
Volume 10 (2009), Issue 4, Article 104, 8 pp.

A STUDY OF THE REAL HARDY INEQUALITY
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ABSTRACT. We show that some Hardy-type inequalities on the circle can be proved to be true
on the real line. Namely, we discuss the idea of getting Hardy inequalities on the real line by the
use of corresponding inequalities on the circle. In the last section, we prove the truth of a certain
open problem under some restrictions.
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1. I NTRODUCTION

When McGehee, Pigno and Smith [4] proved the Littlewood conjecture, many questions
regarding the best possible generalization of Hardy’s inequality were asked. The longstanding
question is: Does there exist a constantc > 0 such that

(1.1)
∞∑

n=1

|f̂(n)|
n

≤ c‖f‖1 + c
∞∑

n=1

|f̂(−n)|
n

for all f ∈ L1(T)? The truth of this inequality is an open problem. Many attempts were made
to answer this question and many partial results were obtained. We refer the reader to [2], [3],
[6] and [7] for some partial results.

Almost all articles in the literature treat Hardy-type inequalities on the circle and a very few
articles treat them on the real line.

In [8] it was proved that a constantc > 0 exists such that for all

f ∈
{

g ∈ L1(R) :

∫ x

−∞
g(t)dt ∈ L1(R)

}
we have ∫ ∞

0

|f̂(ξ)|2

ξ
dξ ≤ c‖f‖2

1 + c

∫ ∞

0

|f̂(−ξ)|2

ξ
dξ.
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Although this is not the first proved Hardy inequality on the real line, its proof is the first proof
which uses the construction of a bounded function onR whose Fourier coefficients have some
desired decay properties.

We have two main goals in this article. The first is to prove Hardy inequalities on the real line
using well known inequalities on the circle and the second is to prove a real Hardy inequality
on the real line which is related to the open problem (1.1).

Proving a Hardy inequality usually involves quite a difficult construction and this is because
of the way we prove such inequalities. Again we refer the reader to [2], [4], [6], [7] and [8]
for more information on how and why we construct bounded functions with desired Fourier
coefficients.

2. SETUP

Let L1 denote the space of all integrable functions (equivalent classes) defined onR. For
f ∈ L1, we define the Fourier transform off to be

f̂(ξ) =

∫
R

f(x)e−ixξdξ.

If f̂ ∈ L1 then the inversion formula forf holds:

f(x) =
1

2π

∫
R

f̂(ξ)eiξxdξ.

If f ∈ L2 then the Fourier transform off is defined to be theL2− limit:

f̂(ξ) = lim
n→∞

∫ n

−n

f(x)e−iξxdx.

In this casef̂ ∈ L2 and

f(x) = lim
n→∞

1

2π

∫ n

−n

f̂(ξ)eixξdξ, in theL2 sense.

The Plancheral theorem then says:

‖f‖2 =
1√
2π
‖f̂‖2.

Lemma 2.1. For f, g ∈ L2 we have∫
R

f(x)g(x)dx =
1

2π

∫
R

f̂(ξ) ˆg(ξ)dξ.

We refer the reader to any standard book in analysis for more on these concepts, see for
example [5].

Observe that iff ∈ L1 is such that̂f is compactly supported, then̂f ∈ L2 and hencef ∈ L2.
Now, givenf ∈ L1(R), define

(2.1) ϕN(t) = 2π
∞∑

j=−∞

fN(t + 2πj), wherefN(x) = Nf(Nx).

Then we have

(2.2) ϕN ∈ L1(T), ϕ̂N(n) = f̂
( n

N

)
and lim

N→∞
‖ϕN‖L1(T) = ‖f‖L1(R).

For a discussion of this idea we refer the reader to [1, p. 160-162].
Thus, the equations in (2.1) and (2.2) enable us to move from a function integrable on the

line to a function integrable on the circle. This idea will be used efficiently in the next section
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to prove some Hardy-type inequalities on the real line using only a corresponding inequality on
the circle.

3. FROM THE CIRCLE TO THE L INE

In this section we discuss how one can use a Hardy inequality on the circle to obtain an
inequality on the real line.

