

Journal of Inequalities in Pure and Applied Mathematics

http://jipam.vu.edu.au/

Volume 6, Issue 5, Article 130, 2005

NECESSARY AND SUFFICIENT CONDITION FOR COMPACTNESS OF THE EMBEDDING OPERATOR

A.G. RAMM

MATHEMATICS DEPARTMENT KANSAS STATE UNIVERSITY MANHATTAN, KS 66506-2602, USA ramm@math.ksu.edu

Received 20 September, 2005; accepted 30 September, 2005 Communicated by S.S. Dragomir

ABSTRACT. An improvement of the author's result, proved in 1961, concerning necessary and sufficient conditions for the compactness of an imbedding operator is given.

Key words and phrases: Banach spaces, Compactness, Embedding operator.

2000 Mathematics Subject Classification. 46B50, 46E30, 47B07.

1. INTRODUCTION

The basic result of this note is:

Theorem 1.1. Let $X_1 \subset X_2 \subset X_3$ be Banach spaces, $||u||_1 \ge ||u||_2 \ge ||u||_3$ (i.e., the norms are comparable) and if $||u_n||_3 \to 0$ as $n \to \infty$ and u_n is fundamental in X_2 , then $||u_n||_2 \to 0$, (i.e., the norms in X_2 and X_3 are compatible). Under the above assumptions the embedding operator $i : X_1 \to X_2$ is compact if and only if the following two conditions are valid:

- a) The embedding operator $j : X_1 \to X_3$ is compact, and the following inequality holds:
- b) $||u||_2 \leq s||u||_1 + c(s)||u||_3$, $\forall u \in X_1, \forall s \in (0, 1)$, where c(s) > 0 is a constant.

This result is an improvement of the author's old result, proved in 1961 (see [1]), where X_2 was assumed to be a Hilbert space. The proof of Theorem 1.1 is simpler than the one in [1].

2. Proof

1. Assume that a) and b) hold and let us prove the compactness of *i*. Let $S = \{u : u \in X_1, ||u||_1 = 1\}$ be the unit sphere in X_1 . Using assumption a), select a sequence u_n which

ISSN (electronic): 1443-5756

^{© 2005} Victoria University. All rights reserved.

This paper is based on the talk given by the author within the "International Conference of Mathematical Inequalities and their Applications, I", December 06-08, 2004, Victoria University, Melbourne, Australia [http://rgmia.vu.edu.au/conference].

²⁷⁹⁻⁰⁵

converges in X_3 . We claim that this sequence converges also in X_2 . Indeed, since $||u_n||_1 = 1$, one uses assumption b) to get

$$||u_n - u_m||_2 \le s||u_n - u_m||_1 + c(s)||u_n - u_m||_3 \le 2s + c(s)||u_n - u_m||_3.$$

Let $\eta > 0$ be an arbitrary small given number. Choose s > 0 such that $2s < \frac{1}{2}\eta$, and for a fixed s choose n and m so large that $c(s)||u_n - u_m||_3 < \frac{1}{2}\eta$. This is possible because the sequence u_n converges in X₃. Consequently, $||u_n - u_m||_2 \le \eta$ if n and m are sufficiently large. This means that the sequence u_n converges in X_2 . Thus, the embedding $i: X_1 \to X_2$ is compact. In the above argument the compatibility of the norms was not used.

2. Assume now that i is compact. Let us prove that assumptions a) and b) hold. Assumption a) holds because $||u||_2 \ge ||u||_3$. Suppose that assumption b) fails. Then there is a sequence u_n and a number $s_0 > 0$ such that $||u_n||_1 = 1$ and

(2.1)
$$||u_n||_2 \ge s_0 + n||u_n||_3.$$

If the embedding operator i is compact and $||u_n||_1 = 1$, then one may assume that the sequence u_n converges in X_2 . Its limit cannot be equal to zero, because, by (2.1), $||u_n||_2 \ge s_0 > 0$. The sequence u_n converges in X_3 because $||u_n - u_m||_2 \ge ||u_n - u_m||_3$, and its limit in X_3 is not zero, because the norms in X_3 and in X_2 are compatible. Thus, (2.1) implies $||u_n||_3 = O\left(\frac{1}{n}\right) \to 0$ as $n \to \infty$, while $\lim_{n\to\infty} ||u_n||_3 > 0$. This is a contradiction, which proves that b) holds.

Theorem 1.1 is proved.

REFERENCES

[1] A.G. RAMM, A necessary and sufficient condition for compactness of embedding, Vestnik of Leningrad. Univ., Ser. Math., Mech., Astron., 1 (1963), 150–151.