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ABSTRACT. The aim of this paper is to study the existence, uniqueness and other properties
of solutions of a certain Volterra-Fredholm type integral equation. The main tools employed in
the analysis are based on applications of the Banach fixed point theorem and a certain integral
inequality with explicit estimate.
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1. INTRODUCTION

Consider the following Volterra-Fredholm type integral equation

(1.1) z(t) = f(t) —i—/ g(t,s,z(s),z'(s))ds —i—/ h(t,s,x(s),2' (s))ds,

for —oo < a <t <b< oo, wWherez, f, g, h are inR", then-dimensional Euclidean space with
appropriate norm denoted By. Let R and’ denote the set of real numbers and the derivative
of a function. We denote by = [a,b], R, = [0,00) the given subsets & and assume that
feC(I,R"), g,h € C(I? x R" x R",R") and are continuously differentiable with respect
to t on the respective domains of their definitions.

The literature provides a good deal of information related to the special versions of equation
(1.7), seel[B,15,16./8, 12] and the references cited therein. Recenily, in [1] the authors studied a
Fredholm type equation similar to equatipn {1.1) o= 0 using Perov’s fixed point theorem,
the method of successive approximations and the trapezoidal quadature rule. The purpose of this
paper is to study the existence, uniqueness and other properties of solutions of efugtion (1.1)
under various assumptions on the functions involved and their derivatives. The well known
Banach fixed point theorem (see [5, p. 37]) coupled with a Bielecki type norm(see [2]) and an
integral inequality with an explicit estimate given in[10, p. 44] are used to establish the results.
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2. EXISTENCE AND UNIQUENESS

By a solution of equatiorj (1.1) we mean a continuous functig for ¢ € I which is con-
tinuously differentiable with respect toand satisfies the equatign ({1.1). For every continuous
functionw(t) in R™ together with its continuous first derivativé(¢) for t € I we denote by
lu (t)|, = |u(t)| + |’ (¢)]. Let .S be a space of those continuous functiels in R" together
with the continuous first derivative (¢) in R™ for ¢t € I which fulfil the condition

(2.1) u(t)]y = O (exp (At —a))),
fort € I, where) is a positive constant. In the spagave define the norm (seel[2,4,/7/9] 11])
(2.2) [uls = sup {Ju (B}, exp (A (t — a))}

It is easy to see that with its norm defined in[(2]2) is a Banach space. We note that the
condition [2.1) implies that there exists a nonnegative constasuch that

[u(t)], < Nexp (At —a)).
Using this fact in[(2.R) we observe that
(2.3) lulg < N.

We need the following special version of the integral inequality given in [10, Theorem 1.5.2,
part(b,), p. 44]. We shall state it in the following lemma for completeness.

Lemma 2.1. Letu(t) € C(I,R,), k(t,s),r(t,s) € C (I*,R,) be nondecreasing ih € I
for eachs € I and

u(t)gc—i—/ k(t,s)u(s)d8+/ r(t,s)u(s)ds,

for ¢t € I wherec > 0 is a constant. If

d(t) :/abr(t,s)exp (/ask(s,a)da)ds< 1,

fort € I, then

fort e I.
The following theorem ensures the existence of a unique solution to equatipn (1.1).

Theorem 2.2. Assume that
(¢) the functionsy, 1 in equation [(1.1) and their derivatives with respectttsatisfy the

conditions
(24) |g (t,S,Uj’U) —g (tv 87ﬂ7@)| S P1 (t, S) HU - ﬁ’| + |U - T}” )
2.5) 9 (tossu) — Lot s,,0)| < pa (b, ) [[u—al + o — o]
. 8159 7S,U”'U atg ,S7U,U _pQ 78 u u v v s
(26) ‘h(tv S,U,U) o h(t,S,ﬂ,T])‘ Sa <t78) HU,—’ZE’ + ’U - @Ha
2.7) O tysiww) = Lt s, 0,0)| < a0 (t,5) [Ju—al + o — 2]
. i (68w 0) = 2 h(t5,4,0)) < 2 (8 8) [lu —af + Jv = 9l],
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Wherepi (tv S) ) G <t7 S) cC (]27 R-i—) (Z = 1a 2)’
(i¢) for Xasin (2.1)

