy1) Zfzo:m-i-l |an| —

<1, zel,
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which leads us immediately to the assertiGn3| of Theorem3.1. The bound in
(3.9) is sharp for eacln € N with the extremal functiorf given by 3.9), and the
proof is complete. O

Theorem 3.2. Let a functionf of the form (..1) belong to the clas¥ WP (k,~) and
assume.6). Then

f(2) m+ 1
(39 Re{fmz)} S
and
ﬂn('z) dm—i—l
(3.10) Re{ 7(2) } > mrltdoy

whered,, is defined by{.4)
Proof. By setting

g(z):dmﬂ{f;(z) —(1—””1)}, 2el,

fm(”z) dm—i—l
and
f?ln<z> dm+1
= 1 _
hz)=[(m+1) + dpyi] { P miirdn) 7€ U,
the proof is analogous to that of Theorém, and we omit the details. O

Concluding Remarks: Observe that, if we specialize the parameters of the class
VWP(k,7), we obtain various classes introduced and studied by Good@jan [
Kanas and Srivastavd]] Ma and Minda [LO], Rgnning [L3, 14], Murugusundaramoor-
thy et al. [22, 23], and others.
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