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1. Introduction and Main Result

Let (2, A4, 1) be a finite measure space and = M((, A, 1) the set of allA-
measurable real valued functions. ldebe a Young function, that is an even and
convex functiond : R — RT such thatb(a) = 0 iff « = 0. We denote byL? the
space of all the functiong € M such that

(1.1) /Qdi(tf)du < 00,

for somet > 0.
We say that the functio® satisfies the\, condition @ € A,) if there exists a
positive constand = A such that for alb € R

?(2a) < AD(a).

Under this condition, it is easy to check thatc L? iff inequality (1.1) holds for
every positive number.
The function® satisfies théV, condition @ € V,) if there exists a constant
A = A¢ > 2 such that
&(2a) > A\P(a).

A subsetl C A is ao-lattice iff (),Q2 € £ and L is closed under countable
unions and intersections. SEt (L) for the set ofC-measurable functions ih? ().
Here, £L-measurable function means the class of functibns2? — R such that
{f>a} e L, forallaeR.

A functiong € L?(L) is called a besp-approximation tof € L? iff

[ 2 = gau= min [ a7 ~myin

heL®(L)
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We denote by.(f, £) the set of all the besk-approximants tgf. It is well known
thatu(f, L) # 0, for everyf € L?, see .

When L is ac-field B ¢ A and®(t) = ¢, the setu(f,B) has exactly one
element, namely the conditional expectatibg( f) relative to3, which is a linear
operator inZ? and can be continuously extended tofdll Ford(t) = 7,1 < p < co
we obtain thep-predictor Ps(f) in the sense of Ando and Amemiya]] which
coincides with the conditional expectation jor= 2. Thep-predictor operatoPs( f)
is generally non-linear, and it is possible to extend if.to! as a unique operator
preserving a property of monotone continuity, s&€@,[where P is studied for the
o-lattice £. The operatorP;(f), when L is a o-lattice andp = 2, falls within
what is called the theory of isotonic regression, first introduced by Brdhki¢r
applications and further development, s2el4]). When®(z) = z andB is ao-
field, a functiong in the setu(f, B) is a conditional median, se&4| and [11] for
more recent results. All the situations described above are dealt with by considering
minimization problems using convex functions and Orlicz Spdded-or other and
more detailed applications, se& 4] and chapter 7 of13).

We adjust a Young functiom to the origin by®(z) = [ ¢(t)dt with $(x) =
v () —p.(0)signx), wherep, denotes the right continuous derivativeZofNow
we can state our principal result.

Theorem 1.1. Let® be a Young function such théte A, N V,. Suppose thaf,,
is an increasing sequence oflattices, i.e.L,, C L, for everyn € N. Let f be
a nonnegative function if?, let f, be any selection of functions jn(f, £,,), and
consider the maximal functiofi* = sup,, f,. Then there exists constantsand ¢
such thatf* satisfies the following weak type inequality:

C

(1.2) u > o)) € /{ R

for everya > 0.
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The constan’ only depends o ; andc depends o ; and ;.
If ©,(0) = 0 we can set = ; and we also have

(1.3) p({f>a}) < o+ (f)du,

for everya > 0.

The constantg\; and \; are those used in the definitions of the conditidas
andV, respectively.

Theoreml.1(in particular inequality {.3) with o, (t) = 71,1 < p < oo) is an
Orlicz version of the “martingale maximal theorem”, Theorem 5.1 give®jinThe
classical Doob result is given by inequality.§) with . (t) = t and f,, = Eg, [ f]
wherel3,, is a increasing sequence®ffields in A.

We emphasise that our maximal operafdris built up with functionsf, €
u(f, L,) obtained as a minimization problem i, though (L.2) and (L.3) can be
seen as some sorts of weak type inequalities4n for functionsf € L?, a strictly
smaller subset of.#+. The extension of the operatpf f, £) to all L#+ is not an
easy task for generdl and L, see p] for some results in this direction and Theorem
1.1can be applied to the extension operator given there.