(a) there exists a nonnegative constarguch thatnv < 1 and

(2.8) pi(t,t)exp(A(t—a)) + /tp (t,s)exp (A (s —a))ds

+/ q(t,s)exp(A(s—a))ds < aexp(A(t—a)),

fort € I, wherep (t,s) = pi (t,s) +p2 (t,5),q(t,s) = q (t,8) + q2 (¢, 5),
(b) there exists a nonnegative constarguch that

@9) 171 +17 @) +la .01+ [ flateos.0.01+ | S 0.5,0,0) s

b 0
—l—/a [[h(t,s,0,0)] + ‘ah(t,s,0,0)Hds < Bexp (A (t —a)),

wheref, g, h are the functions given in equatidn (L.1).
Then the equation (1.1) has a unique solutigh) in Son 1 .

Proof. Letz (t) € S and define the operator

(2.10) (Tx) (t) = f(t)+ / g(t,s,z(s),z' (s))ds+ / h(t,s,x(s),x' (s))ds.

Differentiating both sides of (2.10) with respectitave have

t

(2.11) (Tz) (t) = f (&) +g(t,t,z(t), 2" (t)) + 2g (t,s,2(s),2" (s))ds

. Ot
b0
—l—/a ah (t,s,x(s),x" (s))ds.

Now we show thatl'x mapsS into itself. Evidently, 7z, (Tx)" are continuous o and
Tz, (Tx) € R". We verify that [2.1) is fulfilled. From (2.]0)| (2.]11), using the hypotheses
and [2.8) we have
(2.12) [(Tx) ()],

=|(Tz) ()] + |(Tz)" (1)

< [FOI+ 1 O+ lg (2,2 (t), 2" (8) — g (¢,£,0,0)[ + [g (£,£,0,0)|

t
/ (t.5,2 (s ’<>>—g<t,s,o,0>|ds+/rg<t,s,o,o>|ds

, 0 ‘o
/ .0’ (9) = 5r0(t.5.0,0) ds-+ [ |2 (t.5,0.0) s
b
/ (t,s,z(s),x (s ))—h(t,s,0,0)|ds—l—/ |h(t,s,0,0)|ds
+ Bt sz (s),2 () — 2ht oo)d+/b3h(t 0,0)|d
825 5,2 (s),2 (s gyl (£:8,0, s o .5, 0, s
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t b
< Bexp(A(t—a)) +pi (1,1) rx<t>|1+/ p(t,s) |x<s>1ds+/ ¢ (t,5) ]z (5)), ds
< Bexp (At — a)) + [os {m () exp (A (t — )+ [ p(ts)exp(A(s — a)) ds

+ [ atse s -a)as)

< Bexp (At —a)) + |z|gaexp (A(t —a))
<[+ Najexp (A (t —a)).

From (2.12) it follows thafl'z € S. This proves thai” mapsS into itself.
Now, we verify that the operatdf is a contraction map. Let(t),y (t) € S. From [2.10),
(2.11) and using the hypotheses we have

(2.13) [(Tx) (t) — (Ty) (t)h
= |(Tx) (t) — (Ty) ()| + [(Tz) () — (Ty) ()
<l|g(tt,z(t), x(t)) g(t,ty(t),y (1))

# [l (6),0'6) — g 15,9 5) o/ ()] ds

Az

+/ (¢, s,2(s), 2" (s)) = h(t s,y (s),y (s))]ds

b
o

<pi(t 0]z (1) =y @) +/ p(t,s)lx(s) =y ()l ds

ds

(15,2.(5), 2/ (5)) = 0 (5, (5) ¥ (5)

