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1. I NTRODUCTION

In order to investigate problems of the form

x′ = f(t, x), t 6= tk,

∆x = Ik(x), t = tk,

Samoilenko and Perestyuk [6] first used the following impulsive integral inequality

u(t) ≤ a+

∫ t

c

b(s)u(s)ds+
∑

0<tk<t

ηku(tk), t ≥ 0.

Then Bainov and Hristova [2] studied a similar inequality with constant delay. In 2004, Hristova
[3] considered a more general inequality with nonlinear functions inu. All of these papers
treated the functions (kernels) involved in the integrals which are regular. Recently, Tatar [7]
investigated the following singular inequality

u(t) ≤ a(t) + b(t)

∫ t

0

k1(t, s)u
m(s)ds+ c(t)

∫ t

0

k2(t, s)u
n(s− τ)ds

+d(t)
∑

0<tk<t

ηku(tk), t ≥ 0,

u(t) ≤ ϕ(t), t ∈ [−τ, 0], τ > 0(1.1)
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where the kernelski(t, s) are defined byki(t, s) = (t − s)βi−1sγiFi(s) for βi > 0 andγi >
−1, i = 1, 2, the pointstk (called "instants of impulse effect") are in increasing order and
limk→∞ tk = +∞. This inequality was called the impulsive nonlinear singular version of the
Gronwall inequality with delay by Tatar [7]. In this paper, we will consider an inequality

u(t) ≤ a(t) +
n∑

i=1

∫ bi(t)

0

(t− s)βi−1srifi(t, s)wi(u(s))ds

+
m+n∑

j=n+1

∫ bj(t)

0

(t− s)βj−1srjfj(t, s)wj(u(s− τ))ds

+ d(t)
∑

0<tL<t

ηLu(tL), t ≥ 0,(1.2)

u(t) ≤ ϕ(t), t ∈ [−τ, 0], τ > 0,

wheren,m are positive integers,βl > 0, rl > −1 for l = 1, . . . , n + m andηL ≥ 0 and other
assumptions are given in Section 2. This inequality is more general than (1.1) since (1.2) hasn
nonlinear terms.

2. M AIN RESULTS

Notation: Following [1] and [5], we sayw1 ∝ w2 for w1, w2 : A ⊂ R → R\{0} if w2

w1
is

nondecreasing onA. This concept helps us to compare the monotonicity of different functions.
Now we make the following assumptions:

(H1) all wi (i = 1, . . . , n +m) are continuous and nondecreasing on[0,∞) and positive on
(0,∞), andw1 ∝ w2 ∝ · · · ∝ wn

(H2) a(t) andd(t) are continuous and nonnegative on[0,∞);

(H3) all bl : [0,∞) → [0,∞) are continuously differentiable and nondecreasing such that
0 ≤ bl(t) ≤ t on [0,∞), tL ≤ bl(t) ≤ tL+τ for t ∈ [tL, tL+τ ] andtL+τ ≤ bl(t) ≤ tL+1

for t ∈ [tL + τ, tL+1], l = 1, . . . , n+m andL = 0, 1, 2, . . . wheret0 = 0. The pointstL
are called instants of impulse effect which are in increasing order, andlimL→∞ tL = ∞;

(H4) all fl(t, s) (l = 1, . . . , n + m) are continuous and nonnegative functions on[0,∞) ×
[0,∞);

(H5) ϕ(t) is nonnegative and continuous;

(H6) u(t) is a piecewise continuous function fromR → R+ = [0,∞) with points of discon-
tinuity of the first kind at the pointstL ∈ R. It is also left continuous at the pointstL.
This space is denoted byPC(R,R+).

Without loss of generality, we will suppose that thetL satisfyτ < tL+1 − tL ≤ 2τ , L =
0, 1, 2, . . . . As in Remark 3.2 of [7], other cases can be reduced to this one.

