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1. Statement of Main Results

q-series, which are also called basic hypergeometric series, play a very important
role in many fields, such as affine root systems, Lie algebras and groups, number
theory, orthogonal polynomials and physics, etc. Inequalities techniques provide
useful tools in the study of special functions (see [1, 6, 7, 8, 9, 10]). For example,
Ito used inequalities techniques to give a sufficient condition for convergence of a
specialq-series called the Jackson integral [6]. In this paper, we derive the following
new inequality aboutq-series involving3φ2.

Theorem 1.1. Let a1, a2, b1, b2 be some real numbers such thatbi < 1 for i = 1, 2.
Then for all positive integersn, we have:

(1.1)

∣∣∣∣3φ2

(
b1/a1, b2/a2, q

−n

b1, b2

; q,−a1a2q
n

)
− (a1, a2; q)n

(−1, b1, b2; q)n

∣∣∣∣ ≤ λµ(−1; q)n,

where

λ = max{1, Mn}, M = max

{
|a1|,

|a1 − b1|
1− b1

}
,

µ = max{1, Nn}, N = max

{
|a2|,

|a2 − b2|
1− b2

}
.

Applications of this inequality are also given.
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2. Notations and Known Results

We recall some definitions, notations and known results which will be used in the
proof. Throughout this paper, it is supposed that0 < q < 1. Theq-shifted factorials
are defined as

(2.1) (a; q)0 = 1, (a; q)n =
n−1∏
k=0

(1− aqk), (a; q)∞ =
∞∏

k=0

(1− aqk).

We also adopt the following compact notation for multipleq-shifted factorials:

(2.2) (a1, a2, . . . , am; q)n = (a1; q)n(a2; q)n · · · (am; q)n,

wheren is an integer or∞.
Theq-binomial theorem (see [2, 3, 4]) is given by

(2.3)
∞∑

k=0

(a; q)kz
k

(q; q)k

=
(az; q)∞
(z; q)∞

, |z| < 1.

Whena = q−n, wheren denotes a nonnegative integer, we have

(2.4)
n∑

k=0

(q−n; q)kz
k

(q; q)k

= (zq−n; q)n.

Heine introduced ther+1φr basic hypergeometric series, which is defined by

(2.5) r+1φr

(
a1, a2, . . . , ar+1

b1, b2, . . . , br

; q, x

)
=

∞∑
n=0

(a1, a2, . . . , ar+1; q)nx
n

(q, b1, b2, . . . , br; q)n

.
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Theq-Chu-Vandermonde sums (see [2, 3, 4]) are

(2.6) 2φ1

(
a, q−n

c
; q, q

)
=

an(c/a; q)n

(c; q)n

and, reversing the order of summation, we have

(2.7) 2φ1

(
a, q−n

c
; q, cqn/a

)
=

(c/a; q)n

(c; q)n

.

At the end of this section, we recall the Grüss inequality (see [5]):

(2.8)

∣∣∣∣ 1

b− a

∫ b

a

f(x)g(x)dx−
(

1

b− a

∫ b

a

f(x)dx

)(
1

b− a

∫ b

a

g(x)dx

)∣∣∣∣
≤ (M −m)(N − n)

4
,

provided thatf, g : [a, b] → R are integrable on[a, b] andm ≤ f(x) ≤ M, n ≤
g(x) ≤ N for all x ∈ [a, b], wherem, M , n, N are given constants.

By simple calculus, one can prove that the discrete version of the Grüss inequality
can be stated as:

if a ≤ λi ≤ A andb ≤ µi ≤ B, i = 1, 2, . . . , n, then for all sequences(pi)0≤i≤n

of nonnegative real numbers satisfying
∑n

i=1 pi = 1, we have

(2.9)

∣∣∣∣∣
n∑

i=1

λiµipi −

(
n∑

i=1

λipi

)
·

(
n∑

i=1

µipi

)∣∣∣∣∣ ≤ (A− a)(B − b)

4
,

wherea, A, b, B are some given real constants.
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3. Proof of the Theorem

In this section, we use the terminating case of theq-binomial formula, theq-Chu-
Vandermonde formula and the Grüss inequality to prove (1.1). For this purpose, we
need the following lemma.

Lemma 3.1. Let a andb be two real numbers such thatb < 1, and let0 ≤ t ≤ 1.
Then,

(3.1)

∣∣∣∣a− bt

1− bt

∣∣∣∣ ≤ max

{
|a|, |a− b|

1− b

}
.

