
Further Development of an
Open Problem

Wen-jun Liu, Guo-sheng Cheng
and Chun-Cheng Li

vol. 9, iss. 1, art. 14, 2008

Title Page

Contents

JJ II

J I

Page 1 of 10

Go Back

Full Screen

Close

FURTHER DEVELOPMENT OF AN OPEN PROBLEM
CONCERNING AN INTEGRAL INEQUALITY

WEN-JUN LIU, GUO-SHENG CHENG AND CHUN-CHENG LI
College of Mathematics and Physics
Nanjing University of Information Science and Technology
Nanjing 210044, China

EMail: lwjboy@126.com gshcheng@sohu.comlichunchengcxy@126.com

Received: 04 October, 2007

Accepted: 18 March, 2008

Communicated by: F. Qi

2000 AMS Sub. Class.: 26D15.

Key words: Integral inequality, Cauchy inequality.

Abstract: In this paper, we generalize an open problem posed by Q. A. Ngô et al. in the
paper Notes on an Integral Inequality,J. Inequal. in Pure and Appl. Math.,
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1. Introduction

Recently, in the paper [6] Ngô et al. studied some very interesting integral inequali-
ties and proved the following result.

Theorem 1.1.Letf(x) ≥ 0 be a continuous function on[0, 1] satisfying

(1.1)
∫ 1

x

f(t)dt ≥
∫ 1

x

t dt, ∀ x ∈ [0, 1].

Then the inequalities

(1.2)
∫ 1

0

fα+1(x)dx ≥
∫ 1

0

xαf(x)dx,

and

(1.3)
∫ 1

0

fα+1(x)dx ≥
∫ 1

0

xfα(x)dx,

hold for every positive real numberα > 0.

Next, they proposed the following open problem:

Problem 1.2. Letf(x) be a continuous function on[0, 1] satisfying

(1.4)
∫ 1

x

f(t)dt ≥
∫ 1

x

t dt, ∀ x ∈ [0, 1].

Under what conditions does the inequality

(1.5)
∫ 1

0

fα+β(x)dx ≥
∫ 1

0

xαfβ(x)dx,

holds forα andβ?
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We note that, as an open problem, the condition (1.4) may result in an unrea-
sonable restriction onf(x). We remove it herein and propose another more general
open problem:

Problem 1.3. Under what conditions does the inequality

(1.6)
∫ b

a

fα+β(x)dx ≥
∫ b

a

(x− a)αfβ(x)dx,

hold fora, b, α andβ?

Shortly after the paper [6] was published, Liu et al. [5] gave an affirmative answer
to Problem1.3for the casea = 0 and obtained the following result:

Theorem 1.4.Letf(x) ≥ 0 be a continuous function on[0, b], b ≥ 0 satisfying

(1.7)
∫ b

x

fβ(t)dt ≥
∫ b

x

tβ dt, ∀ x ∈ [0, b].

Then the inequality

(1.8)
∫ b

0

fα+β(x)dx ≥
∫ b

0

xαfβ(x)dx,

holds for every positive real numberα > 0 andβ > 0.

Almost at the same time, Bougoffa [1] also gave an answer to Problem1.3 and
established the following result (We correct it here according to the presence of the
corrigendum in [2]):

Theorem 1.5.Letf(x) ≥ 0 be a function, continuous on[a, b] and differentiable in
(a, b). If

(1.9)
∫ b

x

f(t)dt ≥
∫ b

x

(t− a) dt, ∀ x ∈ [a, b]

http://jipam.vu.edu.au
mailto:
mailto:
http://jipam.vu.edu.au


Further Development of an
Open Problem

Wen-jun Liu, Guo-sheng Cheng

and Chun-Cheng Li

vol. 9, iss. 1, art. 14, 2008

Title Page

Contents

JJ II

J I

Page 5 of 10

Go Back

Full Screen

Close

and
f ′(x) ≤ 1, ∀ x ∈ (a, b),

then the inequality (1.6) holds for every positive real numberα > 0 andβ > 0.

Very recently, Boukerrioua and Guezane-Lakoud [3] obtained the following re-
sult:

Theorem 1.6.Letf(x) ≥ 0 be a continuous function on[0, 1] satisfying

(1.10)
∫ 1

x

f(t)dt ≥
∫ 1

x

t dt, ∀ x ∈ [0, 1].

Then the inequality

(1.11)
∫ 1

0

fα+β(x)dx ≥
∫ 1

0

xαfβ(x)dx,

holds forα > 0 andβ ≥ 1.

