AN INEQUALITY ABOUT ${ }_{3} \phi_{2}$ AND ITS APPLICATIONS

MINGJIN WANG AND HONGSHUN RUAN

Department of Information Science
Jiangsu Polytechnic University
Changzhou City 213164
Jiangsu Province, P.R. China.
EMail: wmj@jpu.edu.cn rhs@em.jpu.edu.cn

Received:
Accepted:
Communicated by:
2000 AMS Sub. Class.:
Key words:

Abstract:

Acknowledgements:

17 August, 2007
18 May, 2008
S.S. Dragomir

Primary 26D15; Secondary 33D15.
Basic hypergeometric function ${ }_{3} \phi_{2} ; q$-binomial theorem; q-Chu-Vandermonde formula; Grüss inequality.

In this paper, we use the terminating case of the q-binomial formula, the q-ChuVandermonde formula and the Grüss inequality to drive an inequality about ${ }_{3} \phi_{2}$. As applications of the inequality, we discuss the convergence of some q-series involving ${ }_{3} \phi_{2}$.

The author would like to express deep appreciation to the referee for the helpful suggestions. In particular, the author thanks the referee for helping to improve the presentation of the paper.

Inequality About ${ }_{3} \phi_{2}$ Mingjin Wang and Hongshun Ruan
vol. 9, iss. 2, art. 48, 2008

Title Page
Contents

44

Page 1 of 14
Go Back
Full Screen

Close

journal of inequalities in pure and applied mathematics
 issn: 1443-575b

Contents

1 Statement of Main Results 3
2 Notations and Known Results 4
3 Proof of the Theorem 6
4 Some Applications of the Inequality 10

Title Page
Contents

journal of inequalities in pure and applied mathematics
issn: 1443-5?5b

1. Statement of Main Results

q-series, which are also called basic hypergeometric series, play a very important role in many fields, such as affine root systems, Lie algebras and groups, number theory, orthogonal polynomials and physics, etc. Inequalities techniques provide useful tools in the study of special functions (see [1, 6, 7, 8, 9, 10]). For example, Ito used inequalities techniques to give a sufficient condition for convergence of a special q-series called the Jackson integral [6]. In this paper, we derive the following new inequality about q-series involving ${ }_{3} \phi_{2}$.

Theorem 1.1. Let $a_{1}, a_{2}, b_{1}, b_{2}$ be some real numbers such that $b_{i}<1$ for $i=1,2$. Then for all positive integers n, we have:

$$
\left|{ }_{3} \phi_{2}\left(\begin{array}{c}
b_{1} / a_{1}, b_{2} / a_{2}, q^{-n} \tag{1.1}\\
b_{1}, b_{2}
\end{array} ; q,-a_{1} a_{2} q^{n}\right)-\frac{\left(a_{1}, a_{2} ; q\right)_{n}}{\left(-1, b_{1}, b_{2} ; q\right)_{n}}\right| \leq \lambda \mu(-1 ; q)_{n}
$$

where

$$
\begin{array}{ll}
\lambda=\max \left\{1, M^{n}\right\}, & M=\max \left\{\left|a_{1}\right|, \frac{\left|a_{1}-b_{1}\right|}{1-b_{1}}\right\}, \\
\mu=\max \left\{1, N^{n}\right\}, & N=\max \left\{\left|a_{2}\right|, \frac{\left|a_{2}-b_{2}\right|}{1-b_{2}}\right\}
\end{array}
$$

Applications of this inequality are also given.