Theorem 2.1. Let the above assumptions hold. Suppose thatu satisfies (1.2) and is in
PC([−τ,∞), [0,∞)). Then ifβα > −1

p
+ 1 andrα > −1

p
, it holds that

u(t) ≤



uL,0(t), t ∈ (tL, tL + τ ],

uL,1(t), t ∈ (tL + τ, tL+1],

uk,0(t), t ∈ (tk, tk + τ ] if tk + τ ≤ T,

uk,1(t), t ∈ (tk + τ, T ] if tk + τ < T,

uk,0(t), t ∈ (tk, T ] if tk + τ > T,
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GRONWALL-BIHARI INEQUALITY 3

wheretk ≤ T < tk+1 and

uL,l(t) =

[
W−1

n

(
Wn(γL,l,n(t)) +

∫ bn(t)

tL+lτ

(n+m+ L+ 1)q−1cqn(t)f̃ q
n(t, s)ds

)] 1
q

,

γL,l,j(t) = W−1
j−1

[
Wj−1(γL,l,j−1(t))

+

∫ bj−1(t)

tL+lτ

(n+m+ L+ 1)q−1cqj−1(t)f̃
q
j−1(t, s)ds

]
, j 6= 1,

γL,l,1(t) = (n+m+ L+ 1)q−1

[
ãq(t) +

n∑
i=1

∫ tL+lτ

0

cqi (t)f̃
q
i (t, s)wq

i (φ(s))ds

+
n+m∑

j=n+1

∫ bj(t)

0

cqj(t)f̃
q
j (t, s)wq

j (ψ(s− τ))ds+
L∑

e=1

d̃q(t)ηq
eu

q
e−1,1(te)

]
,

φ(t) =


uL,0(t), t ∈ (tL, tL + τ ], t ∈ (tk, tk + τ ] if tk + τ ≤ T,

andt ∈ (tk, T ] if tk + τ > T,

uL,1(t), t ∈ (tL + τ, tL+1] andt ∈ (tk + τ, T ] if tk + τ < T,

ψ(t) =


ϕ(t), t ∈ [−τ, 0],

uL,0(t), t ∈ (tL, tL + τ ], t ∈ (tk, tk + τ ] if tk + τ ≤ T,

andt ∈ (tk, T ] if tk + τ > T,

uL,1(t), t ∈ (tL + τ, tL+1] andt ∈ (tk + τ, T ] if tk + τ < T,

ã(t) = max
0≤x≤t

a(x), f̃α(t, s) = max
0≤x≤t

fα(x, s), d̃(t) = max
0≤x≤t

d(x),

Wi(u) =

∫ u

ui

dv

wq
i (v

1
q )
, u > 0, ui > 0,

cα(t) = t
1
p
+βα+rα−1

(
Γ(1 + p(βα − 1))Γ(1 + prα)

Γ(2 + p(βα + rα − 1))

) 1
p

,

for L = 0, 1, . . . , k − 1, α = 1, 2, . . . , n+m, l = 0, 1, andi, j = 1, . . . , n where1
p

+ 1
q

= 1 for
p > 0 andq > 1, andT is the largest number such that

(2.1) Wj(γL,l,j(t)) +

∫ bj(t)

tL+lτ

(n+m+ L+ 1)q−1cj(t)f̃
q
j (t, s)ds ≤

∫ ∞

uj

dz

wq
j (z

1/q)
,

for all t ∈ (tL, tL + τ ], all t ∈ (tk, tk + τ ] if tk + τ ≤ T and all t ∈ (tL, T ] if tk + τ > T as
l = 0, or all t ∈ [tL + τ, tL+1] and all t ∈ [tk + τ, T ) if tk + τ < T asl = 1 wherej = 1, . . . , n,
l = 0, 1 andL = 0, 1 . . . , k − 1.

Before the proof, we introduce a lemma which will play a very important role.

Lemma 2.2([1]). Suppose that

(1) all wi (i = 1, . . . , n) are continuous and nondecreasing on[0,∞) and positive on
(0,∞), andw1 ∝ w2 ∝ · · · ∝ wn.

