Journal of Inequalities in Pure and Applied Mathematics

Volume 7, Issue 4, Article 123, 2006

STARLIKE LOG-HARMONIC MAPPINGS OF ORDER α

Z. ABDULHADI AND Y. ABU MUHANNA

Department of Mathematics
American University of Sharjah
Sharjah, Box 26666, UAE
zahadi@aus.ac.ae
ymuhanna@aus.ac.ae
Received 20 September, 2005; accepted 13 December, 2005
Communicated by Q.I. Rahman

Abstract

In this paper, we consider univalent log-harmonic mappings of the form $f=z h \bar{g}$ defined on the unit disk U which are starlike of order α. Representation theorems and distortion theorem are obtained.

Key words and phrases: log-harmonic, Univalent, Starlike of order α.
2000 Mathematics Subject Classification. Primary 30C35, 30C45; Secondary 35Q30.

1. Introduction

Let $H(U)$ be the linear space of all analytic functions defined on the unit disk $U=\{z:|z|<$ $1\}$. A log-harmonic mapping is a solution of the nonlinear elliptic partial differential equation

$$
\begin{equation*}
\frac{\overline{f_{\bar{z}}}}{\bar{f}}=a \frac{f_{z}}{f}, \tag{1.1}
\end{equation*}
$$

where the second dilation function $a \in H(U)$ is such that $|a(z)|<1$ for all $z \in U$. It has been shown that if f is a non-vanishing log-harmonic mapping, then f can be expressed as

$$
f(z)=h(z) \overline{g(z)},
$$

where h and g are analytic functions in U. On the other hand, if f vanishes at $z=0$ but is not identically zero, then f admits the following representation

$$
f(z)=z|z|^{2 \beta} h(z) \overline{g(z)},
$$

where $\operatorname{Re} \beta>-1 / 2$, and h and g are analytic functions in $U, g(0)=1$ and $h(0) \neq 0$ (see [3]). Univalent log-harmonic mappings have been studied extensively (for details see [1] - [5]).

[^0]Let $f=z|z|{ }^{2 \beta} h \bar{g}$ be a univalent log-harmonic mapping. We say that f is a starlike logharmonic mapping of order α if

$$
\begin{equation*}
\frac{\partial \arg f\left(r e^{i \theta}\right)}{\partial \theta}=\operatorname{Re} \frac{z f_{z}-\bar{z} f_{\bar{z}}}{f}>\alpha, \quad 0 \leq \alpha<1 \tag{1.2}
\end{equation*}
$$

for all $z \in U$. Denote by $S T_{L h}(\alpha)$ the set of all starlike log-harmonic mappings of order α. If $\alpha=0$, we get the class of starlike log-harmonic mappings. Also, let $S T(\alpha)=\left\{f \in S T_{L h}(\alpha)\right.$ and $f \in H(U)\}$. If $f \in S T_{L h}(0)$ then $F(\zeta)=\log \left(f\left(e^{\zeta}\right)\right)$ is univalent and harmonic on the half plane $\{\zeta: \operatorname{Re}\{\zeta\}<0\}$. It is known that F is closely related with the theory of nonparametric minimal surfaces over domains of the form $-\infty<u<u_{0}(v), u_{0}(v+2 \pi)=$ $u_{0}(v)$, (see [7]).

In Section 2 we include two representation theorems which establish the linkage between the classes $S T_{L h}(\alpha)$ and $S T(\alpha)$. In Section 3 we obtain a sharp distortion theorem for the class $S T_{L h}(\alpha)$.

2. Representation Theorems

In this section, we obtain two representation theorems for functions in $S T_{L h}(\alpha)$. In the first one we establish the connection between the classes $S T_{L h}(\alpha)$ and $S T(\alpha)$. The second one is an integral representation theorem.
Theorem 2.1. Let $f(z)=z h(z) \overline{g(z)}$ be a log-harmonic mapping on $U, 0 \notin h g(U)$. Then $f \in S T_{L h}(\alpha)$ if and only if $\varphi(z)=\frac{z h(z)}{g(z)} \in S T(\alpha)$.
Proof. Let $f(z)=z h(z) \overline{g(z)} \in S T_{L h}(\alpha)$, then it follows that

$$
\begin{aligned}
\frac{\partial \arg f\left(r e^{i \theta}\right)}{\partial \theta} & =\operatorname{Re} \frac{z f_{z}-\bar{z} f_{\bar{z}}}{f} \\
& =\operatorname{Re}\left(1+\frac{z h^{\prime}}{h}-\frac{\bar{z} \overline{g^{\prime}}}{\bar{g}}\right) \\
& =\operatorname{Re}\left(1+\frac{z h^{\prime}}{h}-\frac{z g^{\prime}}{g}\right)>\alpha .
\end{aligned}
$$