%h(t,s,x(s),x'(s)) gt (t, 5,9 (s), 4 (s))| ds

b
+/ q(t,s)|x(s) —y(s)|,ds
<lz—ylg {p1 (t,t)exp(A(t—a))—i-/ p(t,s)exp (A (s —a))ds

b
+/ q(t,s)exp(A(s— a))ds}
<l|zr—ylgaexp(A(t —a)).
From {2.18) we obtain
Tz —Tylg < alz—ylg.
Sincea < 1, it follows from the Banach fixed point theorem (sek [5, p. 37]) th&as a unique

fixed point inS. The fixed point ofI" is however a solution of equatiop (IL.1). The proof is
complete. O

Remark 1. We note that in 1956 Bielecki [2] first used the norm defined in|(2.2) for proving
global existence and uniqueness of solutions of ordinary differential equations. It is now used
very frequently to obtain global existence and uniqueness results for wide classes of differential
and integral equations. For developments related to the topic, Isee [4] and the references cited
therein.
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The following theorem holds concerning the uniqueness of solutions of eqyatipn (RZ) in
without the existence part.

Theorem 2.3.Assume that the functiogsh in equation|(1.]L) and their derivatives with respect
to¢ satisfy the condition$ (2.4) F (2.7). Further assume that the functidnss) , ¢; (¢,s) (i = 1,2)
in (2.4) — [2.7) are nondecreasing ire I for eachs € 1,

(2.14) p1(t,t) <d,

fort € I, whered > 0 is a constant such that < 1,
b s
1 1
(2.15) e(t) = ) T4 (t,s)exp ( ) T (s,0) da) ds <1,
where
p(t7 S) =D (ta 8) +p2 (ta 8) ) q (tv 5) =q1 (tv S) + q2 (t7 S) :
Then the equation (1.1) has at most one solutiod on

Proof. Let z(t) andy(t) be two solutions of equatiof (1.1) and

w(t) =[x (t) —y (O] + 12" (t) =y @)].

Then by hypotheses we have
(2.16) w(t) S/ g (t,s,2(s), 2" (s)) — g (t,5,y(s),y (s))| ds
b [ s (0,06 = 090 ) s
+lgttx(t), 2 1) —gtty®),y @)

+/ %9 (t,5,2(s), 2 () = %9 (t.5,5(s),9/ ()

[
+ J—

ot
< / P (t5) [l (5) — y ()] + |2/ (5) — o/ (s)]}ds

ds

h(ts 2 (5), 0 (5)) = h(t,5,0(5) 0/ (5))| ds

+ / a1 (t5) [12.(5) — 5 ()] + |2 (3) — o/ (5)[]ds
o () [ () =y ()] + 2 () — o (D]
+ / P2 (t,9) [l (3) =y (3)] + |2’ (5) — ¢/ (5)}ds

b
+/ g2 (t,8) [lz (s) =y ()] + |2 (s) — ¢/ (s)[]ds.
Using (2.14) in[(2.16) we observe that
1 b
(2.17) < —/ (t,s)w ds—l—l d/ q(t,s)w(s)ds.

Now a suitable application of Lemma 2.1 fo (2.17) yields
2 (8) =y (O] + [ (1) =y (D] <0,

and hence:(t) = y(t), which proves the uniqueness of solutions of equafior} (1.1).on O
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3. BOUNDS ON SOLUTIONS

In this section we obtain estimates on the solutions of equdtion (1.1) under some suitable
conditions on the functions involved and their derivatives.
The following theorem concerning an estimate on the solution of equatidn (1.1) holds.

Theorem 3.1. Assume that the functions g, h in equation [(1.]l) and their derivatives with
respect ta satisfy the conditions

(3.1) 701+ 17 () <

(3.2 o trsv )] < s (0,5) [l + o]
@3 9 €5 < 029l + o],
(3.4 (6, 5,0,0)] < mn (1, 5) [l + o],
35) it ts. )] < 0.9l + 1o,

wherec > 0 is a constant and fok = 1,2, m; (t,s),n; (t,s) € C(I?,R,) and they are
nondecreasing im € [ for eachs € I. Further assume that

B b1 s
(3.7) et) = /a " (t,s)exp (/a " (s,0) da) ds <1,
for t € I whered > 0 is a constant such that < 1 and

m <t7 S) =m (tv S) + mo (ta S) 3 n (t7 S) =M (tv S) + Ny (t7 S) .

