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Abstract

We prove the existence of generalized invariant means on some functions
spaces which are larger then the space of all bounded functions. Our results
are applied to the study of functional inequalities.
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1. Introduction
LetF be a non-void subset of the space of all real functions defined on a semi-
group(S, +). We say thatF is a left (right) invariant if and only if

(1.1) f ∈ F anda ∈ S implies thataf ∈ F (fa ∈ F),

whereaf andfa denote theleft and right translationsof f ∈ F by a ∈ S
defined by

af(x) = f(a + x) andfa(x) = f(x + a), x ∈ S.

Definition 1.1. LetF be a left (right) invariant linear space of real functions
defined on a semigroupS and letF : F → R. A linear functionalM : F → R
is termed aleft (right) invariantF -meanif and only if it satisfies the following
two conditions:

(1.2) M(f) ≤ F (f), f ∈ F ;

(1.3) M(af) = M(f) (M(fa) = M(f)), f ∈ F , a ∈ S.

In the case whereF = B(S, R), the space of all real bounded functions on
a semigroupS andF (f) = supx∈S f(x), for f ∈ B(S, R), we infer that our
definition reduces to the classical definition of an invariant mean.

In argument with the traditional terminology, if there exists at least one left
(right) invariant mean on the spaceB(S, R) then the underlying semigroupS
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is said to beleft (right) amenable. For the theory of amenability of semigroups
and groups see e.g. Greenleaf [7] and Hewitt, Ross [8]. Here we only stress that
every Abelian semigroup is (two-sided) amenable.

The concept of invariant means in connection with functional inequalities
was invented by L. Székelyhidi (see [12]). In the present paper we are going
to extend the concept of an invariant mean to some functions spaces which are
essentially larger then the spaceB(S, R). Next, we present applications of these
results to the study of functional inequalities.
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2. Generalized Invariant Means
Let us start with the following existence theorem.

Theorem 2.1. Let (S, +) be a left (right) amenable semigroup and letF be a
left (right) invariant linear space of real functions defined onS. Assume that
functionalsΦ, F : F → R satisfy the following conditions:

(2.1) Φ(f + g) ≤ Φ(f) + Φ(g), f, g ∈ F ;

(2.2) Φ(αf) = αΦ(f), f ∈ F , α > 0;

(2.3) Φ(f) ≤ F (f), f ∈ F

and

(2.4) Φ(af) ≤ F (f) (Φ(fa) ≤ F (f)) , f ∈ F , a ∈ S.

Then there exists a left (right) invariantF -mean on the spaceF .

Proof. We shall restrict ourselves to the proof of the "left - hand side version"
of this theorem.

To start with, note that by condition (2.1)

(2.5) 0 ≤ Φ(0S),
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where0S denotes the function equal zero on the whole semigroupS. The Hahn
- Banach theorem, for the spaceX = F and the subspaceX0 degenerated to
zero, implies that there exists a linear operatorL : F → R such that

L(f) ≤ Φ(f), f ∈ F .

Then, by (2.3), we get

(2.6) L(f) ≤ Φ(f) ≤ F (f), f ∈ F .

Let f ∈ F be fixed. Condition (2.4) implies

L(xf) ≤ Φ(xf) ≤ F (f), x ∈ S.

Using the linearity ofL we have

(2.7) −F (−f) ≤ L(xf) ≤ F (f), x ∈ S

which means that the function

S 3 x −→ L(xf) ∈ R

belongs to the spaceB(S, R).
Let M be a left invariant mean onB(S, R) which exists by our assumption.

We define the mapM : F → R by the formula:

M(f) = Mx(L(xf)), f ∈ F ,

where the subscriptx next to M indicates that the meanM is applied to a
function of the variablex.
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From the linearity ofL and M we obtain thatM is a linear functional.
Moreover, condition (2.7) implies

M(f) = Mx(L(xf)) ≤ sup
x∈S

L(xf) ≤ F (f),

for f ∈ F .
To prove the left invariance ofM we observe that

y(xf) =x+y f, f ∈ F , x, y ∈ S.

Indeed, for everyz ∈ S we get

y(xf)(z) =x f(y + z) = f(x + y + z) =x+y f(z), x, y ∈ S,

which means that our identity holds.
This fact combined with the left invariance ofM yields

M(af) = Mx(L(x(af))) = Mx(L(a+xf)) = Mx(L(xf)) = M(f),

for all f ∈ F anda ∈ S. Thus, the mapM has all the desired properties for a
left invariantF -mean and the proof is completed.