Recall that Hardy’s inequality on the circle states that a constantC > 0 exists such that for
all f ∈ L1(T) with f̂(n) = 0, n < 0 we have

∞∑
n=1

|f̂(n)|
n

≤ C‖f‖1.

As a matter of notation, letH1(R) be defined by

H1(R) =
{

f ∈ L1(R) : f̂(ξ) = 0, ∀ξ < 0
}

.

In the following theorem we use the above stated Hardy’s inequality to get the well known
Hardy inequality on the line. We should remark that proving such an inequality (on the line) is
a difficult task, but transforming the problem from the circle to the line greatly simplifies the
proof.

Theorem 3.1.There exists an absolute constantC > 0 such that∫ ∞

0

|f̂(ξ)|
ξ

≤ C‖f‖1

for all f ∈ H1(R).

Proof. Let f ∈ H1(R) be arbitrary and let, forN ∈ N, ϕN (as in (2.1) and (2.2)) be such that:

ϕN ∈ L1(T), lim
N→∞

‖ϕN‖L1(T) = ‖f‖L1(R) and ϕ̂N(n) = f̂(n/N).

Clearlyϕ̂N(n) = 0, ∀n < 0, hence Hardy’s inequality applies and we have
∞∑

n=1

|ϕ̂N(n)|
n

≤ C‖ϕN‖L1(T).

However, this implies that
N∑

n=1

1

N

|f̂(n/N)|
n/N

≤ C‖ϕN‖L1(T).

We take the limit asN →∞ to get

(3.1)
∫ 1

0

|f̂(ξ)|
ξ

≤ C‖f‖1.

Thus, we have shown (3.1) for any function inH1(R). Now we proceed to prove the inequality
stated in the theorem. That is, we would like to replace the upper limit of the above integral by
∞. For this, letM ∈ N be arbitrary and puth(x) = f(x/M). Then

‖h‖1 = M‖f‖1 and ĥ(ξ) = Mf̂(Mξ).

Now apply (3.1) onh to obtain∫ 1

0

|ĥ(ξ)|
ξ

≤ C‖h‖1 ⇒
∫ 1

0

|f̂(Mξ)|
ξ

dξ ≤ C‖f‖1.
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PutMξ = t to get

(3.2)
∫ M

0

|f̂(ξ)|
ξ

dξ ≤ C‖f‖1.

Now, lettingM tend to∞, we obtain the result. �

In fact, the idea of this proof can be used to prove many Hardy inequalities on the real line!
It is proved that, see for example [3], for all functionsf ∈ L1(T) we have

∞∑
n=1

|f̂(n)|2

n
≤ C‖f‖2

1 + C

∞∑
n=1

|f̂(−n)|2

n
.

Using an argument similar to that of Theorem 3.1 we can prove:

Theorem 3.2.There exists a constantC > 0 such that for all functionsf ∈ L1(R) we have∫ ∞

0

|f̂(ξ)|2

ξ
dξ ≤ C‖f‖2

1 + C

∫ ∞

0

|f̂(−ξ)|2

ξ
dξ.

This modifies the result proved in [8].

4. ANOTHER HARDY I NEQUALITY

In this section we prove (1.1) on the real line under a certain condition on the signs of the
Fourier coefficients.

We should remark here that the method used to prove this inequality is standard and all recent
articles use this idea; we need a bounded function whose Fourier coefficients obey some desired
decay conditions.

One last remark before proceeding, although the given proof is for a real Hardy inequality,
we can imitate the given steps to prove a similar inequality on the circle.

For j ≥ 1 put

fj(x) =
1

4j

∫ 4j

4j−1

eixξdξ, x ∈ R.

Then we have our first lemma:

Lemma 4.1. Letfj be as above, then

f̂j(ξ) =

{ 2π
4j , 4j−1 < ξ < 4j,

0, otherwise.

Proof. Let

gj(ξ) =

{ 2π
4j , 4j−1 < ξ < 4j,

0, otherwise,

thengj ∈ L2. Therefore,gj is the Fourier transform of some functionhj ∈ L2 and

hj(x) =
1

2π

∫
R

g(ξ)eixξdξ

= f(x).