Setting

$$
\varphi(z)=\frac{z h(z)}{g(z)}
$$

we obtain

$$
\operatorname{Re} \frac{z f_{z}-\bar{z} f_{\bar{z}}}{f}=\operatorname{Re} \frac{z \varphi^{\prime}}{\varphi}>\alpha
$$

Since f is univalent, we know that $0 \notin f_{z}(U)$. Furthermore,

$$
\varphi \circ f^{-1}(w)=q_{1}(w)=w\left|g \circ f^{-1}(w)\right|^{-2},
$$

is locally univalent on $f(U)$.
Indeed, we have $\frac{\left.z \varphi^{\prime} z\right)}{\varphi(z)}=(1-a(z)) \frac{z f_{z}}{f} \neq 0$ for all $z \in U$. From Lemma 2.3 in [4] we conclude that φ is univalent on U. Hence $\varphi \in S T(\alpha)$.

Conversely, let $\varphi \in S T(\alpha)$ and $a \in H(U)$ such that $|a(z)|<1$ for all $z \in U$ be given. We consider

$$
\begin{equation*}
g(z)=\exp \left(\int_{0}^{z} \frac{a(s) \varphi^{\prime}(s)}{\varphi(s)(1-a(s))} d s\right) \tag{2.1}
\end{equation*}
$$

where $\frac{\left.z \varphi^{\prime} z\right)}{\varphi(z)}=(1-\alpha) p(z)+\alpha$, and $p \in H(U)$ such that $p(0)=1$ and $\operatorname{Re}(p)>0$.

Also, let

$$
h(z)=\frac{\varphi(z) g(z)}{z}
$$

and

$$
\begin{equation*}
f(z)=z h(z) \overline{g(z)}=\varphi(z)|g(z)|^{2} . \tag{2.2}
\end{equation*}
$$

Then h and g are non-vanishing analytic functions defined on U, normalized by $h(0)=g(0)=$ 1 and f is a solution of (1.1) with respect to a.

Simple calculations give that

$$
\frac{\partial \arg f\left(r e^{i \theta}\right)}{\partial \theta}=\operatorname{Re} \frac{z f_{z}-\bar{z} f_{\bar{z}}}{f}=\operatorname{Re} \frac{\left.z \varphi^{\prime} z\right)}{\varphi(z)}>\alpha
$$

Using the same argument we conclude that

$$
f \circ \varphi^{-1}(w)=q_{2}(w)=w\left|g \circ \varphi^{-1}(w)\right|^{2}
$$

is locally univalent on $\varphi(U)$ and that f is univalent from Lemma 2.3 in [4]. It follows that $f \in S T_{L h}(\alpha)$, which completes the proof of Theorem 2.1.

The next result is an integral representation for $f \in S T_{L h}(\alpha)$ for the case $a(0)=0$. For $\varphi \in S T(\alpha)$, we have

$$
\frac{\left.z \varphi^{\prime} z\right)}{\varphi(z)}=(1-\alpha) p(z)+\alpha
$$

where $p \in H(U)$ is such that $p(0)=1$ and $\operatorname{Re}(p)>0$. Hence, there is a probability measure μ defined on the Borel σ-algebra of ∂U such that

$$
\begin{equation*}
\frac{\left.z \varphi^{\prime} z\right)}{\varphi(z)}=(1-\alpha) \int_{\partial U} \frac{1+\zeta z}{1-\zeta z} d \mu(\zeta)+\alpha \tag{2.3}
\end{equation*}
$$

and therefore,

$$
\begin{equation*}
\varphi(z)=z \exp \left(-2(1-\alpha) \int_{\partial U} \log (1-\zeta z) d \mu(\zeta)\right) \tag{2.4}
\end{equation*}
$$

