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1. Introduction

T.W. Chaundy and A.E. Jolliffe [1] proved the following classical theorem:
Suppose thatbn = bn+1 andbn → 0. Then a necessary and sufficient condition

for the uniform convergence of the series

(1.1)
∞∑

n=1

bn sin nx

is n bn → 0.
Near fifty years later S.M. Shah [11] showed thatany classical quasimonotone

sequence(CQMS) could replace the monotone one in (1.1).
For notions and notations, please see the second section.
In [3, 4], we defined the class ofsequences of rest bounded variation(RBV S)

and verified that Chaundy-Jolliffe’s theorem also remains valid by these sequences.
In connection with these two results, S.A. Telyakovskiı̆ raised the following prob-

lem (personal communication): Are the classesCQMS andRBV S comparable?
This problem implicitly includes the question: which result is better, that of Shah or
ours?

In [5] we gave a negative answer, that is, these classes are not comparable. Thus
these two results are disconnected.

Recently a group of authors (see e.g. R.J. Le and S.P. Zhou [2], D.S. Yu and S.P.
Zhou [13], S. Tikhonov [12], L. Leindler [6, 7]) have generalized further the notion
of monotonicity by keeping some good properties of decreasing sequences.

Among others, D.S. Yu and S.P. Zhou [13] proved that theirnewly defined se-
quences(NBV S) could replace the monotone ones in (1.1).

In [8] we proved a similar result forsequences of mean group bounded variation
(MGBV S).
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The latter two results have again offered to investigate the relation of the classes
NBV S andMGBV S.

Now, first we shall prove that these classes are not comparable. Furthermore
we also show the class ofsequences of mean rest bounded variation(MRBV S),
defined in [9] and used in [7], is not comparable to eitherNBV S or MGBV S.

We mention that in [10] we already analyzed the relationships of seven similar
numerical sequences. In the papers [2], [12] and [13] we can also read analogous
investigations.
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2. Notions and Notations

We recall some definitions and notations.
We shall only consider sequences with nonnegative terms. For a sequencec :=

{cn}, denote∆ cn := cn − cn+1. The capital lettersK,K1 andK(·) denote positive
constants, or constants depending upon the given parameters. We shall also use the
following notation: we writeL � R if there exists a constantK such thatL 5 KR,
but not necessarily the sameK at each occurrence.

The well-knownclassical quasimonotone sequences(CQMS) will be defined
here by0 < α 5 1 and

cn+1 5 cn

(
1 +

α

n

)
, n = 1, 2, . . . .

Let γ := {γn} be a positive sequence. A null-sequencec (cn → 0) satisfying the
inequalities

(2.1)
∞∑

n=m

|∆ cn| 5 K(c)γm, m = 1, 2, . . .

is said to be asequence ofγ rest bounded variation, in symbolic form:c ∈ γRBV S
(see e.g. [6]).

If γ ≡ c and everycn > 0, then we get theclass of sequences of rest bounded
variation (RBV S).

If γ is given by

(2.2) γm :=
1

m

2m−1∑
n=m

cn,
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and

(2.3)
∞∑

n=2m

|∆ cn| 5 K(c)γm

holds, then we say thatc belongs to theclass of mean rest bounded variation se-
quences(MRBV S).

We remark that ifγ is given by (2.2) thenγRBV S does not necessarily include
the monotone sequences, butMRBV S does (see e.g.cn = 2−n).

If we claim

(2.4)
2m∑

n=m

|∆ cn| 5 K(c)γm, m = 1, 2, . . .

instead of (2.1) then we get the classγGBV S (see [6]).
If in (2.4) γ is given byγm := cm+c2m, then we obtain thenew class of sequences

defined by Yu and Zhou[13], which will be denoted byNBV S.
Finally if in (2.4) γ is given by (2.2) then we get the class ofsequences of mean

group bounded variation(MGBV S).
If two classes of sequencesA andB are not comparable we shall denote this by

A � B.
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3. A Theorem

Now we formulate our assertions in a terse form.

Theorem 3.1.The following relations hold:

(3.1) NBV S � MGBV S,

(3.2) NBV S � MRBV S,

(3.3) MGBV S � MRBV S.
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4. Proof of Theorem3.1

Proof of (3.1). Let

(4.1) cn := 2−n, n = 1, 2, . . . .

This sequence clearly belongs toNBV S, but it does not belong to the classMGBV S,
namely

K 2−m 5
2m∑

n=m

|∆ cn| 5 K1 2−m

and
1

m

2m−1∑
n=m

cn 5
2

m
2−m.

Next we define a sequenced := {dn} such thatd /∈ NBV S, but d ∈ MGBV S.
Let d1 = 1 and

(4.2) dn :=

{
0, if n = 2ν

2−ν , if 2ν < n < 2ν+1, ν = 1, 2, . . . .

Then

(4.3) K m−1 5
2m∑

n=m

|∆ dn| 5 K1 m−1, m = 2,

holds, and ifm = 2ν , then
dm + d2m = 0,

thusd does not belong toNBV S, namely (2.4) does not hold ifcn = dn, m =
2ν (ν = 1) andγm = dm + d2m.
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On the other hand, the inequality (2.4) plainly holds ifcn = dn and

(4.4) γm := m−1

2m−1∑
n=m

dn (= K m−1),

that is,d ∈ MGBV S.
Herewith (3.1) is proved.

Proof of (3.2). As we have seen above, the sequenced defined in (4.2) does not
belong toNBV S, but by (4.3) and (4.4), it is easy to see that ifcn = dn, then (2.3)
is satisfied, whenced ∈ MRBV S holds.

Next we consider the following sequenceδ defined as follows:

δn :=

{
0, if n = 2ν + 1,

ν−1, if 2ν + 1 < n < 2ν+1 + 1.

Elementary consideration gives that ifm = 2, then

(4.5) δm + δ2m �
2m∑

n=m

|∆ δn| � (log m)−1

and

(4.6) m−1

2m−1∑
n=m

δn � (log m)−1.

The first inequality of (4.5) clearly shows thatδ ∈ NBV S, but the second inequality
of (4.5) and (4.6) convey thatδ /∈ MRBV S, namely

(4.7)
∞∑

k=1

(log 2km)−1 = ∞.
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The facts proved above verify (3.2).

Proof of (3.3). In the proof of (3.1) we have verified that the sequencec defined
in (4.1) does not belong toMGBV S, but it clearly belongs toMRBV S, because
2−2m < m−1 2−m.

Next we show that the following sequenceα defined byα1 = 1 and forn = 2

αn :=

{
0, if n = 2ν ,

ν−1, if 2ν < n < 2ν+1, ν = 1, 2, . . .

has a contrary property.
It is clear that

(log m)−1 � m−1

2m−1∑
n=m

αn � (log m)−1, m = 2,

and

(log m)−1 �
2m∑

n=m

|∆ αn| � (log m)−1.

The latter two estimates prove thatα ∈ MGBV S, and since (4.7) holds, thus
α /∈ MRBV S also holds.

Herewith (3.3) is proved, and our theorem is also proved.
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