Proof. Let

f(t) =
a− bt

1− bt
, 0 ≤ t ≤ 1,

then

f ′(t) =
b(a− 1)

(1− bt)2
, 0 ≤ t ≤ 1.

So f(t) is a monotonic function with respect to0 ≤ t ≤ 1. Sincef(0) = a and
f(1) = a−b

1−b
, (3.1) holds.

Now, we are in a position to prove the inequality (1.1).

Proof. Put

(3.2) pk =
(q−n; q)k(−qn)k

(q; q)k(−1; q)n

, k = 0, 1, . . . , n.

It is obvious thatpk ≥ 0.
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On the other hand, using (2.4), we obtain

n∑
k=0

pk =
1

(−1; q)n

n∑
k=0

(q−n; q)k(−qn)k

(q; q)k

= 1.

Let

(3.3) λk =
(−a1)

k(b1/a1; q)k

(b1; q)k

,

and

(3.4) µk =
(−a2)

k(b2/a2; q)k

(b2; q)k

,

wherek = 0, 1, . . . , n.
According to the definitions ofM, N, λ andµ, it is easy to see that

Mk ≤ λ and Nk ≤ µ, 0 ≤ k ≤ n.

Using the lemma, one can get for all0 ≤ k ≤ n,

(3.5) |λk| =
∣∣∣∣a1 − b1

1− b1

· a1 − b1q

1− b1q
· · · · · a1 − b1q

k−1

1− b1qk−1

∣∣∣∣ ≤ Mk ≤ λ

and

(3.6) |µk| =
∣∣∣∣a2 − b2

1− b2

· a2 − b2q

1− b2q
· · · · · a2 − b2q

k−1

1− b2qk−1

∣∣∣∣ ≤ Nk ≤ µ.
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Substitution of (3.2), (3.3), (3.4), (3.5) and (3.6) into (2.9), gives

(3.7)

∣∣∣∣∣
n∑

k=0

(q−n; q)k(−qn)k

(q; q)k(−1; q)n

· (−a1)
k(b1/a1; q)k

(b1; q)k

· (−a2)
k(b2/a2; q)k

(b2; q)k

−
n∑

k=0

(q−n; q)k(−qn)k

(q; q)k(−1; q)n

· (−a1)
k(b1/a1; q)k

(b1; q)k

×
n∑

k=0

(q−n; q)k(−qn)k

(q; q)k(−1; q)n

· (−a2)
k(b2/a2; q)k

(b2; q)k

∣∣∣∣∣ ≤ λµ.

Using (2.5) and (2.7), we get

n∑
k=0

(q−n; q)k(−qn)k

(q; q)k(−1; q)n

· (−a1)
k(b1/a1; q)k

(b1; q)k

· (−a2)
k(b2/a2; q)k

(b2; q)k

(3.8)

=
1

(−1; q)n

n∑
k=0

(q−n, b1/a1, b2/a2; q)k

(q, b1, b2; q)k

(−a1a2q
n)k

=
1

(−1; q)n
3φ2

(
b1/a1, b2/a2, q

−n

b1, b2

; q,−a1a2q
n

)
,

(3.9)
n∑

k=0

(q−n; q)k(−qn)k

(q; q)k(−1; q)n

· (−a1)
k(b1/a1; q)k

(b1; q)k

=
(a1; q)n

(−1, b1; q)n

and
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(3.10)
n∑

k=0

(q−n; q)k(−qn)k

(q; q)k(−1; q)n

· (−a2)
k(b2/a2; q)k

(b2; q)k

=
(a2; q)n

(−1, b2; q)n

.

Substituting (3.8), (3.9) and (3.10) into (3.7), we obtain (1.1).

Takinga2 = 1 in (1.1), we get the following corollary.

Corollary 3.2. We have

(3.11)

∣∣∣∣2φ1

(
b1/a1, q

−n

b1

; q,−a1q
n

)∣∣∣∣ ≤ λ(−1; q)n.
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4. Some Applications of the Inequality

Convergence ofq-series is an important problem which is at times very difficult. As
applications of the inequality derived in this paper, we obtain some results about the
convergence of theq-series involving3φ2. In this section, we mainly discuss the
convergence of the followingq-series:

(4.1)
∞∑

n=0

cn3φ2

(
b1/a1, b2/a2, q

−n

b1, b2

; q,−a1a2q
n

)
.