On the other hand, let $a \in H(U)$ be such that $|a(z)|<1$ for all $z \in U$ and $a(0)=0$. Then there is a probability measure ν defined on the Borel $\sigma-$ algebra of ∂U such that

$$
\begin{equation*}
\frac{a(z)}{1-a(z)}=\int_{\partial U} \frac{\xi z}{1-\xi z} d \nu(\xi) \tag{2.5}
\end{equation*}
$$

Substituting (2.3), (2.4), and (2.5), into (2.1) and (2.2) we get

$$
f(z)=z \exp \left(-2(1-\alpha) \int_{\partial U} \log (1-\zeta z) d \mu(\zeta)\right)+L(z)
$$

where

$$
L(z)=\int_{\partial U x \partial U}\left[\int_{0}^{z} \frac{\xi}{1-\xi s}\left[(1-\alpha) \frac{1+\zeta s}{1-\zeta s}+\alpha\right] d s\right] d \mu(\zeta) d \nu(\xi)
$$

Integrating and simplifying implies the following theorem:
Theorem 2.2. $f=z h \bar{g} \in S T_{L h}(\alpha)$ with $a(0)=0$ if and only if there are two probability measures μ and ν such that

$$
f(z)=z \exp \left(\int_{\partial U x \partial U} K(z, \zeta, \xi) d \mu(\zeta) d \nu(\xi)\right)
$$

where

$$
K(z, \zeta, \xi)=(1-\alpha) \log \left(\frac{1+\overline{\zeta z}}{1-\zeta z}\right)+T(z, \zeta, \xi)
$$

(2.6) $T(z, \zeta, \xi)$

$$
=\left\{\begin{array}{ll}
-2(1-\alpha) \operatorname{Im}\left(\frac{\zeta+\xi}{\zeta-\xi}\right) \arg \left(\frac{1-\xi z}{1-\zeta z}\right)-2 \alpha \log |1-\xi z| ; & \text { if }|\zeta|=|\xi|=1, \zeta \neq \xi \\
(1-\alpha) \operatorname{Re}\left(\frac{4 \zeta z}{1-\zeta z}\right)-2 \alpha \log |1-\zeta z| ; & \text { if }|\zeta|=|\xi|=1, \zeta=\xi
\end{array}\right\}
$$

Remark 2.3. Theorem 2.2 can be used in order to solve extremal problems for the class $S T_{L h}(\alpha)$ with $a(0)=0$. For example see Theorem 3.1.

3. DISTORTION THEOREM

The following is a distortion theorem for the class $S T_{L h}(\alpha)$ with $a(0)=0$.
Theorem 3.1. Let $f(z)=z h(z) \overline{g(z)} \in S T_{L h}(\alpha)$ with $a(0)=0$. Then for $z \in U$ we have

$$
\begin{equation*}
\frac{|z|}{(1+|z|)^{2 \alpha}} \exp \left((1-\alpha) \frac{-4|z|}{1+|z|}\right) \leq|f(z)| \leq \frac{|z|}{(1-|z|)^{2 \alpha}} \exp \left((1-\alpha) \frac{4|z|}{1-|z|}\right) \tag{3.1}
\end{equation*}
$$

The equalities occur if and only if $f(z)=\bar{\zeta} f_{0}(\zeta z),|\zeta|=1$, where

$$
\begin{equation*}
f_{0}(z)=z\left(\frac{1-\bar{z}}{1-z}\right) \frac{1}{(1-\bar{z})^{2 \alpha}} \exp \left((1-\alpha) \operatorname{Re} \frac{4 z}{1-z}\right) \tag{3.2}
\end{equation*}
$$