(2) a(t) is continuously differentiable int and nonnegative on[t0, t1),
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(3) all bl are continuously differentiable and nondecreasing such thatbl(t) ≤ t for t ∈
[t0, t1)

wheret0, t1 are constants andt0 < t1. If u(t) is a continuous and nonnegative function on
[t0, t1) satisfying

u(t) ≤ a(t) +
n∑

i=1

∫ bi(t)

bi(t0)

fi(t, s)wi(u(s))ds, t0 ≤ t < t1,

then

u(t) ≤ W̃−1
n

[
W̃n(γn(t)) +

∫ bn(t)

bn(t0)

f̃n(t, s)ds

]
, t0 ≤ t ≤ T1,

where

γi(t) = W̃−1
i−1

[
W̃i−1(γi−1(t)) +

∫ bi−1(t)

bi−1(t0)

f̃i−1(t, s)ds

]
, i = 2, 3, . . . , n,

γ1(t) = a(t0) +

∫ t

t0

|a′(s)|ds, W̃i(u) =

∫ u

ui

dz

wi(z)
, ui > 0,

T1 < t1 andT1 is the largest number such that

W̃i(γi(T1)) +

∫ bi(T1)

bi(t0)

f̃i(T1, s)ds ≤
∫ ∞

ui

dz

wi(z)
, i = 1, . . . , n.

Proof of Theorem 2.1.Sinceβα > −1
p

+ 1 andrα > −1
p

for α = 1, . . . , n + m, by Hölder’s
inequality we obtain

u(t) ≤ a(t) +
n∑

i=1

(∫ t

0

(t− s)p(βi−1)sprids

) 1
p

(∫ bi(t)

0

f q
i (t, s)wq

i (u(s))ds

) 1
q

+
m+n∑

j=n+1

(∫ t

0

(t− s)p(βj−1)sprjds

) 1
p

(∫ bj(t)

0

f q
j (t, s)wq

j (u(s− τ))ds

) 1
q

+
∑

0<tL<t

d(t)ηLu(tL)

≤ a(t) +
n∑

i=1

ci(t)

(∫ bi(t)

0

f q
i (t, s)wq

i (u(s))ds

) 1
q

+
m+n∑

j=n+1

cj(t)

(∫ bj(t)

0

f q
j (t, s)wq

j (u(s− τ))ds

) 1
q

+
∑

0<tL<t

d(t)ηLu(tL)

where we usebα(t) ≤ t and the definition ofcα(t). Now we use the following result [4]:
If A1, . . . , An are nonnegative forn ∈ N, then forq > 1,

(A1 + · · ·+ An)q ≤ nq−1(Aq
1 + · · ·+ Aq

n).
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Sincetk ≤ t ≤ T < tk+1, we have

uq(t) ≤ (1 + n+m+ k)q−1

[
aq(t) +

n∑
i=1

cqi (t)

∫ bi(t)

0

f q
i (t, s)wq

i (u(s))ds

+
m+n∑

j=n+1

cqj(t)

∫ bj(t)

0

f q
j (t, s)wq

j (u(s− τ))ds+
k∑

L=1

dq(t)ηq
Lu

q(tL)

]
.

We note that̃a(t) ≥ a(t), d̃(t) ≥ d(t) and f̃α(t, s) ≥ fα(t, s) and they are continuous and
nondecreasing int. The above inequality becomes

uq(t) ≤ (1 + n+m+ k)q−1

[
ãq(t) +

n∑
i=1

(
k−1∑
L=0

cqi (t)

∫ tL+1

tL

f̃ q
i (t, s)wq

i (u(s))ds

+ cqi (t)

∫ bi(t)

tk

f̃ q
i (t, s)wq

i (u(s))ds

)

+
m+n∑

j=n+1

(
k−1∑
L=0

cqj(t)

∫ tL+1

tL

f̃ q
j (t, s)wq

j (u(s− τ))ds

+ cqj(t)

∫ bj(t)

tk

f̃ q
j (t, s)wq

j (u(s− τ))ds

)
+

k∑
L=1

d̃q(t)ηq
Lu

q(tL)

]
.(2.2)

In the following, we apply mathematical induction with respect tok.