Remark 1. If M is a left (right) invariantF -mean on the spaceF , then the
linearity ofM jointly with condition (1.2) yields

(2.8) −F (−f) ≤M(f) ≤ F (f), f ∈ F .
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Remark 2. If the spaceF contains the spaceCS of all constant functions on
S, then in the proof of Theorem2.1 we can start with the spaceX0 = CS and
with the functionalL0 : CS → R defined byL0(cS) = cΦ(1S), for c ∈ R and
we obtain the existence of theF -meanM such that

(2.9) M(cS) = cΦ(1S), c ∈ R.

Now, we will give examples of situations in which all assumptions of Theo-
rem2.1are satisfied.

Definition 2.1. A non-empty familyI of subsets of a semigroupS will be called
a proper set idealif:

S 6∈ I;

A, B ∈ I impliesA ∪B ∈ I;

A ∈ J andB ⊂ A implyB ∈ I.

Moreover, if the setaA = {x ∈ S : a+x ∈ A} belongs to the familyI whenever
A ∈ I anda ∈ S, then the set idealI is said to beproper left quasi-invariant
(in short: p.l.q.i.). Analogously, the set idealI is said to beproper right quasi-
invariant(in short: p.r.q.i.) if the setAa = {x ∈ S : x + a ∈ A} belongs to the
family I wheneverA ∈ I anda ∈ S. In the case where the set ideal satisfies
both these conditions we shall call itproper quasi-invariant(p.q.i.).

The sets belonging to the ideal are intuitively regarded as small sets. For
example, ifS is a second category subsemigroup of a topological groupG then
the family of all first category subsets ofS is a p.q.i. ideal. IfG is a locally
compact topological group equipped with the left or right Haar measureµ and
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if S is a subsemigroup ofG with positive measureµ then the family of all
subsets ofS which have zero measureµ is a p.q.i. ideal. Also, ifS is a normed
space (S 6= {0}) then the family of all bounded subsets ofS is p.q.i. ideal (see
also Gajda [5] and Kuczma [9]).

Let I be a set ideal of subsets of a semigroupS. For a real functionf on
S we defineIf to be the family of all setsA ∈ I such thatf is bounded on
the complement ofA. A real functionf onS is calledI-essentially boundedif
and only if the familyIf is non-empty. The space of allI-essentially bounded
functions onS will be denoted byBI(S, R).

It is obvious that, in general, the spaceBI(S, R) is essentially larger then the
spaceB(S, R).

For every elementf of the spaceBI(S, R) the real numbers

I − essinf
x∈S

f(x) = sup
A∈If

inf
x∈S\A

f(x),

I − esssup
x∈S

f(x) = inf
A∈If

sup
x∈S\A

f(x)

are correctly defined and are referred to as theI-essential infimumand theI-
essential supremumof the functionf , respectively.

Now, we define a mapF I : BI(S, R) → R by the following formula:

F I(f) = I − esssup
x∈S

f(x), f ∈ BI(S, R).

If I is a p.l.q.i. (p.r.q.i.) ideal of a subset ofS, thenF = BI(S, R) is a left
right invariant linear space and functionsΦ = F I , F = F I satisfy conditions
(2.1), (2.2), (2.3) and (2.4). So, as a consequence of Theorem2.1 we obtain
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the following result which was proved using Silverman’s extension theorem by
Gajda in [5] (see also [1]).

Corollary 2.2. If (S, +) is a left (right) amenable semigroup andI is a p.l.q.i.
(p.r.q.i.) ideal of subsets ofS, then there exists a real linear functionalMI on
the spaceBI(S, R) such that

I − essinf
x∈S

f(x) ≤ MI(f) ≤ I − esssup
x∈S

f(x)

and
MI(af) = MI(f) (MI(fa) = MI(f)),

for all f ∈ BI(S, R) and alla ∈ S.