Comparing the above three results, we note that: the condition (1.7) was required
in Theorem1.4, a differentiability condition was restricted onf in Theorem1.5
whileβ ≥ 1 was demanded in Theorem1.6. In this paper, we will give an affirmative
answer to Problem1.3 without the differentiable restriction onf by improving the
methods of [5], [6] and [3]. Our main result is Theorem2.1which will be proved in
Section2.
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2. Main Results and Proofs

Theorem 2.1.Letf(x) ≥ 0 be a continuous function on[a, b] satisfying

(2.1)
∫ b

x

fmin{1,β}(t)dt ≥
∫ b

x

(t− a)min{1,β} dt, ∀ x ∈ [a, b].

Then the inequality

(2.2)
∫ b

a

fα+β(x)dx ≥
∫ b

a

(x− a)αfβ(x)dx,

holds for every positive real numberα > 0 andβ > 0.

To prove Theorem2.1, we need the following lemmas.

Lemma 2.2 ([6], General Cauchy inequality). Let α andβ be positive real num-
bers satisfyingα + β = 1. Then for all positive real numbersx andy, we always
have

(2.3) αx + βy ≥ xαyβ.

Lemma 2.3. Under the conditions of Theorem2.1, we have

(2.4)
∫ b

a

(x− a)αfβ(x)dx ≥ (b− a)α+β+1

α + β + 1
.

Proof. We divide the proof into two steps according to the different intervals ofβ.

Case of0 < β ≤ 1: Integrating by parts, we have∫ b

a

(x− a)α−1

(∫ b

x

fβ(t)dt

)
dx
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=
1

α

∫ b

a

(∫ b

x

fβ(t)dt

)
d(x− a)α

=
1

α

[
(x− a)α

∫ b

x

fβ(t)dt

]x=b

x=a

+
1

α

∫ b

a

(x− a)αfβ(x)dx

=
1

α

∫ b

a

(x− a)αfβ(x)dx.

which yields

(2.5)
∫ b

a

(x− a)αfβ(x)dx = α

∫ b

a

(x− a)α−1

(∫ b

x

fβ(t)dt

)
dx.

On the other hand, by (2.1), we get∫ b

a

(x− a)α−1

(∫ b

x

fβ(t)dt

)
dx

≥
∫ b

a

(x− a)α−1

(∫ b

x

(t− a)β dt

)
dx

=
1

β + 1

∫ b

a

(x− a)α−1
[
(b− a)β+1 − (x− a)β+1

]
dx

=
(b− a)α+β+1

α(α + β + 1)
.

Therefore, (2.4) holds.

Case ofβ > 1: We note that the following result has been proved in the first case

(2.6)
∫ b

a

(x− a)αf(x)dx ≥ (b− a)α+2

α + 2
.
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Using Lemma2.2, we get

(2.7)
1

β
fβ(x) +

β − 1

β
(x− a)β ≥ f(x)(x− a)β−1.

Multiplying both sides of (2.7) by (x − a)α and integrating the resultant inequality
from a to b, we obtain

(2.8)
∫ b

a

(x−a)αfβ(x)dx+(β−1)

∫ b

a

(x−a)α+βdx ≥ β

∫ b

a

(x−a)α+β−1f(x)dx,

which implies

(2.9)
∫ b

a

(x−a)αfβ(x)dx+
β − 1

α + β + 1
(b−a)α+β+1 ≥ β

∫ b

a

(x−a)α+β−1f(x)dx.

Moreover, by using (2.6), we get

(2.10)
∫ b

a

(x− a)αfβ(x)dx +
β − 1

α + β + 1
(b− a)α+β+1 ≥ β

α + β + 1
(b− a)α+β+1,

which implies (2.4).

We now give the proof of Theorem2.1.

Proof of Theorem2.1. Using Lemma2.2again, we obtain

(2.11)
β

α + β
fα+β(x) +

α

α + β
(x− a)α+βdx ≥ (x− a)αfβ(x)dx,

which gives

(2.12) β

∫ b

a

fα+β(x)dx + α

∫ b

a

(x− a)α+βdx ≥ (α + β)

∫ b

a

(x− a)αfβ(x)dx.
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Moreover, by using Lemma2.3, we get

(α + β)

∫ b

a

(x− a)αfβ(x)dx = α

∫ b

a

(x− a)αfβ(x)dx + β

∫ b

a

(x− a)αfβ(x)dx

≥ α
(b− a)α+β+1

α + β + 1
+ β

∫ b

a

(x− a)αfβ(x)dx,

that is

(2.13) β

∫ b

a

fα+β(x)dx + α
(b− a)α+β+1

α + β + 1

≥ α
(b− a)α+β+1

α + β + 1
+ β

∫ b

a

(x− a)αfβ(x)dx,

which completes the proof.
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