(1) k = 0. We note thatt0 = 0 and we have for any fixed̃t ∈ [0, t1]

(2.3) uq(t) ≤ (n+m+ 1)q−1

[
ãq(t̃) +

n∑
i=1

cqi (t̃)

∫ bi(t)

0

f̃ q
i (t̃, s)wq

i (u(s))ds

+
m+n∑

j=n+1

cqj(t̃)

∫ bj(t)

0

f̃ q
j (t̃, s)wq

j (u(s− τ))ds

]

for t ∈ [0, t̃] sincecα(t) are nondecreasing.
Now we consider̃t ∈ [0, τ ] ⊂ [0, t1] and t ∈ [0, t̃]. Note that0 ≤ bj(t) ≤ t so−τ ≤

bj(t)− τ ≤ 0 for t ∈ [0, t̃]. Sinceu(t) ≤ ϕ(t) for t ∈ [−τ, 0], we have

uq(t) ≤ z0,0(t), t ∈ [0, t̃],

where

(2.4) z0,0(t) = (n+m+ 1)q−1

[
ãq(t̃) +

n∑
i=1

cqi (t̃)

∫ bi(t)

0

f̃ q
i (t̃, s)wq

i (u(s))ds

+
m+n∑

j=n+1

cqj(t̃)

∫ bj(t̃)

0

f̃ q
j (t̃, s)wq

j (ϕ(s− τ))ds

]
.

It implies that

(2.5) u(t) ≤ z0,0(t)
1/q, t ∈ [0, t̃].
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Thus, (2.4) becomes

(2.6) z0,0(t) ≤ (n+m+ 1)q−1

[
ãq(t̃) +

n∑
i=1

cqi (t̃)

∫ bi(t)

0

f̃ q
i (t̃, s)wq

i (z
1/q
0,0 (s))ds

+
m+n∑

j=n+1

cqj(t̃)

∫ bj(t̃)

0

f̃ q
j (t̃, s)wq

j (ϕ(s− τ))ds

]
.

By Lemma 2.2, (2.6) and (2.1), we have

z0,0(t) ≤ W−1
n

[
Wn(γ̃0,0,n(t)) +

∫ bn(t)

0

(n+m+ 1)q−1cn(t̃)f̃ q
n(t̃, s)ds

]
,

γ̃0,0,j(t) = W−1
j−1

[
Wj−1(γ̃0,0,j−1(t))

+

∫ bj−1(t)

0

(n+m+ 1)q−1cj−1(t̃)f̃
q
j−1(t̃, s)ds

]
, j 6= 1,

γ̃0,0,1(t) = (n+m+ 1)q−1

[
ãq(t̃) +

n+m∑
j=n+1

∫ bj(t̃)

0

cqj(t̃)f̃
q
j (t̃, s)wq

j (ψ(s− τ))ds

]
sinceψ(t) = ϕ(t) for t ∈ [−τ, 0].

Since (2.5) is true for anyt ∈ [0, t̃] andγ̃0,0,j(t̃) = γ0,0,j(t̃), we have

u(t̃) ≤ z0,0(t̃)
1/q ≤ u0,0(t̃).

We know that̃t ∈ [0, τ ] is arbitrary so we replacẽt by t and get

(2.7) u(t) ≤ u0,0(t), for t ∈ [0, τ ].

This implies that the theorem is true fort ∈ [0, τ ] andk = 0.
For t ∈ [τ, t̃] andt̃ ∈ [τ, t1], use the assumption (H3) and then we know thatbα(τ) = τ and

τ ≤ bα(t) ≤ t1 for t ∈ [τ, t1] andα = 1, . . . , n+m. Thus,

0 ≤ bα(t)− τ ≤ t1 − τ ≤ τ

sinceτ < t1 − t0 = t1 ≤ 2τ . Using this fact, (2.3) and (2.7), we get

uq(t) ≤ (n+m+ 1)q−1

[
ãq(t̃) +

n∑
i=1

cqi (t̃)

∫ τ

0

f̃ q
i (t̃, s)wq

i (u(s))ds

+
n∑

i=1

cqi (t̃)

∫ bi(t)

τ

f̃ q
i (t̃, s)wq

i (u(s))ds

+
m+n∑

j=n+1

cqj(t̃)

∫ τ

0

f̃ q
j (t̃, s)wq

j (ψ(s− τ))ds

+
m+n∑

j=n+1

cqj(t̃)

∫ bj(t̃)

τ

f̃ q
j (t̃, s)wq

j (u(s− τ))ds

]

