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ABSTRACT. We analyze the relationships of three recently defined classes of numerical se-
quences.
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1. I NTRODUCTION

T.W. Chaundy and A.E. Jolliffe [1] proved the following classical theorem:
Suppose thatbn = bn+1 and bn → 0. Then a necessary and sufficient condition for the

uniform convergence of the series

(1.1)
∞∑

n=1

bn sin nx

is n bn → 0.
Near fifty years later S.M. Shah [11] showed thatany classical quasimonotone sequence

(CQMS) could replace the monotone one in (1.1).
For notions and notations, please see the second section.
In [3, 4], we defined the class ofsequences of rest bounded variation(RBV S) and verified

that Chaundy-Jolliffe’s theorem also remains valid by these sequences.
In connection with these two results, S.A. Telyakovskiı̆ raised the following problem (per-

sonal communication): Are the classesCQMS andRBV S comparable? This problem implic-
itly includes the question: which result is better, that of Shah or ours?

In [5] we gave a negative answer, that is, these classes are not comparable. Thus these two
results are disconnected.

Recently a group of authors (see e.g. R.J. Le and S.P. Zhou [2], D.S. Yu and S.P. Zhou [13],
S. Tikhonov [12], L. Leindler [6, 7]) have generalized further the notion of monotonicity by
keeping some good properties of decreasing sequences.
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Among others, D.S. Yu and S.P. Zhou [13] proved that theirnewly defined sequences(NBV S)
could replace the monotone ones in (1.1).

In [8] we proved a similar result forsequences of mean group bounded variation(MGBV S).
The latter two results have again offered to investigate the relation of the classesNBV S and

MGBV S.
Now, first we shall prove that these classes are not comparable. Furthermore we also show

the class ofsequences of mean rest bounded variation(MRBV S), defined in [9] and used in
[7], is not comparable to eitherNBV S or MGBV S.

We mention that in [10] we already analyzed the relationships of seven similar numerical
sequences. In the papers [2], [12] and [13] we can also read analogous investigations.

2. NOTIONS AND NOTATIONS

We recall some definitions and notations.
We shall only consider sequences with nonnegative terms. For a sequencec := {cn}, denote

∆ cn := cn − cn+1. The capital lettersK, K1 andK(·) denote positive constants, or constants
depending upon the given parameters. We shall also use the following notation: we write
L � R if there exists a constantK such thatL 5 KR, but not necessarily the sameK at each
occurrence.

The well-knownclassical quasimonotone sequences(CQMS) will be defined here by0 <
α 5 1 and

cn+1 5 cn

(
1 +

α

n

)
, n = 1, 2, . . . .

Let γ := {γn} be a positive sequence. A null-sequencec (cn → 0) satisfying the inequalities

(2.1)
∞∑

n=m

|∆ cn| 5 K(c)γm, m = 1, 2, . . .

is said to be asequence ofγ rest bounded variation, in symbolic form:c ∈ γRBV S (see e.g.
[6]).

If γ ≡ c and everycn > 0, then we get theclass of sequences of rest bounded variation
(RBV S).

If γ is given by

(2.2) γm :=
1

m

2m−1∑
n=m

cn,

and

(2.3)
∞∑

n=2m

|∆ cn| 5 K(c)γm

holds, then we say thatc belongs to theclass of mean rest bounded variation sequences
(MRBV S).

We remark that ifγ is given by (2.2) thenγRBV S does not necessarily include the monotone
sequences, butMRBV S does (see e.g.cn = 2−n).

If we claim

(2.4)
2m∑

n=m

|∆ cn| 5 K(c)γm, m = 1, 2, . . .

instead of (2.1) then we get the classγGBV S (see [6]).
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If in (2.4) γ is given byγm := cm + c2m, then we obtain thenew class of sequences defined
by Yu and Zhou[13], which will be denoted byNBV S.

Finally if in (2.4) γ is given by (2.2) then we get the class ofsequences of mean group
bounded variation(MGBV S).

If two classes of sequencesA andB are not comparable we shall denote this byA � B.

3. A T HEOREM

Now we formulate our assertions in a terse form.

Theorem 3.1.The following relations hold:

(3.1) NBV S � MGBV S,

(3.2) NBV S � MRBV S,

(3.3) MGBV S � MRBV S.

4. PROOF OF THEOREM 3.1

Proof of (3.1).Let

(4.1) cn := 2−n, n = 1, 2, . . . .

This sequence clearly belongs toNBV S, but it does not belong to the classMGBV S, namely

K 2−m 5
2m∑

n=m

|∆ cn| 5 K1 2−m

and
1

m

2m−1∑
n=m

cn 5
2

m
2−m.

Next we define a sequenced := {dn} such thatd /∈ NBV S, butd ∈ MGBV S. Let d1 = 1
and

(4.2) dn :=

{
0, if n = 2ν

2−ν , if 2ν < n < 2ν+1, ν = 1, 2, . . . .

Then

(4.3) K m−1 5
2m∑

n=m

|∆ dn| 5 K1 m−1, m = 2,

holds, and ifm = 2ν , then
dm + d2m = 0,

thusd does not belong toNBV S, namely (2.4) does not hold ifcn = dn, m = 2ν (ν = 1) and
γm = dm + d2m.

On the other hand, the inequality (2.4) plainly holds ifcn = dn and

(4.4) γm := m−1

2m−1∑
n=m

dn (= K m−1),

that is,d ∈ MGBV S.
Herewith (3.1) is proved. �
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Proof of (3.2).As we have seen above, the sequenced defined in (4.2) does not belong to
NBV S, but by (4.3) and (4.4), it is easy to see that ifcn = dn, then (2.3) is satisfied, whence
d ∈ MRBV S holds.

Next we consider the following sequenceδ defined as follows:

δn :=

{
0, if n = 2ν + 1,

ν−1, if 2ν + 1 < n < 2ν+1 + 1.

Elementary consideration gives that ifm = 2, then

(4.5) δm + δ2m �
2m∑

n=m

|∆ δn| � (log m)−1

and

(4.6) m−1

2m−1∑
n=m

δn � (log m)−1.

The first inequality of (4.5) clearly shows thatδ ∈ NBV S, but the second inequality of (4.5)
and (4.6) convey thatδ /∈ MRBV S, namely

(4.7)
∞∑

k=1

(log 2km)−1 = ∞.

The facts proved above verify (3.2). �

Proof of (3.3).In the proof of (3.1) we have verified that the sequencec defined in (4.1) does
not belong toMGBV S, but it clearly belongs toMRBV S, because2−2m < m−1 2−m.

Next we show that the following sequenceα defined byα1 = 1 and forn = 2

αn :=

{
0, if n = 2ν ,

ν−1, if 2ν < n < 2ν+1, ν = 1, 2, . . .

has a contrary property.
It is clear that

(log m)−1 � m−1

2m−1∑
n=m

αn � (log m)−1, m = 2,

and

(log m)−1 �
2m∑

n=m

|∆ αn| � (log m)−1.

The latter two estimates prove thatα ∈ MGBV S, and since (4.7) holds, thusα /∈ MRBV S
also holds.

Herewith (3.3) is proved, and our theorem is also proved. �
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