Inequality About ${ }_{3} \phi_{2}$ Mingjin Wang and
Hongshun Ruan
vol. 9, iss. 2, art. 48, 2008

Title Page
Contents

Page 3 of 14
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

2. Notations and Known Results

We recall some definitions, notations and known results which will be used in the proof. Throughout this paper, it is supposed that $0<q<1$. The q-shifted factorials are defined as

$$
\begin{equation*}
(a ; q)_{0}=1, \quad(a ; q)_{n}=\prod_{k=0}^{n-1}\left(1-a q^{k}\right), \quad(a ; q)_{\infty}=\prod_{k=0}^{\infty}\left(1-a q^{k}\right) \tag{2.1}
\end{equation*}
$$

We also adopt the following compact notation for multiple q-shifted factorials:

$$
\begin{equation*}
\left(a_{1}, a_{2}, \ldots, a_{m} ; q\right)_{n}=\left(a_{1} ; q\right)_{n}\left(a_{2} ; q\right)_{n} \cdots\left(a_{m} ; q\right)_{n} \tag{2.2}
\end{equation*}
$$

where n is an integer or ∞.
The q-binomial theorem (see $[2,3,4]$) is given by

$$
\begin{equation*}
\sum_{k=0}^{\infty} \frac{(a ; q)_{k} z^{k}}{(q ; q)_{k}}=\frac{(a z ; q)_{\infty}}{(z ; q)_{\infty}}, \quad|z|<1 \tag{2.3}
\end{equation*}
$$

When $a=q^{-n}$, where n denotes a nonnegative integer, we have

$$
\begin{equation*}
\sum_{k=0}^{n} \frac{\left(q^{-n} ; q\right)_{k} z^{k}}{(q ; q)_{k}}=\left(z q^{-n} ; q\right)_{n} \tag{2.4}
\end{equation*}
$$

Heine introduced the ${ }_{r+1} \phi_{r}$ basic hypergeometric series, which is defined by

$$
{ }_{r+1} \phi_{r}\left(\begin{array}{c}
a_{1}, a_{2}, \ldots, a_{r+1} \tag{2.5}\\
b_{1}, b_{2}, \ldots, b_{r}
\end{array} ; q, x\right)=\sum_{n=0}^{\infty} \frac{\left(a_{1}, a_{2}, \ldots, a_{r+1} ; q\right)_{n} x^{n}}{\left(q, b_{1}, b_{2}, \ldots, b_{r} ; q\right)_{n}} .
$$

Inequality About ${ }_{3} \phi_{2}$ Mingjin Wang and Hongshun Ruan
vol. 9, iss. 2, art. 48, 2008

Title Page
Contents

Page 4 of 14
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics

The q-Chu-Vandermonde sums (see [2, 3, 4]) are

$$
{ }_{2} \phi_{1}\left(\begin{array}{c}
a, q^{-n} \tag{2.6}\\
c
\end{array} ; q, q\right)=\frac{a^{n}(c / a ; q)_{n}}{(c ; q)_{n}}
$$

and, reversing the order of summation, we have

$$
{ }_{2} \phi_{1}\left(\begin{array}{c}
a, q^{-n} \tag{2.7}\\
c
\end{array} ; q, c q^{n} / a\right)=\frac{(c / a ; q)_{n}}{(c ; q)_{n}} .
$$

At the end of this section, we recall the Grüss inequality (see [5]):

$$
\begin{array}{r}
\left|\frac{1}{b-a} \int_{a}^{b} f(x) g(x) d x-\left(\frac{1}{b-a} \int_{a}^{b} f(x) d x\right)\left(\frac{1}{b-a} \int_{a}^{b} g(x) d x\right)\right| \tag{2.8}\\
\leq \frac{(M-m)(N-n)}{4}
\end{array}
$$

provided that $f, g:[a, b] \rightarrow \mathbb{R}$ are integrable on $[a, b]$ and $m \leq f(x) \leq M, n \leq$ $g(x) \leq N$ for all $x \in[a, b]$, where m, M, n, N are given constants.

By simple calculus, one can prove that the discrete version of the Grüss inequality can be stated as:
if $a \leq \lambda_{i} \leq A$ and $b \leq \mu_{i} \leq B, i=1,2, \ldots, n$, then for all sequences $\left(p_{i}\right)_{0 \leq i \leq n}$ of nonnegative real numbers satisfying $\sum_{i=1}^{n} p_{i}=1$, we have

Inequality About ${ }_{3} \phi_{2}$ Mingjin Wang and
Hongshun Ruan
vol. 9, iss. 2, art. 48, 2008

Title Page
Contents

Page 5 of 14
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-5?5b

3. Proof of the Theorem

In this section, we use the terminating case of the q-binomial formula, the q-ChuVandermonde formula and the Grüss inequality to prove (1.1). For this purpose, we need the following lemma.