If z (¢) ,¢t € I is any solution of equatiof (.1), then

(39 e+ 01 < (175) (7= )exp(/mts )

forte 1.

Proof. Letu () = |z (t)| + |2’ (¢)| for t € I. Using the fact that:(¢) is a solution of equation
(1.7) and the hypotheses we have

(3.9) u(t) <|f @+ 1 @) +/ g (t,s,2(s), 2" (s))|ds
—l—/ \h(t,s,x(s),2' (s))|ds+ |g(t,t,x (t), 2" (t))]

b
ds—l—/ 0

gtg(t s,z (s),2'(s)) 8th(t s,z (s), 2 (s))] ds

/mlts ds+/b L(8)u(s) ds

b
+my (t,t)u /mg (t,s)u ds+/ ne (t,s)u(s)ds.
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Using (3.6) in [(3.P) we observe that

c I I
: < 4 — _
(3.10) u(t)_l_d—i-l_d am(t,s)u(s)ds—i—l_d an(t,s)u(s)ds
Now an application of Lemma 3.1 tp (3]10) yields (3.8). O

Remark 2. We note that the estimate obtainedin[3.8) yields not only the bound on the solution
of equation[(1.]1) but also the bound on its derivative. If the estimate on the right hand side in
(3.9) is bounded, then the solution of equatjon](1.1) and its derivative is bounded on

Now we shall obtain an estimate on the solution of equalion (1.1) assuming that the functions
g, h and their derivatives with respecttaatisfy Lipschitz type conditions.

Theorem 3.2. Assume that the hypotheses of Thedrefn 2.3 hold. Suppose that
t b
[ lats g @) @lds+ [ h(ts s o). 5 9)]ds

o (b5, £ (5).7 () ds

b
0

—h(t '
+ [ |Gt 7 6)
for ¢ € I, whereD > 0 is a constant. If (¢) ,¢ € I is any solution of equatiof (1.1), then

1) -1+ 0 -7 01 = (125) (1= ) e ([ peoras).

forteI.

ot 1 (0,5 O+ [

ds < D,

Proof. Letu (t) = |z (t) — f (t)|+]|2' (t) — f'(t)| fort € I. Using the fact that(t) is a solution
of equation[(1.JLl) and the hypotheses we have

@12)  w)< [ lg(tsn (o) ()~ g (b5 f (9.0 (9)lds
" / 9 (t,s. £ () F (3))ds
+ [t ()0 (9) ~ hits f () F (5)lds

n / Bt s, £ (s), ' (s))]ds
gttt (t), ' (6) — g (bt £ (1) F (0] +1g (bt £ (2), £ (B)]

+ / %g (t.5,2 (s) 2 (s)) - %g (t5,f (), f' (5))]ds
+ / £ (65, £(5). 7' ()]s
- / %hu, 5,2 (s), 2/ () = %h(t,s,f (), f'(s))|ds

ds

_|_/a %h(t,s,f(s),f’(s))
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¢ b
§D—|—/p1(t,s)u(s)ds+/ ¢ (t,s)u(s)ds
+m (t,t)u(t)+/ D2 (t,s)u(s)ds—l—/ q2 (t,8) u(s)ds.

Using (2.14) in|(3.12) we observe that

(3.13) w<Jl+—L-tu> (s +—— [ gt s u(s)d
. U T—d  1-4 p(t,s)u S 1_daq,sus S.
Now an application of Lemma 2.1 to (3]13) yielfls (3.11). O

4. CONTINUOUS DEPENDENCE

In this section we shall deal with continuous dependence of solutions of equation (1.1) on the
functions involved therein and also the continuous dependence of solutions of equations of the
form (1.1) on parameters.

