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Abstract

We prove the existence of generalized invariant means on some functions
spaces which are larger then the space of all bounded functions. Our results
are applied to the study of functional inequalities.
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Let F be a non-void subset of the space of all real functions defined on a semi-

group(S, +). We say thatF is aleft (right) invariantif and only if

(1.1) f € Fanda € S impliesthat, f € F (f, € F),

where, f and f, denote thdeft andright translationsof f € F bya € S
defined by

of (@) = fla+z)andf,(z) = f(x +a), z€S.

Definition 1.1. Let F be a left (right) invariant linear space of real functions
defined on a semigroup and letF' : 7 — R. A linear functionalM : 7 — R

is termed deft (right) invariant F'-meanif and only if it satisfies the following
two conditions:

(1.2) M(f) < F(f), feF;

(1.3) M(of) = M(f) M(fa) = M(f)), fe€F, acs

In the case wherg = B(S,R), the space of all real bounded functions on
a semigroupS and F'(f) = sup,.g f(z), for f € B(S,R), we infer that our
definition reduces to the classical definition of an invariant mean.
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is said to bdeft (right) amenable For the theory of amenability of semigroups
and groups see e.g. Greenledfdnd Hewitt, Ross{]. Here we only stress that
every Abelian semigroup is (two-sided) amenable.

The concept of invariant means in connection with functional inequalities
was invented by L. Székelyhidi (se&Z]). In the present paper we are going

to extend the concept of an invariant mean to some functions spaces which are

essentially larger then the spaBéS, R). Next, we present applications of these
results to the study of functional inequalities.
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Let us start with the following existence theorem.

Theorem 2.1.Let (S, +) be a left (right) amenable semigroup and JEtbe a
left (right) invariant linear space of real functions defined 8n Assume that
functionals®, F' : 7 — R satisfy the following conditions:

(2.1) O(f+g) <O(f)+2(9), [.g€TF;

(2.2) O(af) =ad(f), feF, a>0;

(2.3) O(f) <F(f), feF

and

(2.4) O(of) < F(f) (®(fa) <F(f)), fEF, acb.

Then there exists a left (right) invariaft-mean on the spacg.

Proof. We shall restrict ourselves to the proof of the "left - hand side version"
of this theorem.
To start with, note that by conditior2 (1)

(2.5) 0 < ®(0g),
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where(s denotes the function equal zero on the whole semiguphe Hahn
- Banach theorem, for the spade = F and the subspac¥, degenerated to
zero, implies that there exists a linear operdior7 — R such that

L(f) <®(f), feF.
Then, by ¢.3), we get
(2.6) L(f) < o(f) < F(f), feF.
Let f € F be fixed. ConditionZ%.4) implies

L(:f) < 2(uf) S F(f), z €8

Using the linearity ofl. we have
(2.7) —F(=f) < LGf) < F(f), z€8
which means that the function

Ssx— L(.f) R

belongs to the spade(S, R).

Let M be a left invariant mean oB(.S, R) which exists by our assumption.

We define the map1 : F — R by the formula:
M(f) = Mo(L(of)), fE€F,

where the subscript next to M indicates that the meaf/ is applied to a
function of the variable:.
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From the linearity of. and M we obtain thatM is a linear functional.
Moreover, conditionZ.7) implies

M(f) = Mo(L(of)) < sup L(of) < F(f),

zeS

for f € F.
To prove the left invariance o# we observe that

y(acf) :eryfa fe-,'t, l’,yGS.

Indeed, for every € S we get

y2f)(2) =2 fly+2) = fle+y+2) =0py f(2), 1,y€S8,

which means that our identity holds.
This fact combined with the left invariance o8f yields

M(af) = Me(L(2(af))) = Me(Lasaf)) = Ma(L(of)) = M(F),

forall f € Fanda € S. Thus, the map\ has all the desired properties for a
left invariant F'-mean and the proof is completed. O

Remark 1. If M is a left (right) invariant ’-mean on the spac&, then the
linearity of M jointly with condition (L.2) yields

(2.8) —F(=f) S M(f) < F(f), feF.

On Generalized Invariant Means
and Separation Theorems

Roman Badora

Title Page

Contents
44 44
< | 2
Go Back
Close
Quit
Page 7 of 19

J. Ineq. Pure and Appl. Math. 7(1) Art. 12, 2006
http://jipam.vu.edu.au


http://jipam.vu.edu.au/
mailto:robadora@ux2.math.us.edu.pl
http://jipam.vu.edu.au/

Remark 2. If the spaceF contains the spacé’s of all constant functions on
S, then in the proof of Theoreth 1 we can start with the spac&, = C's and
with the functionall, : Cs — R defined byLq(cs) = ¢®(1g), for ¢ € R and
we obtain the existence of tiémeanM such that

(2.9) M(cs) = c®(lg), c€R.

Now, we will give examples of situations in which all assumptions of Theo-
rem2.1are satisfied.