Lemma 3.1. Let a and b be two real numbers such that $b<1$, and let $0 \leq t \leq 1$.

Then,

$$
\begin{equation*}
\left|\frac{a-b t}{1-b t}\right| \leq \max \left\{|a|, \frac{|a-b|}{1-b}\right\} \tag{3.1}
\end{equation*}
$$

Inequality About ${ }_{3} \phi_{2}$ Mingjin Wang and
Hongshun Ruan
vol. 9, iss. 2, art. 48, 2008

Title Page
Contents

Page 6 of 14
Go Back
Now, we are in a position to prove the inequality (1.1).
Proof. Put

$$
\begin{equation*}
p_{k}=\frac{\left(q^{-n} ; q\right)_{k}\left(-q^{n}\right)^{k}}{(q ; q)_{k}(-1 ; q)_{n}}, \quad k=0,1, \ldots, n \tag{3.2}
\end{equation*}
$$

It is obvious that $p_{k} \geq 0$.

$$
f(t)=\frac{a-b t}{1-b t}, \quad 0 \leq t \leq 1
$$

then

$$
f^{\prime}(t)=\frac{b(a-1)}{(1-b t)^{2}}, \quad 0 \leq t \leq 1
$$

So $f(t)$ is a monotonic function with respect to $0 \leq t \leq 1$. Since $f(0)=a$ and $f(1)=\frac{a-b}{1-b}$, (3.1) holds.

On the other hand, using (2.4), we obtain

$$
\sum_{k=0}^{n} p_{k}=\frac{1}{(-1 ; q)_{n}} \sum_{k=0}^{n} \frac{\left(q^{-n} ; q\right)_{k}\left(-q^{n}\right)^{k}}{(q ; q)_{k}}=1
$$

Let

$$
\begin{equation*}
\lambda_{k}=\frac{\left(-a_{1}\right)^{k}\left(b_{1} / a_{1} ; q\right)_{k}}{\left(b_{1} ; q\right)_{k}} \tag{3.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\mu_{k}=\frac{\left(-a_{2}\right)^{k}\left(b_{2} / a_{2} ; q\right)_{k}}{\left(b_{2} ; q\right)_{k}} \tag{3.4}
\end{equation*}
$$

Title Page
where $k=0,1, \ldots, n$.
According to the definitions of M, N, λ and μ, it is easy to see that

$$
M^{k} \leq \lambda \text { and } N^{k} \leq \mu, \quad 0 \leq k \leq n
$$

Using the lemma, one can get for all $0 \leq k \leq n$,

$$
\begin{equation*}
\left|\lambda_{k}\right|=\left|\frac{a_{1}-b_{1}}{1-b_{1}} \cdot \frac{a_{1}-b_{1} q}{1-b_{1} q} \cdots \cdot \frac{a_{1}-b_{1} q^{k-1}}{1-b_{1} q^{k-1}}\right| \leq M^{k} \leq \lambda \tag{3.5}
\end{equation*}
$$

Go Back

Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-5?5b

Substitution of (3.2), (3.3), (3.4), (3.5) and (3.6) into (2.9), gives
(3.7) $\sum_{k=0}^{n} \frac{\left(q^{-n} ; q\right)_{k}\left(-q^{n}\right)^{k}}{(q ; q)_{k}(-1 ; q)_{n}} \cdot \frac{\left(-a_{1}\right)^{k}\left(b_{1} / a_{1} ; q\right)_{k}}{\left(b_{1} ; q\right)_{k}} \cdot \frac{\left(-a_{2}\right)^{k}\left(b_{2} / a_{2} ; q\right)_{k}}{\left(b_{2} ; q\right)_{k}}$