However,̂hj = gj, which impliesf̂j = gj as claimed. �

Observe that the above proof implies thatfj ∈ L2 and
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Lemma 4.2. For fj as above, we have

‖fj‖2 =

√
6π

4j/2
.

Proof. Sincefj ∈ L2 we have

‖fj‖2 =
1√
2π
‖f̂j‖2

=
1√
2π

2π

4j

(∫ 4j

4j−1

dξ

) 1
2

=

√
6π

4j/2
.

�

Lemma 4.3. For fj as above and forM ∈ N, let

FM(x) =
M∑

j=1

∣∣∣fj(x)− fj(x)
∣∣∣ ,

then‖FM‖∞ ≤ C whereC is some absolute constant (independent ofM ).

Proof. Observe first that∣∣∣fj(x)− fj(x)
∣∣∣ =

2

4j

∣∣∣∣∣
∫ 4j

4j−1

sin(xξ)dξ

∣∣∣∣∣
=

2

4j

∣∣∣∣cos(4jx)− cos(4j−1x)

x

∣∣∣∣
=

2

4j

∣∣∣∣2 sin2(4j−1x/2) [−1 + 16 cos2(4j−1x) cos2(4j−1x/2)]

x

∣∣∣∣
≤ 60

4j

sin2(4j−1x/2)

|x|
.

Note thatFM is an even function, so it suffices to consider only the casex > 0.
Now, fix x > 0 and observe that

FM(x) ≤ 60
∞∑

j=1

1

4j

sin2(4j−1x/2)

x

= 60

∑
4−j≤x

1

4j

sin2(4j−1x/2)

x
+
∑

4−j>x

1

4j

sin2(4j−1x/2)

x

 ,

where, by convention, the second sum is zero if4−j ≤ x for all j ≥ 1.
Now ∑

4−j≤x

1

4j

sin2(4j−1x/2)

x
≤ 1

x

∞∑
j=kx

1

4j
,

wherekx is the smallest positive integer such that4−j ≤ x for all j ≥ kx.
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Consequently ∑
4−j≤x

1

4j

sin2(4j−1x/2)

x
≤ 1

x

4

3

1

4kx

≤ 1

x

4

3
x =

4

3
.

On the other hand, if
∑

4−j>x
1
4j

sin2(4j−1x/2)
x

is not zero, we get

∑
4−j>x

1

4j

sin2(4j−1x/2)

x
=

log4(1/x)∑
j=1

1

4j

sin2(4j−1x/2)

x

≤
log4(1/x)∑

j=1

1

4jx

(
1

2
4j−1x

)2

=
1

64
x

log4(1/x)∑
j=1

4j

≤ 1

64
x

4log4(1/x) − 4

3

≤ 1

192
.

Thus, we have

FM(x) ≤ 60

(
4

3
+

1

192

)
:= C.

�

Now letX be the set of allf ∈ L1 such that the sign of̂f(ξ) is constant in the block(4j−1, 4j).
Then we have our main result:

Theorem 4.4.There is an absolute constantK > 0 such that

(4.1)
∫ ∞

1

|f̂(ξ)|
ξ

dξ ≤ K‖f‖1 + K

∫ ∞

1

|f̂(−ξ)|
ξ

dξ

for all f ∈ X.

Proof. Let f ∈ X be such that̂f is compactly supported, letfj be as above and letM ∈ N be
such that the support of̂f is contained in[−M, M ]. Denote the sign of̂f in the block(4j−1, 4j)
by σj and put

F (x) =
M∑

j=1

σj

(
fj(x)− fj(x)

)
.