Consider the equatiof (1.1) and the following Volterra-Fredholm type integral equation

(.1) yszw+/bwamay@»mﬁ/Hwaumy@ma

fort € I, wherey, F',G, H are inR". We assume that' € C (I,R"), G, H € C(I? x R"x
R™ R™) and are continuously differentiable with respect tm the respective domains of their
definitions.

The following theorem deals with the continuous dependence of solutions of eqiiation (1.1)
on the functions involved therein.

Theorem 4.1. Assume that the hypotheses of Thedrefn 2.3 hold. Suppose that

@2) 17O~ F O+ 1 (0~ F O +1g 00,0/ (0) = G 6.ty (1), (1)
/mtsy V()= Glts.y ()0 (5)]ds

“Lla

<e

)

where f, g, h and F, G, H are the functions involved in equatiorjs (1.1) ahd (4}, is a
solution of equatior| (4]1) and> 0 is an arbitrary small constant. Then the solutieft) , ¢ €
I of equation|[(1.]l) depends continuously on the functions involved on the right hand side of

equation [(1.1L).
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Proof. Letz (t) = |z (t) —y (t)| + |2’ (t) — ¥/ (¢)| for t € I. Using the facts that(t) andy(t)
are the solutions of equationjs ([L.1) ahd(4.1) and the hypotheses we have

(4.3) () S |fF@) = F @)+ [f () — F' (1)
+lg &tz (t), 2" (1) — g (tty (1), (1)
+lg(tty @),y (1) — Gt ty ),y (1))

/Wgaax 2 (5)) — g (5,9 (s) o/ (5))] ds
+/ngaywmy@»—aaww@»y@»ws

b
+/Whmax@xfw»—hway@»y@»m3

/Nhtsy Y () — H(t,5,y(s) o/ ()] ds
+l 9 g(ts,2(8),2" () = =g (15,y () 0/ ()] ds
+lt§g@sy<>y@»—geusy<>y@»ds
+Lb%h@&x@)f@D—%h@& ()9 ()| ds
+/ab %h(t,s,y() y’(s))—%H(t,Sa (s),y (s))| ds

¢ b
<e+p(tt)z (1) —i—/ p(t,s)z(s)ds+/ q(t,s)z(s)ds.
Using (2.14) in[(4.B) we observe that

e 1 [t 1 b

1—d+:i ap(tvs) ()ds—l—— q(tS)Z(S)dS.

d
Now an application of Lemma 2.1 to (4.4) yields

@) -y 0 -y 0l < (155) (1o ) oo ([ ptas),

fort € 1. From [4.5) it follows that the solutions of equati¢n (1.1) depend continuously on the
functions involved on the right hand side of equatjon]|(1.1). O

(4.4) z(t) <

Next, we consider the following Volterra-Fredholm type integral equations

¢ b
(4.6) 2 (t) = f(t) +/ g(t,s,2(s),2 (s) ,,u)ds—i—/ ht,s,z(s),2 (s),u)ds,
and
¢ b
(4.7) z(t) = f(t) +/ g(t,s,z(s),2' (s), o) ds + / h(t,s,z(s),2" (s),uo)ds,

fort € I, wherez, f,g,h are inR"™ and p, pp are real parameters. We assume that
C(I,R"); g,h € C (]2 x R™ x R™ x R, R™) and are continuously differentiable with respect
to ¢t on the respective domains of their definitions.
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Finally, we present the following theorem which deals with the continuous dependency of
solutions of equation$ (4.6) ar{d (4.7) on parameters.