The next example is a generalization of Gajda’s example (see [6]). Here we
assume thatp : S × S → [0, +∞) is a given function fulfilling the following
condition:

inf

{
n∑

i=1

p(xi, ai + s) : s ∈ S

}
= 0(2.10) (

inf

{
n∑

i=1

p(xi, s + ai) : s ∈ S

}
= 0

)
,

for all a1, a2, . . . , an ∈ S, x1, x2, . . . , xn ∈ S andn ∈ N. We say that the
functionf : S → R is p-boundedif there exist constantscf , Cf ∈ R, kf , Kf ≥
0, n ∈ N anda1, a2, . . . , an ∈ S, x1, x2, . . . , xn ∈ S such that

cf − kf

n∑
i=1

p(xi, ai + s) ≤ f(s) ≤ Cf + Kf

n∑
i=1

p(xi, ai + s)
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(cf − kf

n∑
i=1

p(xi, s + ai) ≤ f(s) ≤ Cf + Kf

n∑
i=1

p(xi, s + ai)),

for all s ∈ S. The space of allp-bounded functions will be denoted byBp(S, R).
This space is a left (right) invariant linear space.

Let f ∈ Bp(S, R) be fixed. Then, using the fact that

inf

{
Kf

n∑
i=1

p(xi, ai + s) + kf

n∑
i=1

p(xi, ai + s) : s ∈ S

}
= 0

(
inf

{
Kf

n∑
i=1

p(xi, s + ai) + kf

n∑
i=1

p(xi, s + ai) : s ∈ S

}
= 0

)
we getcf − Cf ≤ 0. So,

cf ≤ Cf

which means that the setCf of all Cf ∈ R such that there existKf ≥ 0, n ∈ N,
a1, a2, . . . , an ∈ S andx1, x2, . . . , xn ∈ S fulfilling

f(s) ≤ Cf+Kf

n∑
i=1

p(xi, ai+s)

(
f(s) ≤ Cf + Kf

n∑
i=1

p(xi, s + ai)

)
, s ∈ S

is bounded from below. Therefore, we can define the mapF p : Bp(S, R) → R
by the following formula:

(2.11) F p(f) = inf Cf , f ∈ Bp(S, R).

It is easy to show that functionsΦ = F p andF = F p satisfy conditions
(2.1), (2.2), (2.3) and (2.4). In this case Theorem2.1reduces to the following.
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Corollary 2.3. If p : S × S → [0, +∞) satisfies condition (2.10) andS is a
left (right) amenable semigroup, then there exists a real linear functionalMp

on the spaceBp(S, R) such that

(2.12) Mp(f) ≤ F p(f), f ∈ Bp(S, R);

and

(2.13) Mp(af) = Mp(f) (Mp(fa) = Mp(f)) , f ∈ Bp(S, R), a ∈ S.
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3. Separation Theorems
We shall formulate all results of this section in the case corresponding to the left
invariant mean only. It will be quite obvious how to rephrase the results so as
to obtain its right - handed versions. The proofs of these alternative theorems
require only minor changes and, therefore, will be omitted.

Theorem 3.1. LetS be a left amenable semigroup and letf, g : S → R. Then
there exists an additive functiona : S → R such that

(3.1) f(x) ≤ a(x) ≤ g(x), x ∈ S

if and only if there exists a left invariant linear spaceF of real functions onS
which contains the space of all constant functions onS, the mapF : F → R
fulfilling

(3.2) F (f + g) ≤ F (f) + F (g), f, g ∈ F ;

(3.3) F (αf) = αF (f), f ∈ F , α > 0;

(3.4) F (af) ≤ F (f), f ∈ F , a ∈ S

and the following condition:

(3.5) F (f) ≤ 0, for f ≤ 0S, f ∈ F andF (1S) > 0,
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functionsζ, η : S → [0, +∞), such thatζ, η ∈ F andF (ζ) = F (η) = 0 and a
functionϕ : S → R such that, for everyx ∈ S, the map:

(3.6) S 3 y −→ ϕ(x + y)− ϕ(y) ∈ R

belongs to the spaceF and

(3.7) f(x)− ζ(y) ≤ ϕ(x + y)− ϕ(y) ≤ g(x) + η(y), x, y ∈ S.

Proof. Let f, g : S → R. Assume that there exists an additive functiona : S →
R satisfying (3.1). Then the spaceF = CS = {cS : c ∈ R} is a left invariant
linear space and the mapF : F → R defined by

F (cS) = c, c ∈ R

fulfills (3.2), (3.3), (3.4) and (3.5). Moreover, takingϕ = a, the additivity ofa
implies that the function (3.6) is constant (equala(x), for x ∈ S) - belongs to
F and from condition (3.1) we infer thatϕ satisfies (3.7) with ζ, η = 0S.