J. Inequal. Pure and Appl. Math., 9(2) (2008), Art. 34, 11 pp. http://jipam.vu.edu.au/

http://jipam.vu.edu.au/


GRONWALL-BIHARI INEQUALITY 7

≤ (n+m+ 1)q−1

[
ãq(t̃) +

n∑
i=1

cqi (t̃)

∫ τ

0

f̃ q
i (t̃, s)wq

i (u0,0(s))ds

+
n∑

i=1

cqi (t̃)

∫ bi(t)

τ

f̃ q
i (t̃, s)wq

i (u(s))ds

+
m+n∑

j=n+1

cqj(t̃)

∫ τ

0

f̃ q
j (t̃, s)wq

j (ψ(s− τ))ds

+
m+n∑

j=n+1

cqj(t̃)

∫ bj(t̃)

τ

f̃ q
j (t̃, s)wq

j (u0,0(s− τ))ds

]

≤ (n+m+ 1)q−1

[
ãq(t̃) +

n∑
i=1

cqi (t̃)

∫ τ

0

f̃ q
i (t̃, s)wq

i (φ(s))ds

+
n∑

i=1

cqi (t̃)

∫ bi(t)

τ

f̃ q
i (t̃, s)wq

i (u(s))ds

+
m+n∑

j=n+1

cqj(t̃)

∫ bj(t̃)

0

f̃ q
j (t̃, s)wq

j (ψ(s− τ))ds

]
:= z0,1(t),

where we use the definitions ofφ andψ. Thus,

(2.8) u(t) ≤ z
1/q
0,1 (t), t ∈ [τ, t̃].

Therefore,

z0,1 ≤ (n+m+ 1)q−1

[
ãq(t̃) +

n∑
i=1

cqi (t̃)

∫ τ

0

f̃ q
i (t̃, s)wq

i (φ(s))ds

+
n∑

i=1

cqi (t̃)

∫ bi(t)

τ

f̃ q
i (t̃, s)wq

i (z
1/q
0,1 (s))ds

+
m+n∑

j=n+1

cqj(t̃)

∫ bj(t̃)

0

f̃ q
j (t̃, s)wq

j (ψ(s− τ))ds

]
.

Using Lemma 2.2, (2.1) andbα(τ) = τ , we obtain fort ∈ [τ, t̃]

z0,1(t) ≤ W−1
n

[
Wn(γ̃0,1,n(t)) +

∫ bn(t)

τ

(n+m+ 1)q−1cqn(t̃)f̃ q
n(t̃, s)ds

]
,

γ̃0,1,j(t) = W−1
j−1

[
Wj−1(γ̃0,1,j−1(t))+

∫ bj−1(t)

τ

(n+m+ 1)q−1cqj−1(t̃)f̃
q
j−1(t̃, s)ds

]
, j 6= 1,

γ̃0,1,1(t) = (n+m+ 1)q−1

[
ãq(t̃) +

n∑
i=1

∫ τ

0

cqi (t̃)f̃
q
i (t̃, s)wq

i (φ(s))ds

+
n+m∑

j=n+1

∫ bj(t̃)

0

cqj(t̃)f̃
q
j (t̃, s)wq

j (ψ(s− τ))ds

]
.
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Since (2.8) is true for anyt ∈ [τ, t1] andγ̃0,1,1(t̃) = γ0,1,1(t̃), we have

u(t̃) ≤ z
1/q
0,1 (t̃) ≤ u0,1(t̃).

We know that̃t ∈ [τ, t1] is arbitrary so we replacẽt by t and get

(2.9) u(t) ≤ u0,1(t), t ∈ [τ, t1].

This implies that the theorem is valid fort ∈ [τ, t1] andL = 0.