$$
\begin{aligned}
& -\sum_{k=0}^{n} \frac{\left(q^{-n} ; q\right)_{k}\left(-q^{n}\right)^{k}}{(q ; q)_{k}(-1 ; q)_{n}} \cdot \frac{\left(-a_{1}\right)^{k}\left(b_{1} / a_{1} ; q\right)_{k}}{\left(b_{1} ; q\right)_{k}} \\
& \left.\quad \quad \times \sum_{k=0}^{n} \frac{\left(q^{-n} ; q\right)_{k}\left(-q^{n}\right)^{k}}{(q ; q)_{k}(-1 ; q)_{n}} \cdot \frac{\left(-a_{2}\right)^{k}\left(b_{2} / a_{2} ; q\right)_{k}}{\left(b_{2} ; q\right)_{k}} \right\rvert\, \leq \lambda \mu .
\end{aligned}
$$

Inequality About ${ }_{3} \phi_{2}$ Mingjin Wang and Hongshun Ruan
vol. 9, iss. 2, art. 48, 2008

Title Page
Contents
\square
Page 8 of 14

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics
issn: 1443-575b

$$
\begin{equation*}
\sum_{k=0}^{n} \frac{\left(q^{-n} ; q\right)_{k}\left(-q^{n}\right)^{k}}{(q ; q)_{k}(-1 ; q)_{n}} \cdot \frac{\left(-a_{2}\right)^{k}\left(b_{2} / a_{2} ; q\right)_{k}}{\left(b_{2} ; q\right)_{k}}=\frac{\left(a_{2} ; q\right)_{n}}{\left(-1, b_{2} ; q\right)_{n}} \tag{3.10}
\end{equation*}
$$

Substituting (3.8), (3.9) and (3.10) into (3.7), we obtain (1.1).
Taking $a_{2}=1$ in (1.1), we get the following corollary.
Corollary 3.2. We have

$$
\begin{equation*}
\left|{ }_{2} \phi_{1}\binom{b_{1} / a_{1}, q^{-n} ; q,-a_{1} q^{n}}{b_{1}}\right| \leq \lambda(-1 ; q)_{n} . \tag{3.11}
\end{equation*}
$$

Inequality About ${ }_{3} \phi_{2}$ Mingjin Wang and Hongshun Ruan vol. 9, iss. 2, art. 48, 2008

Title Page
Contents

$\mathbf{4}$	
$\mathbf{4}$	
Page 9 of 14	
Go Back	
Full Screen	
Close	

journal of inequalities in pure and applied mathematics
issn: 1443-575b

4. Some Applications of the Inequality

Convergence of q-series is an important problem which is at times very difficult. As applications of the inequality derived in this paper, we obtain some results about the convergence of the q-series involving ${ }_{3} \phi_{2}$. In this section, we mainly discuss the convergence of the following q-series:

$$
\begin{equation*}
\sum_{n=0}^{\infty} c_{n 3} \phi_{2}\binom{b_{1} / a_{1}, b_{2} / a_{2}, q^{-n} ; q,-a_{1} a_{2} q^{n}}{b_{1}, b_{2}} . \tag{4.1}
\end{equation*}
$$

Theorem 4.1. Suppose $\left|a_{i}\right| \leq 1$ and $b_{i}<\frac{a_{i}+1}{2}$ for $i=1,2$. Let $\left\{c_{n}\right\}$ be a real sequence satisfying

$$
\lim _{n \rightarrow \infty}\left|\frac{c_{n+1}}{c_{n}}\right|=p<1
$$

Then the series (4.1) is absolutely convergent.
Proof. It is obvious that $b_{i}<1$ for $i=1,2$. Combining the following inequality

$$
\begin{align*}
& \left|{ }_{3} \phi_{2}\binom{b_{1} / a_{1}, b_{2} / a_{2}, q^{-n} ; q,-a_{1} a_{2} q^{n}}{b_{1}, b_{2}}\right|-\left|\frac{\left(a_{1}, a_{2} ; q\right)_{n}}{\left(-1, b_{1}, b_{2} ; q\right)_{n}}\right| \tag{4.2}\\
& \leq\left|{ }_{3} \phi_{2}\left(\begin{array}{c}
b_{1} / a_{1}, b_{2} / a_{2}, q^{-n} \\
b_{1}, b_{2}
\end{array} ; q,-a_{1} a_{2} q^{n}\right)-\frac{\left(a_{1}, a_{2} ; q\right)_{n}}{\left(-1, b_{1}, b_{2} ; q\right)_{n}}\right|
\end{align*}
$$