Theorem 4.2. Assume that the functiogsh in equations|[(46) and (4.7) and their derivatives
with respect ta satisfy the conditions

(48) |g (t7 S,U,U,/L) ) (t,S,ﬂ,@,M)’ <k (t75) “u - 1_L| + ’U - Q_JH )
(49) |g (tv S, U, v, M) -9 (tﬂ S, u,, :U’O)| < 61 (tﬂ 8) |/1’ - N0| )
(410) |h’(t787u7vnu) —h (ta S,I_L,Q_},,U/)| <7 (t7 S) HU - Q_L| + |U - TJH )
(411) |h(t7 S?”avvﬂ’) —h (t,S,U,U,,U,()” <m (tv 5) |:u - M0’ ’
0 0 o _ _
(412) ;9 (t7 S)”a”?ﬂ) Y (t,S,U,U,,LL) < ko (t,S) Hu - U’ + |U - UH )
ot ot
.13 £ (65,0, ) = 20 (15,00, 0) | < B2 (4,9) | — o
: 8tg S, Uy Uy [ 8tg S, U Uy Ho)| = 0218, 8) [ — Hol s
0 _ _ _
(414) (t S, U,V :u) = h (t7 87“7”7:“) <7 (t75> HU o u’ + ’U - UH ’
ot ot
0 0
(415) ah (t7 S?”a“?ﬂ) - ah (t787u7valu0) <72 (ta S) |:U’ - ,u0| )

wherek; (t,s),r; (t,s) € C (I?,R,) (i = 1,2) are nondecreasing in€ I, for eachs € I and
0; (t,8),7 (t,s) € C(I*,Ry) (i =1,2). Further, assume that

(4.16) Fa (8,1) <\,
1
(4.17) e (t) = T T (t,s)exp (/ —k (s,0 da) ds <1,
t b
(4.18) oy (t,t) + / [01 (t,8) + 02 (t, 5)]ds + / [v1 (£, 8) + 72 (t,8)]ds < M,
fort € I where), M are nonnegative constants such that 1 and
]_f (ta S) = kl (tu 8) + k2 (tu S) ) f(ta S) =T (ta S) + T2 (ta 8) :
Letz, (¢) andz;, (¢) be the solutions of equatiorjs (#.6) ahd [4.7) respectively. Then
(4.19) |21 () = 22 (£)] + |21 (1) — 25 (1)]

(715 (o) oo (/’“ )s).

forteI.
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Proof. Let u (t) = |21 (t) — 22 (t)| + |27 (t) — 25 (¢)| for t € 1. Using the facts that; (¢) and
2 (t) are the solutions of the equatiofs (4.6) gnd](4.7) and the hypotheses we have

(420) u (t) < / |g (t7 S, 21 (S) ) Zi (S) nu) -9 (tv S, %22 (S) 72% (S) ’:u)| ds
[z () 25 (5) o) = 0 (85,22 ). 2 (). o)

/!htszl 2 5) ) — b (t5, 22 (), 2 (5) )| d

[ |59, 5 () ) = o (ks (9), 5 (5) ) ds

b [ s ()2 (5) ) = (65,22 (9,2 (5) g0 ds
b

+/ %h(t,s,zg(s),zé(s),u) ;h(tszg(s),zg(s)7ug) ds

t t
g/ kl(t,s)u(s)ds—i-/(51(t,s)]u—uo\ds
B -
it s u(s)ds [ (6, ol ds

_|_
e () () + 61 (1, 2) | — ol
+ [ ka(t,s)u d8+/52t5|,u fo| ds
b b
+/ rg(t,s)u(s)ds—l—/ Y2 (t, 8) |0 — ol ds.
Using (4.16),[(4.18) in (4.20) we observe that
b

(4.21) u(t)glu_m’MJrli)\/atl_f(t,s) (s)ds + —— [ #(t,5)u(s)ds.

11—\ 1—XJ,
Now an application of Lemma 2.1 tp (4]21) yields (4.19), which shows the dependency of
solutions to equation$ (4.6) arjd (4.7) on parameters. O

Remark 3. We note that our approach to the study of the more general equatipn (1.1) is different
from those used ir [1] and we believe that the results obtained here are of independent interest.
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