Definition 2.1. A non-empty familg of subsets of a semigroupwill be called
a proper set ideai:
S €T,

A, B e ZimpliesAUB € T,
AeJandB Cc AimplyB € 7.

Moreover, ifthe setA = {z € S : a+z € A} belongs to the famil§ whenever

A € T anda € S, then the set idedl is said to beproper left quasi-invariant
(in short: p.l.g.i.). Analogously, the set idedlis said to beproper right quasi-
invariant(in short: p.r.q.i) if the setd, = {x € S : = + a € A} belongs to the
family Z wheneverd € 7 anda € S. In the case where the set ideal satisfies
both these conditions we shall callgtoper quasi-invariar(p.q.i.).

The sets belonging to the ideal are intuitively regarded as small sets. For

example, ifS is a second category subsemigroup of a topological géotigen
the family of all first category subsets 6fis a p.q.i. ideal. IfG is a locally
compact topological group equipped with the left or right Haar megsuaned
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if S is a subsemigroup off with positive measure: then the family of all
subsets of which have zero measureis a p.q.i. ideal. Also, ifS is a normed
space § # {0}) then the family of all bounded subsets®fs p.q.i. ideal (see
also Gajda’h] and Kuczma§)).

Let 7 be a set ideal of subsets of a semigrgupFor a real functiorf on
S we defineZ; to be the family of all setsi € 7 such thatf is bounded on
the complement ofi. A real functionf on S is calledZ-essentially bounde
and only if the familyZ; is non-empty. The space of dllessentially bounded
functions onS will be denoted byB” (S, R).

It is obvious that, in general, the spaBé(S, R) is essentially larger then the
spaceB(S,R).

For every elemenf of the spaceB? (S, R) the real numbers

7 — esSnf = inf
) = BT

Z —essup f(z) = inf sup f(z)
z€S A€Ty zeS\A
are correctly defined and are referred to asZkessential infimunand theZ-
essential supremuwf the functionf, respectively.
Now, we define a map” : BZ(S,R) — R by the following formula:

FI(f) =1- esssup f(%), f € BI(SvR)
€S
If Zis ap.l.q.i. (p.r.q.i.) ideal of a subset 6f thenF = BZ(S,R) is a left
right invariant linear space and functioftss= FZ, I’ = FZ satisfy conditions
(2.0, (2.2, (2.9 and @.4). So, as a consequence of Theorgrhwe obtain
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the following result which was proved using Silverman’s extension theorem by

Gajdain [] (see also]).

Corollary 2.2. If (S5, +) is a left (right) amenable semigroup afids a p.l.q.i.
(p.r.g.i.) ideal of subsets &, then there exists a real linear function&l” on
the spaceB? (S, R) such that

T —essinf f(x) < M*(f) < T —esssup f(x)
zeS zes
and
M (of) = MP(f) (M*(fa) = M*(f)),
forall f € BZ(S,R)andalla € S.
The next example is a generalization of Gajda’s example (§eeHere we

assume thap : S x S — [0, +00) is a given function fulfilling the following
condition:

(2.10) inf {zn:p(xi,ai +s):s€ S} =0

i=1

<inf{ip(xi,s+ai) : SES} :O> ,

for all ay,as,...,a, € S, x1,29,...,2, € S andn € N. We say that the
function f : S — R is p-boundedf there exist constants;, Cy € R, ks, Ky >
0,n € Nandaq,as,...,a, € S, x1,2,...,x, € S such that

cy — ky Zp(:ci,ai +5) < f(s) < Cp+ Ky Zp(xi,ai + 5)

i=1 i=1
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(cf — ky Zp(mi,s +a;) < f(s) < Cr+ Ky Zp(xi, s+ a;)),
=1 =1
forall s € S. The space of aj)-bounded functions will be denoted By (S, R).
This space is a left (right) invariant linear space.
Let f € B?(S,R) be fixed. Then, using the fact that

inf{Kpr(xi,ai—l—s)+kf2p(a:i,ai+s):SGS}

=1 i=1

0

<inf{Kpr(xi,s+ai) +kup(xi,s+ai) 1S € S} = O)
i=1 i=1

we getcy — Oy < 0. So,

Cr S Cf
which means that the s€t of all C; € R such that there exigt; > 0, n € N,
ay,as,...,a, € Sandry, xs,...,x, € S fulfilling

f(s) < C'f—l—Kpr(xi,ai—i-s) (f(s) <Cr+ Ky Zp(a:i,s—i-ai)) , se€8

i=1 =1

is bounded from below. Therefore, we can define the #ap B?(S,R) — R
by the following formula:

(2.11) FP(f) =infC;, f€ BP(S,R).