Proof. Let $f(z)=z h(z) \overline{g(z)} \in S T_{L h}(\alpha)$ with $a(0)=0$. It follows from 2.1 and 2.2) that f admits the representation

$$
\begin{equation*}
f(z)=\varphi(z) \exp \left(2 \operatorname{Re} \int_{0}^{z} \frac{a(s) \varphi^{\prime}(s)}{\varphi(s)(1-a(s))} d s\right) \tag{3.3}
\end{equation*}
$$

where $\varphi \in S T(\alpha)$ and $a \in H(U)$ such that $|a(z)|<1$ for all $z \in U$.
For $|z|=r$, the well known facts

$$
\begin{gathered}
\left|\frac{z \varphi^{\prime}(z)}{\varphi(z)}\right| \leq(1-\alpha) \frac{1+r}{1-r}+\alpha \\
\left|\frac{a(z)}{z(1-a(z))}\right| \leq \frac{1}{1-r}
\end{gathered}
$$

and

$$
|\varphi(z)| \leq \frac{r}{(1-r)^{2(1-\alpha)}},
$$

imply that

$$
\begin{aligned}
|f(z)| & \leq \frac{r}{(1-r)^{2(1-\alpha)}} \exp \left(2 \int_{0}^{r} \frac{1}{1-t}\left((1-\alpha) \frac{1+t}{1-t}+\alpha\right) d t\right) \\
& =\frac{r}{(1-r)^{2 \alpha}} \exp \left((1-\alpha) \frac{4 r}{1-r}\right)
\end{aligned}
$$

Equality occurs if and only if, $a(z)=\zeta z$ and $\varphi(z)=\frac{z}{(1-\zeta z)^{2-2 \alpha}},|\zeta|=1$, which leads to $f(z)=\bar{\zeta} f_{0}(\zeta z)$.

For the left-hand side, we have

$$
f(z)=z \exp \left(\int_{\partial U x \partial U} K(z, \zeta, \xi) d \mu(\zeta) d \nu(\xi)\right),
$$

where

$$
\begin{gathered}
K(z, \zeta, \xi)=(1-\alpha) \log \left(\frac{1+\overline{\zeta z}}{1-\zeta z}\right)+T(z, \zeta, \xi) ; \\
T(z, \zeta, \xi)=\left\{\begin{array}{cl}
-2(1-\alpha) \operatorname{Im}\left(\frac{\zeta+\xi}{\zeta-\xi}\right) \arg \left(\frac{1-\xi z}{1-\zeta z}\right)-2 \alpha \log |1-\xi z| ; & \text { if }|\zeta|=|\xi|=1, \zeta \neq \xi \\
(1-\alpha) \operatorname{Re}\left(\frac{4 \zeta z}{1-\zeta z}\right)-2 \alpha \log |1-\zeta z| ; & \text { if }|\zeta|=|\xi|=1, \zeta=\xi
\end{array}\right\} .
\end{gathered}
$$

For $|z|=r$ we have

$$
\begin{aligned}
& \log \left|\frac{f(z)}{z}\right| \\
& =\operatorname{Re}\left(\int_{\partial U x \partial U} K(z, \zeta, \xi) d \mu(\zeta) d \nu(\xi)\right) \\
& \geq \min _{\mu, \nu}\left[\min _{|z|=r} \operatorname{Re}\left(\int_{\partial U x \partial U} K(z, \zeta, \xi) d \mu(\zeta) d \nu(\xi)\right)\right] \\
& \geq \log \frac{1}{|1+r|^{2 \alpha}}+\min _{\mu, \nu}\left[\min _{\lfloor|z|=r}\left(\int_{\partial U x \partial U}-2(1-\alpha) \operatorname{Im}\left(\frac{\zeta+\xi}{\zeta-\xi}\right) \arg \left(\frac{1-\xi z}{1-\zeta z}\right) d \mu(\zeta) d \nu(\xi)\right)\right] \\
& =\log \frac{1}{|1+r|^{2 \alpha}} \\
& \quad+\min \left[\min _{0<|l| \leq \frac{\pi}{2}}\left[\min _{\lfloor z \mid=r}\left(-2(1-\alpha) \operatorname{Im}\left(\frac{1+e^{2 i l}}{1-e^{2 i l}}\right) \arg \left(\frac{1-e^{2 i l} z}{1-z}\right) ;(1-\alpha) \frac{-4 r}{1+r}\right)\right]\right],
\end{aligned}
$$

where $e^{2 i l}=\bar{\zeta} \xi$.
Let

$$
\Phi_{r}(l)=\left\{\begin{array}{ll}
\min _{|z|=r}\left(-2(1-\alpha) \operatorname{Im}\left(\frac{1+e^{2 i l}}{1-e^{2 i l}}\right) \arg \left(\frac{1-e^{2 i l} z}{1-z}\right)\right), & \text { if } 0<|l|<\frac{\pi}{2} \\
(1-\alpha) \frac{-4 r}{1+r} & \text { if } l=0
\end{array}\right\} .
$$