Theorem 4.1. Suppose|ai| ≤ 1 and bi < ai+1
2

for i = 1, 2. Let {cn} be a real
sequence satisfying

lim
n→∞

∣∣∣∣cn+1

cn

∣∣∣∣ = p < 1.

Then the series (4.1) is absolutely convergent.

Proof. It is obvious thatbi < 1 for i = 1, 2. Combining the following inequality

(4.2)

∣∣∣∣3φ2

(
b1/a1, b2/a2, q

−n

b1, b2

; q,−a1a2q
n

)∣∣∣∣− ∣∣∣∣ (a1, a2; q)n

(−1, b1, b2; q)n

∣∣∣∣
≤
∣∣∣∣3φ2

(
b1/a1, b2/a2, q

−n

b1, b2

; q,−a1a2q
n

)
− (a1, a2; q)n

(−1, b1, b2; q)n

∣∣∣∣
with (2.1), shows that

(4.3)

∣∣∣∣3φ2

(
b1/a1, b2/a2, q

−n

b1, b2

; q,−a1a2q
n

)∣∣∣∣ ≤ ∣∣∣∣ (a1, a2; q)n

(−1, b1, b2; q)n

∣∣∣∣+ λµ(−1; q)n.

Since

|ai| ≤ 1, bi <
ai + 1

2
, i = 1, 2,

http://jipam.vu.edu.au
mailto:
mailto:
http://jipam.vu.edu.au


Inequality About 3φ2
Mingjin Wang and

Hongshun Ruan

vol. 9, iss. 2, art. 48, 2008

Title Page

Contents

JJ II

J I

Page 11 of 14

Go Back

Full Screen

Close

which is equivalent to

|ai| ≤ 1,
|ai − bi|
1− bi

< 1, i = 1, 2,

then

(4.4) λ = µ = 1.

Substituting (4.4) into (4.3), we obtain

(4.5)

∣∣∣∣3φ2

(
b1/a1, b2/a2, q

−n

b1, b2

; q,−a1a2q
n

)∣∣∣∣ ≤ ∣∣∣∣ (a1, a2; q)n

(−1, b1, b2; q)n

∣∣∣∣+ (−1; q)n.

Multiplication of the two sides of (4.5) by |cn| gives

(4.6)

∣∣∣∣cn3φ2

(
b1/a1, b2/a2, q

−n

b1, b2

; q,−a1a2q
n

)∣∣∣∣
≤
∣∣∣∣ cn(a1, a2; q)n

(−1, b1, b2; q)n

∣∣∣∣+ |cn(−1; q)n| .

The ratio test shows that both
∞∑

n=0

cn(a1, a2; q)n

(−1, b1, b2; q)n

and
∞∑

n=0

cn(−1; q)n

are absolutely convergent. From (4.6), we get that (4.1) is absolutely convergent.

Theorem 4.2. Suppose|a1| > 1 or a1 < 2b1 − 1, b1 < 1, |a2| ≤ 1 andb2 ≤ a2+1
2

.
Let{cn} be a real sequence satisfying

lim
n→∞

∣∣∣∣cn+1

cn

∣∣∣∣ = p <
1

M
,

whereM = max
{
|a1|, |a1−b1|

1−b1

}
. Then the series (4.1) is absolutely convergent.
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Proof. First we point out thata1 < 2b1 − 1 implies

|a1 − b1|
1− b1

> 1.

So, under the conditions of the theorem, we know

λ = Mn and µ = 1.

Multiplying both sides of (4.3) by |cn|, one gets

(4.7)

∣∣∣∣cn3φ2

(
b1/a1, b2/a2, q

−n

b1, b2

; q,−a1a2q
n

)∣∣∣∣
≤
∣∣∣∣ cn(a1, a2; q)n

(−1, b1, b2; q)n

∣∣∣∣+ |cnM
n(−1; q)n| .

The ratio test shows that both
∞∑

n=0

cn(a1, a2; q)n

(−1, b1, b2; q)n

and
∞∑

n=0

cnM
n(−1; q)n

are absolutely convergent. From (4.7), we get that (4.1) is absolutely convergent.

Similarly, we have

Theorem 4.3.Suppose|ai| > 1 or ai < 2bi − 1, bi < 1 with i = 1, 2. Let{cn} be a
real sequence satisfying

lim
n→∞

∣∣∣∣cn+1

cn

∣∣∣∣ = p <
1

MN
,

whereM = max
{
|a1|, |a1−b1|

1−b1

}
andN = max

{
|a2|, |a2−b2|

1−b2

}
. Then the series (4.1)

is absolutely convergent.
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