Since operators such &% as well as other operators obtained as a best approxi-
mation function are not linear or even not sublinear, and in many cases are not posi-
tive homogeneous operators, we will assume that the inequalitidsof (1.3) hold
for two fixed measurable functionsand f* and anya > 0. From this set up, we
interpolate to obtain the so called strong inequalities. Now we state the interpolation
problem as follows.

Let o be a nondecreasing function frdit into itself, and we consider two fixed
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measurable functiong ¢ : 2 — RT satisfying the followingveak type inequality

(1.4) w({f > a)) < @f) /{M (9)dp.

foranya > 0.
We try to find functiong? such that thestrong type inequalitpelow holds:

(1.5) / fdu < C, / 9)du,

whereC; = Cy(p, ¥, C,,). That is,C, depends only or, ¥ and the constand, in
inequality (L.4).
An inequality closely related tol(4) is the following one:

—~

C
1.6 >a}) < =2 d
(16) uir=ans o | clon
for everya > 0, andc a constant less than one.

It is well known in harmonic analysis and classical differentiation theory that is
possible to obtain inequality. (6) from inequality (L.4) when the functiong, g are
related byf = T'¢g and the functiori” is a sublinear operator bounded frdiff into
itself (see f] or [16], and the last part of the proof of the Theorém). In this case
we need to assume that inequalifiy4) holds for any measurable functignin the
domain of T and anya > 0. We see that inequalityl(4) implies inequality (.6) if
the function®(x fo t)dt is Vy (see Lemma.2).

The strong |nequaI|ty1(5) will be a consequence of standard arguments in in-
terpolation theory16]. In Theorem2.4 we introduce the notion of quasi-increasing
functions which implicitly appears in some theorems (see Theorem 1.BJ).iThe
notion of quasi-increasing functions is used to define when a funétias “bigger”
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than a function?; and we will write®, < @, (see Definition2.5). This notation is
used to state interpolation results for Orlicz spaces in Corollarigs?.7 and2.8.

In [8] a condition related ta:? < ®(x) is used to obtain strong inequalities. The
relationz < () is also named as a Dini condition, i.e.

Tt
/ th < Co(w),
0 Maximal Inequalities
forall x > 0 (see Theorem 1 and Proposition 38h)[ More on the relatio®; < &, F.D. Mazzone and F. Z6
is given in Sectior8 where we extend some results @f.[ vol. 10, iss. 2, art. 58, 2009

The results of Sectiornsand3 can be used to obtain the strong inequalities)(
for the particular operatof* given in Theorem.. L.

It was proved inT], in an abstract set up, that if two functiongand¢ are related e [FEE
by a weak type inequalityl(4) with respect to the functio#’, that is,

Contents
Cu / « >
(1.7) p({n>a}) < — P'(&)dp,
P (a) {n>a} < >
for anya > 0, thenn and¢ satisfy the strong inequality Page 7 of 21
[vwaus o [ v G0 Back
Full Screen

for the functionsl : ¥ = (97,1 < p, andV¥ = (¢)?, for 1 < p (also for some in
the rangé < p < 1). In proving these results the conjugate functidrwas heavily Close
used. We recall that

d*(s) = sup{st — (t)} journal of inequalities
¢ ’ in pure and applied
As consequence of Sectiofisand 3 we obtain a result more general than those in mathematics

[7] without appealing to the conjugate function. issni 1443-5756
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2. A Simple Theorem

The following lemma is well known, seé ).

Lemma 2.1. For everya € R* we haveP(a) < ap, (a). Moreover® € A, iff there
exists a constan’ > 0 such thatuy, (a) < CP(a).

Lemma 2.2. Lety be a nondecreasing function frdR into itself such thap(rz) <

%(p(x), for a constant) < r < 1, and everyr > 0. Suppose thaf and g are non-
negative measurable functions defined(bsatisfying inequality(1.4). Then there
exists a positive constant= ¢(r, C,,) < 1 such that

2C,

(2.1) p({f >a}) < @Uw!/;>w}¢Qﬂdu,

for everya > 0.
Proof. By an inductive argument we get
(2.2) 2"p(r"a) < ¢(a).