It is easy to show that function® = F? and F' = FP? satisfy conditions
(2.1, (2.2), (2.3) and @.4). In this case Theorera.1reduces to the following.
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Corollary 2.3. If p : S x S — [0, +00) satisfies condition2.10 and S is a
left (right) amenable semigroup, then there exists a real linear functiofal
on the spacd3?(S, R) such that

(2.12) MP(f) < FP(f), [ € B*(5,R);

and

(213)  MP(.f) = MP(f) (MP(f.) = M"(f)), fe€ B’(S,R), a€S. . .
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We shall formulate all results of this section in the case corresponding to the left
invariant mean only. It will be quite obvious how to rephrase the results so as
to obtain its right - handed versions. The proofs of these alternative theorems
require only minor changes and, therefore, will be omitted.

Theorem 3.1.Let S be a left amenable semigroup and feyy : S — R. Then
there exists an additive functien: S — R such that

(3.1) f(z) <a(x) <g(x), x€S5

if and only if there exists a left invariant linear spageof real functions on
which contains the space of all constant functionsSothe mapf’ : 7 — R
fulfilling

(3.2) F(f+g9) <F(f)+F(9), f,geF;
(3.3) F(af)=aF(f), feF, a>0;
(3.4) FL.f)<F(f), feF,aeS

and the following condition:

(3.5) F(f) <0, for f <0g, fe FandF(1lg) > 0,
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functions¢,n : S — [0,400), such that(,n € FandF'(¢) = F(n) =0and a
functiony : S — R such that, for every € S, the map:

(3.6) Soy—op@+y) -y R

belongs to the spacg& and

@B.7)  flz) = Cy) < plz+y)—wly) <g(z)+ny), z,yeS.

Proof. Let f, g : S — R. Assume that there exists an additive functionS —
R satisfying 8.1). Then the spacé& = Cs = {cs : ¢ € R} is a left invariant
linear space and the mdp: F — R defined by

F(cs)=¢, ceR

fulfills (3.2, (3.3), (3.4) and @.5. Moreover, takinge = a, the additivity ofa
implies that the function3.6) is constant (equal(z), for z € S) - belongs to
F and from condition §.1) we infer thaty satisfies 8.7) with ,n = 0g.

Now, we assume thaf is a left invariant linear space of real functions on
S containing the space of all constant functions$nthe mapF : 7 — R
satisfies 8.2), (3.3), (3.4) and @.5), functions¢, n : S — [0, +00) belong to the
spaceF, F'({) = F(n) = 0 and that there exists a functign: S — R fulfilling
(3.6) and @.7).

Let M be a left invariantt’-mean on the spacg whose existence results
from Theoren?.1for & = F. By Remark? we can assume that

(3.8) M(es) = cF(lg), c€R.
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Moreover, condition.5) implies the monotonicity of\1:

(3.9) fra9eF, f<g= M(f) < Ml(g).

Indeed, iff, g € F satisfy f < g, then using conditionsl(2) and (3.5 we get
M(f) = M(g) = M(f —g) < F(f —g) <0.

Next, by our assumptions(, —n < 0g andF'(¢) = F'(n) = 0. Applying (3.5

and @.8) we have

and

0<—F(-n) <M(n) <Fn) =0
Hence,
(3.10) M(¢) = M(n) = 0.

Now, we puta(z) = My(p(xr +y) — ¢(y)), forz € S. Letz,y € S. Then
using the linearity and left invariance @# we get

a(z+y) =M. (o +y+2)—p(2))
= M.(o(x+y+2z)—py+2z)+ely+2)—p(z))
= M.(p(z+y+2z)— w(y+2))+Mz( (v +2) — »(2))
= M. (p(z +2) — (2)) + M:(0(y + 2) — ¢(2))
)

(z) + aly),

I
Q
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so thata is additive. Moreover, by the definition of, conditions 8.7), (3.9),
(3.10 and 3.8) imply

( )

for all x € S. Consequently, the map = F(15) '« is an additive function
fulfilling (3.1), which ends the proof. O

Applications of Corollary2.2 can be found in Gajda’s papes][and in [3].
Applying Corollary2.3 we have the following result on the separation of two
functions by an additive map (see also Pai=q,[Nikodem, Péales, Wasowicz

[10 and [4], [2]).

Theorem 3.2. Let S be a left amenable semigroup with the neutral element,

p:S xS — [0,+00) satisfying conditionZ.10 and letf,g : S — R. Then
there exists an additive functian: S — R fulfilling (3.2) if and only if there
exists a functiorp : S — R such that

(B11)  f(x) —plz,y) < plr+y) —ply) < g(r) +plr,y), =,y €S

Proof. If a is an additive function fulfilling 8.1), theny = a satisfies 8.11).
Assume that : S — R satisfies 8.11). Then, for everyr € S, the map

Soy—plx+y) —ely eR
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belongs to the spacg?(S,R) and, as in the proof of Theoretl, a : S — R
defined by the formula:

a(x) = My(e(z +y) —¢y)), €S

is an additive function. Moreover, by the definition 6f we have

flx) = =(=f(z)) < =F"(=(p(z +y) — s@(y)))
< =My (=(p(z+y) —ey)) = My(e(z +y) —»(y))
=a(z) < FP(p(x +y) —p(y) < g(z),
for all x € S and the proof of Theorerd.2is finished. O
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