Now, we assume thatF is a left invariant linear space of real functions on
S containing the space of all constant functions onS, the mapF : F → R
satisfies (3.2), (3.3), (3.4) and (3.5), functionsζ, η : S → [0, +∞) belong to the
spaceF , F (ζ) = F (η) = 0 and that there exists a functionϕ : S → R fulfilling
(3.6) and (3.7).

Let M be a left invariantF -mean on the spaceF whose existence results
from Theorem2.1for Φ = F . By Remark2 we can assume that

(3.8) M(cS) = cF (1S), c ∈ R.
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Moreover, condition (3.5) implies the monotonicity ofM:

(3.9) f, g ∈ F , f ≤ g =⇒M(f) ≤M(g).

Indeed, iff, g ∈ F satisfyf ≤ g, then using conditions (1.2) and (3.5) we get

M(f)−M(g) = M(f − g) ≤ F (f − g) ≤ 0.

Next, by our assumptions−ζ,−η ≤ 0S andF (ζ) = F (η) = 0. Applying (3.5)
and (2.8) we have

0 ≤ −F (−ζ) ≤M(ζ) ≤ F (ζ) = 0

and
0 ≤ −F (−η) ≤M(η) ≤ F (η) = 0.

Hence,

(3.10) M(ζ) = M(η) = 0.

Now, we putα(x) = My(ϕ(x + y) − ϕ(y)), for x ∈ S. Let x, y ∈ S. Then
using the linearity and left invariance ofM we get

α(x + y) = Mz(ϕ(x + y + z)− ϕ(z))

= Mz(ϕ(x + y + z)− ϕ(y + z) + ϕ(y + z)− ϕ(z))

= Mz(ϕ(x + y + z)− ϕ(y + z)) +Mz(ϕ(y + z)− ϕ(z))

= Mz(ϕ(x + z)− ϕ(z)) +Mz(ϕ(y + z)− ϕ(z))

= α(x) + α(y),
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mailto:robadora@ux2.math.us.edu.pl
http://jipam.vu.edu.au/


On Generalized Invariant Means
and Separation Theorems

Roman Badora

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 16 of 19

J. Ineq. Pure and Appl. Math. 7(1) Art. 12, 2006

http://jipam.vu.edu.au

so thatα is additive. Moreover, by the definition ofα, conditions (3.7), (3.9),
(3.10) and (3.8) imply

f(x)F (1S) = My(f(x)) = My(f(x))−My(ζ(y)) = My(f(x)− ζ(y))

≤My(ϕ(x + y)− ϕ(y)) = α(x)

≤My(g(x) + η(y)) = My(g(x)) +My(η(y)) = My(g(x))

= g(x)F (1S),

for all x ∈ S. Consequently, the mapa = F (1S)−1α is an additive function
fulfilling ( 3.1), which ends the proof.

Applications of Corollary2.2 can be found in Gajda’s paper [5] and in [3].
Applying Corollary2.3 we have the following result on the separation of two
functions by an additive map (see also Páles [11], Nikodem, Páles, Wa̧sowicz
[10] and [4], [3]).

Theorem 3.2. Let S be a left amenable semigroup with the neutral element,
p : S × S → [0, +∞) satisfying condition (2.10) and letf, g : S → R. Then
there exists an additive functiona : S → R fulfilling (3.1) if and only if there
exists a functionϕ : S → R such that

(3.11) f(x)− p(x, y) ≤ ϕ(x + y)− ϕ(y) ≤ g(x) + p(x, y), x, y ∈ S.

Proof. If a is an additive function fulfilling (3.1), thenϕ = a satisfies (3.11).
Assume thatϕ : S → R satisfies (3.11). Then, for everyx ∈ S, the map

S 3 y −→ ϕ(x + y)− ϕ(y) ∈ R
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belongs to the spaceBp(S, R) and, as in the proof of Theorem3.1, a : S → R
defined by the formula:

a(x) = My(ϕ(x + y)− ϕ(y)), x ∈ S

is an additive function. Moreover, by the definition ofF p we have

f(x) = −(−f(x)) ≤ −F p(−(ϕ(x + y)− ϕ(y)))

≤ −My(−(ϕ(x + y)− ϕ(y))) = My(ϕ(x + y)− ϕ(y))

= a(x) ≤ F p(ϕ(x + y)− ϕ(y)) ≤ g(x),

for all x ∈ S and the proof of Theorem3.2 is finished.
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