Inequality About ${ }_{3} \phi_{2}$ Mingjin Wang and
Hongshun Ruan
vol. 9, iss. 2, art. 48, 2008

Title Page
Contents

Page 10 of 14

Go Back

Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
which is equivalent to

$$
\left|a_{i}\right| \leq 1, \quad \frac{\left|a_{i}-b_{i}\right|}{1-b_{i}}<1, \quad i=1,2
$$

then

$$
\begin{equation*}
\lambda=\mu=1 \tag{4.4}
\end{equation*}
$$

Substituting (4.4) into (4.3), we obtain

$$
\begin{equation*}
\left\lvert\,{ }_{3} \phi_{2}\binom{\left.b_{1} / a_{1}, b_{2} / a_{2}, q^{-n} ; q,-a_{1} a_{2} q^{n}\right)\left|\leq\left|\frac{\left(a_{1}, a_{2} ; q\right)_{n}}{\left(-1, b_{1}, b_{2} ; q\right)_{n}}\right|+(-1 ; q)_{n} . . . ~ . ~\right.}{b_{1}, b_{2}}\right. \tag{4.5}
\end{equation*}
$$

Multiplication of the two sides of (4.5) by $\left|c_{n}\right|$ gives

$$
\begin{align*}
& \left|c_{n 3} \phi_{2}\left(\begin{array}{c}
b_{1} / a_{1}, b_{2} / a_{2}, q^{-n} \\
b_{1}, b_{2}
\end{array} ; q,-a_{1} a_{2} q^{n}\right)\right| \tag{4.6}\\
& \quad \leq\left|\frac{c_{n}\left(a_{1}, a_{2} ; q\right)_{n}}{\left(-1, b_{1}, b_{2} ; q\right)_{n}}\right|+\left|c_{n}(-1 ; q)_{n}\right|
\end{align*}
$$

The ratio test shows that both

$$
\sum_{n=0}^{\infty} \frac{c_{n}\left(a_{1}, a_{2} ; q\right)_{n}}{\left(-1, b_{1}, b_{2} ; q\right)_{n}} \quad \text { and } \quad \sum_{n=0}^{\infty} c_{n}(-1 ; q)_{n}
$$

are absolutely convergent. From (4.6), we get that (4.1) is absolutely convergent.
Theorem 4.2. Suppose $\left|a_{1}\right|>1$ or $a_{1}<2 b_{1}-1, b_{1}<1,\left|a_{2}\right| \leq 1$ and $b_{2} \leq \frac{a_{2}+1}{2}$. Let $\left\{c_{n}\right\}$ be a real sequence satisfying

$$
\lim _{n \rightarrow \infty}\left|\frac{c_{n+1}}{c_{n}}\right|=p<\frac{1}{M},
$$

where $M=\max \left\{\left|a_{1}\right|, \frac{\left|a_{1}-b_{1}\right|}{1-b_{1}}\right\}$. Then the series (4.1) is absolutely convergent.