Then‖F‖∞ ≤ C, whereC is the constant of Lemma 4.3. Moreover,F̂ (ξ) = 2π
4j σj, wherej

is the unique index such thatξ ∈ [4j−1, 4j] ∪ [−4j,−4j−1] if −4M ≤ ξ ≤ 4M andF̂ (ξ) = 0
otherwise.
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Moreover, sincêf is of compact support, we havef ∈ L2. Now we apply a standard duality
argument:

C‖f‖1 ≥
∣∣∣∣∫

R
f(x)F (x)dx

∣∣∣∣
=

1

2π

∣∣∣∣∫
R

f̂(ξ)F̂ (ξ)dξ

∣∣∣∣ (see Lemma 2.1)

≥ 1

2π

∣∣∣∣∣
∞∑

j=1

∫ 4j

4j−1

f̂(ξ)F̂ (ξ)dξ

∣∣∣∣∣− 1

2π

∣∣∣∣∫ 1

−1

f̂(ξ)F̂ (ξ)dξ

∣∣∣∣
− 1

2π

∣∣∣∣∣
∞∑

j=1

∫ 4j

4j−1

f̂(−ξ)F̂ (−ξ)dξ

∣∣∣∣∣ .
That is,

(4.2)
1

2π

∣∣∣∣∣
∞∑

j=1

∫ 4j

4j−1

f̂(ξ)F̂ (ξ)dξ

∣∣∣∣∣ ≤ C‖f‖1 +
1

2π

∣∣∣∣∫ 1

−1

f̂(ξ)F̂ (ξ)dξ

∣∣∣∣
+

1

2π

∣∣∣∣∣
∞∑

j=1

∫ 4j

4j−1

f̂(−ξ)F̂ (−ξ)dξ

∣∣∣∣∣ .
However, whenξ ∈ (4j−1, 4j) ∪ (−4j, 4j−1), we haveF̂ (ξ) = 2π

4j σj, whereσj is the sign off̂

in (4j, 4j−1). Thus, whenξ ∈ (4j−1, 4j) we havef̂(ξ)F̂ (ξ) = |f̂(ξ)|. Moreover∣∣∣∣∫ 1

−1

f̂(ξ)F̂ (ξ)dξ

∣∣∣∣ ≤ ‖f‖1

∫ 1

−1

∣∣∣F̂ (ξ)
∣∣∣ dξ

≤ ‖f‖1

(∫ 1

−1

dξ

) 1
2
(∫ 1

−1

|F̂ (ξ)|2dξ

) 1
2

≤
√

2‖f‖1‖F̂‖2

=
√

2‖f‖1

√
2π‖F‖2

≤ 2
√

π‖f‖1 × 2
∞∑

j=1

‖fj‖2

= 4
√

6π‖f‖1,

where we have used the facts

F (x) =
M∑

j=1

σj

(
fj(x)− fj(x)

)
and ‖fj‖2 =

√
6π4−j/2.

Consequently, (4.2) becomes

(4.3)
∞∑

j=1

∫ 4j

4j−1

|f̂(ξ)|
4j

dξ ≤ C‖f‖1 + 2
√

6‖f‖1 +
∞∑

j=1

∫ 4j

4j−1

|f̂(−ξ)|
4j

dξ.

However, whenξ ∈ [4j−1, 4j] we have

1

4j
≤ 1

ξ
and

1

4j
≥ 1

4ξ
.
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Therefore, (4.3) boils down to∫ ∞

1

|f̂(ξ)|
ξ

≤ K‖f‖1 + K

∫ ∞

1

|f̂(−ξ)|
ξ

dξ,

whereK = 4(C + 2
√

6) and whereC is the constant of Lemma 4.3.
This completes the proof forf ∈ X with the property that̂f is compactly supported. Now

for generalf ∈ X, consider the convolutionf ∗Kλ whereKλ is the Fejer Kernel of orderλ. A
standard limiting process yields the result. �

Remark:
(1) We note that the above proof can be adopted to prove that: There is an absolute constant

C ′ > 0 such that for any functionf ∈ L1(T) whose Fourier coefficients have the same
sign on the block[4j−1, 4j) we have

∞∑
n=1

|f̂(n)|
n

≤ C ′‖f‖1 + C ′
∞∑

n=1

|f̂(−n)|
n

.

(2) Observe that the condition that̂f has the same sign on the block(4j−1, 4j) is flexible.
This is because functions inLp are in fact equivalent classes. Therefore, even iff̂ obeys
our condition but for a set of measure zero, then we may modify our choice by changing
the values off̂ so that the neŵf satisfies our condition.
We should remark that this process does not effect the proof above.
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