(2)L = 1. First we considert ∈ (t1, t̃],wheret̃ ∈ (t1, t1+τ ] is arbitrary. Note thatτ < t2−t1 ≤
2τ . (H3) givesbα(t1) = t1 andt1 ≤ bα(t) ≤ t1 +τ for t ∈ (t1, t1 +τ ] sot1−τ ≤ bα(t)−τ ≤ t1
for t ∈ (t1, t1 + τ ]. By (2.7) and (2.9), (2.2) can be written as

uq(t) ≤ (n+m+ 2)q−1

[
ãq(t̃) +

n∑
i=1

cqi (t̃)

(∫ τ

0

+

∫ t1

τ

)
f̃ q

i (t̃, s)wq
i (u(s))ds

+
n∑

i=1

cqi (t̃)

∫ bi(t)

t1

f̃ q
i (t̃, s)wq

i (u(s))ds

+
m+n∑

j=n+1

cqj(t̃)

(∫ τ

0

+

∫ t1

τ

)
f̃ q

j (t̃, s)wq
j (u(s− τ))ds

+
n∑

j=1

cqj(t̃)

∫ bj(t̃)

t1

f̃ q
j (t̃, s)wq

j (u(s− τ))ds+ d̃q(t̃)ηq
1u

q(t1)

]

≤ (n+m+ 2)q−1

[
ãq(t̃) +

n∑
i=1

cqi (t̃)

∫ t1

0

f̃ q
i (t̃, s)wq

i (φ(s))ds

+
n∑

i=1

cqi (t̃)

∫ bi(t)

t1

f̃ q
i (t̃, s)wq

i (u(s))ds

+
m+n∑

j=n+1

cqj(t̃)

∫ bj(t̃)

0

f̃ q
j (t̃, s)wq

j (ψ(s− τ))ds+ d̃q(t̃)ηq
1u

q
0,1(t1)

]
:=z1,0(t),

where we use the definitions ofφ andψ so

(2.10) u(t) ≤ z
1/q
1,0 (t), t ∈ (t1, t̃].

Thus,

z1,0(t) ≤ (n+m+ 2)q−1

[
ãq(t̃) +

n∑
i=1

cqi (t̃)

∫ t1

0

f̃ q
i (t̃, s)wq

i (φ(s))ds

+
n∑

i=1

cqi (t̃)

∫ bi(t)

t1

f̃ q
i (t̃, s)wq

i (z
1/q
1,0 (s))ds

+
m+n∑

j=n+1

cqj(t̃)

∫ bj(t̃)

0

f̃ q
j (t̃, s)wq

j (ψ(s− τ))ds+ d̃q(t̃)ηq
1u

q
0,1(t1)

]
.
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By Lemma 2.2, (2.1) andbα(t1) = t1, we obtain fort ∈ (t1, t̃]

z1,0(t) ≤ W−1
n

[
Wn(γ̃1,0,n(t)) +

∫ bn(t)

t1

(n+m+ 2)q−1cqn(t̃)f̃ q
n(t̃, s)ds

]
,

γ̃1,0,j(t) = W−1
j−1

[
Wj−1(γ̃1,0,j−1(t))+

∫ bj−1(t)

t1

(n+m+ 2)q−1cqj−1(t̃)f̃
q
j−1(t̃, s)ds

]
, j 6= 1,

γ̃1,0,1(t) = (n+m+ 2)q−1

[
ãq(t̃) +

n∑
i=1

∫ t1

0

cqi (t̃)f̃
q
i (t̃, s)wq

i (φ(s))ds

+
n+m∑

j=n+1

∫ bj(t̃)

0

cqj(t̃)f̃
q
j (t̃, s)wq

j (ψ(s− τ))ds+ d̃q(t̃)ηq
1u

q
0,1(t1)

]
.

Since (2.10) is true for anyt ∈ (t1, t̃] andγ̃1,0,1(t̃) = γ1,0,1(t̃), we have

u(t̃) ≤ z
1/q
1,0 (t̃) ≤ u1,0(t̃).

We know that̃t ∈ (t1, t1 + τ ] is arbitrary so we replacẽt by t and get

(2.11) u(t) ≤ u1,0(t), t ∈ (t1, t1 + τ ].