Letn € N be such tha% < %, and sett = . Now, we split the integral on the
right hand side of(.4) into the set§ ¢ < ca} and{g > ca}. By (2.2) we get

o | et guts >

u(if > a)) < 2%

Therefore inequality4.1) follows. ]

Remarkl. It is not difficult to see that a Young functiah satisfies thé&/, condition
iff its right derivative, fulfills the condition on Lemm&.2. That is,v (rz) <
14 (x), for a constanb < r < 1, and every: > 0.
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Proof. SinceV (x fo ¥ (t)dt, the condition on)., implies that¥ (rz) < $¥(z),
for everyx > 0, WhICh IS equwalent to th&, condition given before, se&2] Now,
if we have this condition fo, it is readily seen that_ (£z) < ¢, (z). O

We note that it> € V, thenp(0) = ¢_(0) = 0, see Remark.

Definition 2.3. We say that the function: Rt — R is a quasi-increasing function
iff there exists a constant > 0 such that

Maximal Inequalities

1 T F.D. Mazzone and F. Z6
(2.3) E/ n(t)dt < pn(z), vol. 10, iss. 2, art. 58, 2009
0
for everyr € R™. )
Title Page
Theorem 2.4.Let f and g be measurable and positive functions definedesat- Content
isfying inequality(2.1). Let¥ be aC'([0,+o00)) Young function and let be its ontents
derivative. Assume thafépt is a quasi-increasing function. Then <« >
2 < 4
(2.4) /W(f)du < 2pr/ v (—g) dp.
Q Q c Page 9 of 21
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¢( ) Close
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Now, we get

1

[ gy e )
0

(2.6) pla) — — p(c ')
v(2clg)
e(ctg)
Therefore, from equationg (5), (2.6) and since: < 1 in LemmaZ2.2, we obtain
Theorem?2.4. ]

Definition 2.5. Let 4, o be two functions fronR , into R, . We say tha; < s
iff wo0; ! is a quasi-increasing function.

The notation?; < @, is also used if botkP; and®, are Young functions, in this
case Definitior2.5is applied for the restriction of these functionsia.

Remark2. Let ¢, and®, be two Young functions and let; ,, ¢, be their right
derivatives. If®;, $, € A,, using Lemma’.1, we haved; < & & 1, < @,

Remark3. Despite the symbol useg is not an order relation. We hawé < z3
andz2 < z, but the relationz> < z is false. In fact, for two arbitrary powers we
haver® < 2% < a—1 < 8.

We may define, and it is useful, the relatipn < ¢, only for x near zero, say
0 < z < 1, and only for large values af, i.e. 1 < z. In the example given below,
we will omit the rather straightforward calculations.

Example2.1 For0 < = < 1 we havez® < In(1 + z) ifand only if 0 < a < 2,
and for1 < z the same relation is true only in the range< « < 1. On the other
handln(1 + z) < 2z for all z and0 < «. All the functions involved here aré,
functions, but(1 + z)In(1 4+ z) — x is notV,, so its derivativdn(1 + ) does not
fulfill the condition on Lemm&.2 (see Remark).
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In the foIIowing corollaries of Theorem. 4the Young functior® is the one given
by &(x fo ©(t)dt. They are obtained using this theorem, Lemfa Remarkl
and RemarlQ

Corollary 2.6. Let f and g be measurable and positive functions definedmsat-
isfying inequality(1.4). Let¥ be aC'([0,+o00)) Young function and lep be its
derivative. Assume that < ) and theV, condition for the functiom holds. Then
we have inequality?.4).

Corollary 2.7. Let f andg be measurable and positive functions definef@atis-
fying inequality(2.1), and assume is a A, function. Letl be aC'([0, +o0)) N A,
Young function. It < ¥, then

2.7) / Yy < C/ 9)du,

where the constant' is independent of the functiorfsand g.

Corollary 2.8. Let f and g be measurable and positive functions defined(bn
satisfying inequality(1.4) , and assumeb is a A, N V, function. Let¥ be a
C*(]0,+00)) N Ay Young function. If6 < ¥, then

(2.8) [onan<c [ v

Q
where the constant' is independent of the functiorfsand g.