Inequality About ${ }_{3} \phi_{2}$ Mingjin Wang and Hongshun Ruan
vol. 9, iss. 2, art. 48, 2008

Title Page
Contents

Page 11 of 14
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

Proof. First we point out that $a_{1}<2 b_{1}-1$ implies

$$
\frac{\left|a_{1}-b_{1}\right|}{1-b_{1}}>1
$$

So, under the conditions of the theorem, we know

$$
\lambda=M^{n} \quad \text { and } \quad \mu=1
$$

Multiplying both sides of (4.3) by $\left|c_{n}\right|$, one gets

$$
\begin{align*}
\left\lvert\, c_{n 3} \phi_{2}\left(\begin{array}{c}
b_{1} / a_{1}, b_{2} / a_{2}, q^{-n} ; q \\
b_{1}, b_{2}
\end{array}\right.\right. & \left.-a_{1} a_{2} q^{n}\right) \mid \tag{4.7}\\
& \leq\left|\frac{c_{n}\left(a_{1}, a_{2} ; q\right)_{n}}{\left(-1, b_{1}, b_{2} ; q\right)_{n}}\right|+\left|c_{n} M^{n}(-1 ; q)_{n}\right|
\end{align*}
$$

The ratio test shows that both

$$
\sum_{n=0}^{\infty} \frac{c_{n}\left(a_{1}, a_{2} ; q\right)_{n}}{\left(-1, b_{1}, b_{2} ; q\right)_{n}} \quad \text { and } \quad \sum_{n=0}^{\infty} c_{n} M^{n}(-1 ; q)_{n}
$$

are absolutely convergent. From (4.7), we get that (4.1) is absolutely convergent. \square

Inequality About ${ }_{3} \phi_{2}$ Mingjin Wang and Hongshun Ruan
vol. 9, iss. 2, art. 48, 2008

Title Page
Contents

Page 12 of 14

Go Back

Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

References

[1] G.D. ANDERSON, R.W. BARNARD, K.C. VAMANAMURTHY and M. VUORINEN, Inequalities for zero-balanced hypergeometric functions, Transactions of the American Mathematical Society, 347(5), 1995.
[2] G.E. ANDREWS, The Theory of Partitions, Encyclopedia of Mathematics and Applications; Volume 2. Addison-Wesley Publishers, 1976.
[3] W.N. BAILEY, Generalized hypergeometric series, Cambridge Math. Tract No.32, Cambridge University Press, London and New York. 1960.
[4] G. GASPER and M. RAHMAN, Basic Hypergeometric Series, Cambridge Univ.Press, Cambridge, MA, 1990.
[5] G. GRÜSS. Über das maximum des absoluten Betrages von $\frac{1}{b-a} \int_{a}^{b} f(x) g(x) d x-\left(\frac{1}{b-a} \int_{a}^{b} f(x) d x\right)\left(\frac{1}{b-a} \int_{a}^{b} g(x) d x\right)$, Math.Z., 39 (1935), 215-226.
[6] M. ITO, Convergence and asymptotic behavior of Jackson integrals associated with irreducible reduced root systems, Journal of Approximation Theory, $\mathbf{1 2 4}$ (2003) 154-180.
[7] MINGJIN WANG, An inequality about q-series, J. Ineq. Pure and Appl. Math., 7(4) (2006), Art. 136. [ONLINE: http://jipam.vu.edu.au/ article.php?sid=756].
[8] MINGJIN WANG, An Inequality and its q-analogue, J. Ineq. Pure and Appl. Math., 8(2) (2007), Art. 50. [ONLINE: http://jipam.vu.edu.au/ article.php?sid=853].

Inequality About ${ }_{3} \phi_{2}$ Mingjin Wang and Hongshun Ruan
vol. 9, iss. 2, art. 48, 2008

Title Page
Contents

Page 13 of 14
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
[9] MINGJIN WANG, An inequality for ${ }_{r+1} \phi_{r}$ and its applications, Journal of Mathematical Inequalities, 1(2007) 339-345.
[10] MINGJIN WANG, Two inequalities for ${ }_{r} \phi_{r}$ and applications, Journal of Inequalities and Applications, 2008, Article ID 471527.

Inequality About ${ }_{3} \phi_{2}$ Mingjin Wang and
Hongshun Ruan
vol. 9, iss. 2, art. 48, 2008

Title Page
Contents

$\mathbf{4}$	
$\mathbf{4}$	
Page 14 of 14	
Go Back	
Full Screen	
Close	

journal of inequalities in pure and applied mathematics
issn: 1443-5?5b