This implies that the theorem is valid fort ∈ (t1, t1 + τ ] andL = 1.
We now considert ∈ [t1 + τ, t̃], wheret̃ ∈ [t1 + τ, t2] is arbitrary. Again, by (H3) we have

t1+τ ≤ bα(t) ≤ t2 for t ∈ [t1+τ, t2] andbα(t1+τ) = t1+τ sot1 ≤ bα(t)−τ ≤ t2−τ ≤ t1+τ
sinceτ < t2 − t1 ≤ 2τ . Obviously, by (2.7), (2.9) and (2.11), (2.2) becomes

uq(t) ≤ (n+m+ 2)q−1

[
ãq(t̃) +

n∑
i=1

cqi (t̃)

∫ t1+τ

0

f̃ q
i (t̃, s)wq

i (u(s))ds

+
n∑

i=1

cqi (t̃)

∫ bi(t)

t1+τ

f̃ q
i (t̃, s)wq

i (u(s))ds

+
m+n∑

j=n+1

cqj(t̃)

∫ t1+τ

0

f̃ q
j (t̃, s)wq

j (u(s− τ))ds

+
m+n∑

j=n+1

cqj(t̃)

∫ bj(t̃)

t1+τ

f̃ q
j (t̃, s)wq

j (u(s− τ))ds+ d̃q(t̃)ηq
1u

q
1,0(t1)

]

≤ (n+m+ 2)q−1

[
ãq(t̃) +

n∑
i=1

cqi (t̃)

∫ t1+τ

0

f̃ q
i (t̃, s)wq

i (φ(s))ds

+
n∑

i=1

cqi (t̃)

∫ bi(t)

t1+τ

f̃ q
i (t̃, s)wq

i (u(s))ds

+
m+n∑

j=n+1

cqj(t̃)

∫ bj(t̃)

0

f̃ q
j (t̃, s)wq

j (ψ(s− τ))ds+ d̃q(t̃)ηq
1u

q
0,1(t1)

]
:= z1,1(t),

that is,

(2.12) u(t) ≤ z
1/q
1,1 (t), t ∈ [t1 + τ, t̃].
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Thus,

z1,1(t) ≤ (n+m+ 2)q−1

[
ãq(t̃) +

n∑
i=1

cqi (t̃)

∫ t1+τ

0

f̃ q
i (t̃, s)wq

i (φ(s))ds

+ cqi (t̃)

∫ bi(t)

t1+τ

f̃ q
i (t̃, s)wq

i (z
1/q
1,1 (s))ds

+
m+n∑

j=n+1

cqj(t̃)

∫ bj(t̃)

0

f̃ q
j (t̃, s)wq

j (ψ(s− τ))ds+ d̃q(t̃)ηq
1u

q
0,1(t1)

]
.

Using Lemma 2.2, (2.1) andbα(t1 + τ) = t1 + τ , we obtain fort ∈ (t1, t̃]

z1,1(t) ≤ W−1
n

[
Wn(γ̃1,1,n(t)) +

∫ bn(t)

t1+τ

(n+m+ 2)q−1cqn(t̃)f̃ q
n(t̃, s)ds

]
,

γ̃1,1,j(t) = W−1
j−1

[
Wj−1(γ̃1,1,j−1(t))+

∫ bj−1(t)

t1+τ

(n+m+ 2)q−1cqj−1(t̃)f̃
q
j−1(t̃, s)ds

]
, j 6= 0,

γ̃1,1,1(t) = (n+m+ 2)q−1

[
ãq(t̃) +

n∑
i=1

∫ t1+τ

0

cqi (t̃)f̃
q
i (t̃, s)wq

i (φ(s))ds

+
n+m∑

j=n+1

∫ bj(t̃)

0

cqj(t̃)f̃
q
j (t̃, s)wq

j (ψ(s− τ))ds+ d̃q(t̃)ηq
1u

q
0,1(t1)

]
.

Since (2.12) is true for anyt ∈ (t1, t̃] andγ̃1,1,1(t̃) = γ1,1,1(t̃), we have

u(t̃) ≤ z
1/q
1,1 (t̃) ≤ u1,1(t̃).

We know that̃t ∈ [t1 + τ, t2] is arbitrary so we replacẽt by t and get

u(t) ≤ u1,1(t), t ∈ [t1 + τ, t2].

This implies that the theorem is valid fort ∈ [t1 + τ, t2] andL = 1.

(3) Finally, suppose that the theorem is valid fork, then fork + 1 we redefineφ andψ by
replacingk with k + 1. In a similar manner as in steps (1) and (2), we can see that the theorem
holds fort ∈ (tk+1, T ] ⊂ (tk+1, tk+2].

The proof is now completed. �
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