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Special sequences, Comparability.

We analyze the relationships of three recently defined classes of numerical se-
quences.
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1. Introduction

T.W. Chaundy and A.E. Jolliffel] proved the following classical theorem:
Suppose that, = b,,, andb, — 0. Then a necessary and sufficient condition
for the uniform convergence of the series

(1.1) Z b, sinnx
n=1

isnb, — 0.
Near fifty years later S.M. Shali]] showed thatny classical quasimonotone
sequencéCQM S) could replace the monotone one in1).
For notions and notations, please see the second section.
In [3, 4], we defined the class afequences of rest bounded variatiddBV S)
and verified that Chaundy-Jolliffe’s theorem also remains valid by these sequences.
In connection with these two results, S.A. Telyakovskised the following prob-
lem (personal communication): Are the class&3M .S and RBV S comparable?
This problem implicitly includes the question: which result is better, that of Shah or
ours?
In [5] we gave a negative answer, that is, these classes are not comparable. Thus
these two results are disconnected.
Recently a group of authors (see e.g. R.J. Le and S.P. ZjoD.[S. Yu and S.P.
Zhou [13], S. Tikhonov [L2], L. Leindler [6, 7]) have generalized further the notion
of monotonicity by keeping some good properties of decreasing sequences.
Among others, D.S. Yu and S.P. Zhold[ proved that theinewly defined se-
quenceg N BV S) could replace the monotone ones inlj.
In [8] we proved a similar result fasequences of mean group bounded variation
(MGBVS).
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The latter two results have again offered to investigate the relation of the classes
NBVS andMGBV'S.

Now, first we shall prove that these classes are not comparable. Furthermore
we also show the class skquences of mean rest bounded variati®ghR BV S),
defined in P] and used inT], is not comparable to eithé¥ BV .S or MGBV' S.

We mention that inJ0] we already analyzed the relationships of seven similar

numerical sequences. In the papetk [12] and [L3] we can also read analogous
investigations.
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2. Notions and Notations

We recall some definitions and notations.

We shall only consider sequences with nonnegative terms. For a sequeace
{c,}, denoteA ¢, := ¢, — ¢,.1. The capital letterd<, K; and K (-) denote positive
constants, or constants depending upon the given parameters. We shall also use the
following notation: we writel. < R if there exists a constaiif such thatl, < KR,
but not necessarily the sand&at each occurrence.

The well-knownclassical quasimonotone sequenc¢é&) M S) will be defined
here by0 < o < 1and

cn+1§cn<1—l—%>, n=12....

Lety := {7, } be a positive sequence. A null-sequende,, — 0) satisfying the
inequalities

(2.1) > IAc S K(©)ym, m=12,...

is said to be @equence of rest bounded variatiorin symbolic form:c € yRBV'S

(see e.g.q)).
If v = c and every, > 0, then we get thelass of sequences of rest bounded

variation (RBV'S).
If ~ is given by
1 2m—1
(2.2) Y = — Cns
m n=m
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and

(2.3) > Ac| £ K(e)m

n=2m

holds, then we say that belongs to theclass of mean rest bounded variation se-
quences M RBV'S).

We remark that ify is given by ¢.2) thenyRBV S does not necessarily include
the monotone sequences, BUtR BV S does (see e.@;,, = 27").

If we claim

2m
(2.4) Y IAc S K(©)ym, m=12,...

instead of £.1) then we get the clasgZBV S (see p]).

Ifin (2.4) v is given by, := ¢, +cam, then we obtain theew class of sequences
defined by Yu and Zhda3], which will be denoted byV BV'S.

Finally if in (2.4) ~ is given by ¢.2) then we get the class sEquences of mean
group bounded variatioQM/GBV S).

If two classes of sequencesand B are not comparable we shall denote this by
A~ B.
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3. A Theorem

Now we formulate our assertions in a terse form.

Theorem 3.1. The following relations hold:

(3.1) NBVS = MGBVS,
(3.2) NBVS = MRBVS,
(3.3) MGBVS = MRBVS.
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4. Proof of Theorem3.1

Proof of (3.1). Let
(4.1) Crni=2"" n=12,....

This sequence clearly belongstaBV' S, but it does not belong to the cladsG BV S,

namely Relationships of Numerical
2m Sequences
K2 ™ § Z |A Cn‘ § Kl o—m L. Leindler
n=m vol. 8, iss. 4, art. 103, 2007
and _
L Z o < 32*7”' Title Page
m "= m
n=m Contents
Next we define a sequende:= {d,} such thaid ¢ NBV'S, butd € MGBVS.
Letd, = 1 and A 44
4o ; 0, ifn=2" 4 >
(42) T 2, ifr<m< vt =12, . Page 8 of 12
Then Go Back
2m Full Screen
-1 < < -1 >
(4.3) Km™' < Z IAd,| S Kim™, m=2, s

holds, and ifm = 2”, then journal of inequalities
in pure and applied
mathematics

issn: 1443-575k

dm+d2m = 07

thusd does not belong taV BV S, namely £.4) does not hold ifc, = d,,, m =
2" (v 2 1) andvy,, = d,;, + dop,.
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On the other hand, the inequality.{) plainly holds ifc,, = d,, and

2m—1
(4.4) Y=Y dy (2 Km7Y,
thatis,d € MGBV'S.
Herewith (3.1) is proved. ]

Proof of (3.2). As we have seen above, the sequedceefined in {.2) does not
belong toN BV S, but by ¢.3) and ¢.4), it is easy to see that if, = d,,, then .3
is satisfied, whencd € M RBV S holds.

Next we consider the following sequentedefined as follows:

5 0, ifn=2"+1,
Tl vl if 2+l <n <2t 41

Elementary consideration gives thahif = 2, then

2m
and
2m—1
(4.6) m Z 5, < (logm) ™.

The first inequality of{.5) clearly shows that € N BV S, but the second inequality
of (4.5) and ¢.6) convey thav ¢ M RBV S, namely
(4.7) (log 2Fm)~! = 0.

k=1
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The facts proved above verify (). ]

Proof of 3.3). In the proof of ¢8.1) we have verified that the sequencalefined
in (4.1) does not belong ta/GBV S, but it clearly belongs td/ RBV S, because
272m < mpLom,

Next we show that the following sequenealefined by, = 1 and forn = 2

0, if n=2",
Qy, = .
vloif v <n <2t v=1,2,...

has a contrary property.
It is clear that

2m—1
(logm)™' <m™ Z an < (logm)™, m =2,

n=m

and

2m
(logm) ™' < Y [Aa,| < (logm) ™.

The latter two estimates prove thate MGBV S, and since4.7) holds, thus
a ¢ MRBV S also holds.
Herewith (3.3) is proved, and our theorem is also proved. O
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