Remark4. By Corollary 2.8 we obtain inequality 1.5) for the following functions

¥ (all the theorems quoted here belong T gnd see that paper for a proof using

conjugate functions). W = @, clearly® < &, thatis Theorem 3.3. The cage> 1
of Theorem 3.8 follows by setting = ®”. For Theorem 3.4, selt = ©”, p > 1 and
observe thap < ppP~1y'.
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The operatorf* introduced in ¥] is @ monotone operator arid + ¢)* = f* + ¢
for any constant. We can use Corollary.7to obtain

(2.9) / (f*)du < C / (f)dp,

for every functionf € LY, and all¥ quoted in Remark. Now the conditiorV, is
dropped.
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3. The Relation® < ¥

If »: RT — R is anondecreasing function theis clearly a quasi-increasing func-

tion. On the other hand, there are decreasing functions which are quasi-increasing

functions. We note that if is a quasi-increasing and nonincreasing function then

prn(z) > /Oxﬁ(t)dt Z /05 n(t)dt = 277 <§>

Therefore, there exists a constdfitsuch that
A
(3.2) n(3) < Knl@).

Lemma 3.1. Lety : R™ — R™ be a nonincreasing function. ifsatisfies inequality
(3.1) with K < 2, thenn is a quasi-increasing function.

Proof. In addition to the continuous average(x) = < [" n(¢)dt, is convenient to
introduce the discrete averagégn(z) = >’ 215'7(%) andAdn = Aqn —n.
As 7 is a nonincreasing function we have

1
(3.2) g Aan < An < Ay

We estimate the discrete averad,,

- = [ K\" K
B A= g (5) <X (5) o) =52 et
Now the lemma follows byZ.2) and @3.3). O]

Corollary 3.2. Let¥®~! be a nonincreasing functiod, € A, and¥ € V,. More-
over if we assume that,' Ag < 2, then® < .
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The next corollary is a version of Theorem 3.8 i for the caseé) < p < 1.

Corollary 3.3. Lety : Rt — R* be a nondecreasing function with the condition
2¢(z) < Ko(3). Let f and g be measurable nonnegative functions definedlon
satisfying inequality{2.1). Then

(3.4) / PP(f)dp < 0/ P (g)dp,

Q Q
foranyl > p > In(K/2)(In K) " and®(x) = [; ¢(t)dt. Moreover the constar®
isO(1/(2 — K'7)) asp — In(K/2)(In K)

Proof. Since®(z) < K®(%) we haved? '(%) < K'? ¢P~!(z) for 0 < p < 1.
Therefore, by Lemma.1, & < ®? wheneverk ! 7 < 2, and inequality §.4) follows
by Corollary2.7. ]

Remarks. It is possible to replace’(1) by (1.4) to again obtain inequality3(4) for
the same range of if we place ony the conditiony(rz) < $¢(z) with a constant
0 <7< 1,and2p(z) < Ko(5), thatis, if® € A, NV, (see Lemma.2).

Proposition 3.4. Let @ be in Ol([ )) N A, and let¥ be a quasi increasing
function. For the functio; (z fo t)dt, suppose that there exists a constant

p > 1such that[qj]p IS non- decreasmg Theﬁ <.

Proof. We have thatog @1 plog@ is a non-decreasing function @' ((0, +00)).
ThenZ > pL. or(g—1)% > ¢Z% with ¢ = p/(p — 1). Therefore

v — Py 4
I\ —= ] 2=
P2 o
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Integrating the above inequality on =] we get

Uy (z) ' 7y (e)
(3.5) 050 z/ﬁ 3t 3o

From the hypotheses we have tifate) /?(¢) — 0, whene — 0. Therefore inequal-

ity (3.5) implies that
Lpl (fL’) '
> —dt.
To(z) = /0 7
Taking into account thak is a quasi-increasing function, it follows that< . [

We can use Propositioh 4 to prove a generalization of Theorem 3.4 @f (see
the end of Remark). Indeed, given functions, § € C* N A, setd(x) = [ p(t)dt
and¥(z) = 0(p(z)). Then we haved < W if (x) <+ 2” is a nondecreasing function
for somep > 1. In fact, ®’ < ¥’ by Propositior3.4.
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4. Proof of the Theoreml1.1

We need some additional considerations.

