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ABSTRACT. An improvement of the author’s result, proved in 1961, concerning necessary and
sufficient conditions for the compactness of an imbedding operator is given.
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1. I NTRODUCTION

The basic result of this note is:

Theorem 1.1. Let X1 ⊂ X2 ⊂ X3 be Banach spaces,||u||1 ≥ ||u||2 ≥ ||u||3 (i.e., the norms
are comparable) and if||un||3 → 0 asn → ∞ andun is fundamental inX2, then||un||2 → 0,
(i.e., the norms inX2 andX3 are compatible). Under the above assumptions the embedding
operatori : X1 → X2 is compact if and only if the following two conditions are valid:

a) The embedding operatorj : X1 → X3 is compact,
and the following inequality holds:

b) ||u||2 ≤ s||u||1 + c(s)||u||3, ∀u ∈ X1, ∀s ∈ (0, 1), wherec(s) > 0 is a constant.

This result is an improvement of the author’s old result, proved in 1961 (see [1]), whereX2

was assumed to be a Hilbert space. The proof of Theorem 1.1 is simpler than the one in [1].

2. PROOF

1. Assume that a) and b) hold and let us prove the compactness ofi. Let S = {u : u ∈
X1, ||u||1 = 1} be the unit sphere inX1. Using assumption a), select a sequenceun which
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converges inX3. We claim that this sequence converges also inX2. Indeed, since||un||1 = 1,
one uses assumption b) to get

||un − um||2 ≤ s||un − um||1 + c(s)||un − um||3 ≤ 2s + c(s)||un − um||3.
Let η > 0 be an arbitrary small given number. Chooses > 0 such that2s < 1

2
η, and for a fixed

s choosen andm so large thatc(s)||un−um||3 < 1
2
η. This is possible because the sequenceun

converges inX3. Consequently,||un − um||2 ≤ η if n andm are sufficiently large. This means
that the sequenceun converges inX2. Thus, the embeddingi : X1 → X2 is compact. In the
above argument the compatibility of the norms was not used.

2. Assume now thati is compact. Let us prove that assumptions a) and b) hold. Assumption
a) holds because||u||2 ≥ ||u||3. Suppose that assumption b) fails. Then there is a sequenceun

and a numbers0 > 0 such that||un||1 = 1 and

(2.1) ||un||2 ≥ s0 + n||un||3.
If the embedding operatori is compact and||un||1 = 1, then one may assume that the sequence
un converges inX2. Its limit cannot be equal to zero, because, by (2.1),||un||2 ≥ s0 > 0. The
sequenceun converges inX3 because||un−um||2 ≥ ||un−um||3, and its limit inX3 is not zero,
because the norms inX3 and inX2 are compatible. Thus, (2.1) implies||un||3 = O

(
1
n

)
→ 0 as

n →∞, while limn→∞ ||un||3 > 0. This is a contradiction, which proves that b) holds.
Theorem 1.1 is proved. �
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