Then $\Phi_{r}(l)$ is a continuous and even function on $|l|<\frac{\pi}{2}$. Hence

$$
\log \left|\frac{f(z)}{z}\right| \geq \log \frac{1}{|1+r|^{2 \alpha}}+\min _{0<|l| \leq \frac{\pi}{2}} \Phi_{r}(l)=\log \frac{1}{|1+r|^{2 \alpha}}+\inf _{0<l<\frac{\pi}{2}} \Phi_{r}(l) .
$$

Since

$$
\max _{|z|=r} \arg \left(\frac{1-e^{2 i l} z}{1-z}\right)=2 \arctan \left(\frac{r \sin (l)}{1+r \cos (l)}\right),
$$

we get

$$
\log \left|\frac{f(z)}{z}\right| \geq \log \frac{1}{|1+r|^{2 \alpha}}+\inf _{0<l<\frac{\pi}{2}}\left[-4(1-\alpha) \cot (l) \arctan \left(\frac{r \sin (l)}{1+r \cos (l)}\right)\right]
$$

and using the fact that $|\arctan (x)| \leq|x|$, we have

$$
\begin{aligned}
\log \left|\frac{f(z)}{z}\right| & \geq \log \frac{1}{|1+r|^{2 \alpha}}+\inf _{0<l<\frac{\pi}{2}}\left[-4(1-\alpha) \frac{r \cos (l)}{1+r \cos (l)}\right] \\
& \geq \log \frac{1}{|1+r|^{2 \alpha}}+\inf _{0<l<\frac{\pi}{2}}\left[-4(1-\alpha) \frac{r}{1+r}\right] .
\end{aligned}
$$

The case of equality is attained by the functions $f(z)=\bar{\zeta} f_{0}(\zeta z),|\zeta|=1$.
The next application is a consequence of Theorem 2.1
Theorem 3.2. Let $f(z)=z h(z) \overline{g(z)} \in S T_{L h}(\alpha)$. Then

$$
\left|\arg \frac{f(z)}{z}\right| \leq 2(1-\alpha) \arcsin (|z|)
$$

Proof. Let $f(z)=z h(z) \overline{g(z)} \in S T_{L h}(\alpha)$. Then $\varphi(z)=\frac{z h(z)}{g(z)} \in S T(\alpha)$ by Theorem 2.1. The result follows immediately from $\arg \frac{f(z)}{z}=\arg \frac{\varphi(z)}{z}$ and from [6, p. 142].

References

[1] Z. ABDULHADI, Close-to-starlike logharmonic mappings, Internat. J. Math. \& Math. Sci., 19(3) (1996), 563-574.
[2] Z. ABDULHADI, Typically real logharmonic mappings, Internat. J. Math. \& Math. Sci., 31(1) (2002), 1-9.
[3] Z. ABDULHADI and D. BSHOUTY, Univalent functions in $H \bar{H}$, Tran. Amer. Math. Soc., 305(2) (1988), 841-849.
[4] Z. ABDULHADI and W. HENGARTNER, Spirallike logharmonic mappings, Complex Variables Theory Appl., 9(2-3) (1987), 121-130.
[5] Z. ABDULHADI and W. HENGARTNER, One pointed univalent logharmonic mappings, J. Math. Anal. Appl., 203(2) (1996), 333-351.
[6] A.W. GOODMAN, Univalent functions, Vol. I, Mariner Publishing Company, Inc., Washington, New Jersey, 1983.
[7] J.C.C. NITSCHE, Lectures on Minimal Surfaces, Vol. I, NewYork, 1989.

[^0]: ISSN (electronic): 1443-5756
 (c) 2006 Victoria University. All rights reserved.

 281-05