Lemma 4.1. Let @ be a convex function satisfying tle, condition. Then there
exists a constant’ > 0 such that for every, = > 0 we have that

pi(a) + C%pi(z —a) < (C? + 1)y (2).

Proof. If x > a the assertion in the lemma is trivial. We suppose that a. Thus
¢ <max{x,a — z}. Then

pi(a) < Koy (%)

< Koi(z) + Koy (a—x)

(4.1) a@—1
< K%y (x) + Koy ( 5 )
< K20, () + K%_(a — x).
The lemma follows using (y) = —¢_(—y) and ¢.1). O

The following theorem was proved ii]]. We denote byC the o-lattice of the
setsD such that2 \ D € L.

Theorem 4.2.Let f € L” andL C A be ao-lattice. Thery € u(f, L) iff for every
C e L,D e L anda € R the following inequalities hold

@2 [ pf-aduzo and [ g -aduso.
{g>a}ND {g<a}nC
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The setu(
L(f, L) € u(f,L)andU(f, L) € u(f, £) such that for aly € u(f, L)

L(f,L)<g<U(fL).

See P, Theorem 14].
Now we prove Theorer. 1.

Proof. We define4,,; = {f; > o} and

Aj,n = {flgoz,...,fj,lgoz,fj>o¢}

forj=2....,n.
Then we have that

An:{sup fj>a}:A17nU-~UAn7n.

1<j<n

As a consequence of Theoreh?, we obtain

/ @+ (f —a)du > 0.

Ajn

SinceA;, N A;,, = 0 fori # j, it follows that

| ertr—ayn=tm [ (s -aduzo
{f*>a} O J A
Therefore

(4.3) pr(Ou({f <apn{f*>a})

Sw#@MUEaNHﬁ>aD+/ o(f — a)dp.

{f*>a}

, L) admits a minimum and a maximum, i.e. there exist elements
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Now, using Lemmal.1we have

@y [ sU-adusa [ elfdu- Gt > a)
{f*>a} {f*>a}

with C;, ¢ = 1,2, constants depending only @%,. Taking into account4.3) and

(4.4), we get

(45) o @ulF" > 0)) £ Con Oullf 2 00LF > a)+C [ (7
*>a
whereC' = C'(Ay). Thus we have proved inequality.() of Theoreml. 1.

In order to prove inequalityl(?) of Theoreml.1, we consider two cases.

Let us begin by assuming that. (0) > 0. We then split the setf* > «} in the
integral of ¢.5) in the two regiong f* > a} N{f > ca} and{f < ca}N{f* > a}.
Now we use the fact that € V, and by Remark there exist constants< ¢ < 1
and0 < r small such thap(cz) < ro(z). Then we have:

@6) o (@u({f* > a}) < Cor (Ou(lf = a})
+c/ S(f)du + rCo ()u({f* > a}).
{f>ca}

We now use the Chebyshev inequality; < ; andy.(0) < ¢ («) to obtain
inequality (L.2) with constantlC'.
The second case is; (0) = 0. Now we have

Maximal Inequalities
F.D. Mazzone and F. Z6

vol. 10, iss. 2, art. 58, 2009

Title Page
Contents
44 44
< >
Page 18 of 21
Go Back
Full Screen

Close

journal of inequalities
in pure and applied
mathematics

issn: 1443-575k

. C
p({f*>a}) < () /{f*m} o (f)du

for every f € L? anda > 0.
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Let f € L? and definef; =
U(fi,Ln) + /2 and

FXip2gy-

{ff>a}C {sng(fl,[,n) > %}
Therefore
p({f*>a}) <p ({Slip U(fi, L) > %})

o (fr)du

AN
Q
S~

(o) Jo

Thusf < f1 + «/2. Thenf, <
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