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ABSTRACT. We develop inequalities relating to the variances of convex decreasing functions of
random variables using information on the functions and the distribution functions of the random
variables.
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1. I NTRODUCTION

Inequalities relating to the variances of convex functions of real-valued random variables are
developed. Given a random variable,X, we denote its expectation byE [X], its variance by
Var [X], and useFX andF−1

X to denote its (cumulative) distribution function and the inverse
of its (cumulative) distribution function respectively. In this paper, we assume that all random
variables are real-valued and non-degenerate.

One familiar and elementary inequality in probability (supposing the expectations exist) is:

(1.1) E [1/X] ≥ 1/E [X]

whereX is a non-negative random variable. This may be proven using convexity (as an appli-
cation of Jensen’s inequality) or by more elementary approaches [2], [4], [5]. More generally, if
one considers the expectations of convex functions of random variables, then Jensen’s inequality
gives:

(1.2) E [f(X)] ≥ f(E [X]),

whereX is a random variable andf is convex over the (convex hull of the) range ofX (see
[6]).
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In the literature, there have been few studies on the variance of convex functions of random
variables. In this note, we aim to provide some useful inequalities, in particular, for finan-
cial applications. Subsequently, we will deal with functions which are continuous, convex and
decreasing. Note thatVar [f(X)] = Var [−f(X)]. This means our results also apply to con-
cave increasing functions, which characterize the utility functions of risk-adverse individuals in
decision theory.

2. TECHNICAL L EMMAS

Lemma 2.1. LetX be a random variable, and letf, g be continuous functions onR.
If f is monotonically increasing andg monotonically decreasing, then

(2.1) E [f(X)g(X)] ≤ E [f(X)] E [g(X)] .

If f, g are both monotonically increasing or decreasing, then

(2.2) E [f(X)g(X)] ≥ E [f(X)] E [g(X)] .

Moreover, in both cases, if both functions are strictly monotone, the inequality is strict (see
[6] or [4]).

Lemma 2.2. For any random variableX, if with probability 1, f(X, ·) is a differentiable,
convex decreasing function on[a, b] (a < b) and its derivative ata exists and is bounded, then

∂

∂ε
E [f(X, ε)] = E

[
∂

∂ε
f(X, ε)

]
.

Proof. Let g(x, ε) = ∂
∂ε

f(x, ε).
For ε ∈ [a, b), let

(2.3) mn(x, ε) = (n + Nε)

[
f

(
x, ε +

1

n + Nε

)
− f(x, ε)

]
,

whereNε = d 2
b−ε

e, and forε = b, let

(2.4) mn(x, ε) = (n + Nε)

[
f(x, ε)− f

(
x, ε− 1

n + Nε

)]
,

whereNε = d 2
b−a

e.
Clearly the sequence{mn}n≥1 converges point-wise tog. Since with probability1, f(X, ·)

is convex and decreasing, and (by the hypothesis of boundedness)|mn(X, ε)| ≤ |g(X, a)| ≤ M
for all ε ∈ [a, b].

By Lebesgue’s Dominated Convergence Theorem (see, for instance, [1]),

(2.5) E
[

∂

∂ε
f(X, ε)

]
= E [g(X, ε)] = lim

n→∞
E [mn(X, ε)] =

∂

∂ε
E [f(X, ε)]

and the proof is complete. �

3. M AIN RESULTS

Theorem 3.1.For any random variableX, and functionf such that, with probability1,

(1) f(X, ·) meets the requirements of Lemma 2.2 on[a, b] and is non-negative,
(2) f(·, ε) is decreasing∀ε ∈ [a, b], and
(3) ∂

∂ε
f(·, ε) is increasing∀ε ∈ [a, b],
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CONVEX FUNCTIONS OFRANDOM VARIABLES 3

then forε1, ε2 ∈ [a, b] with ε1 < ε2,

(3.1) Var [f(X, ε2)] ≤ Var [f(X, ε1)]

provided the variances exist.
Moreover, if∃ ε3, ε4 ∈ [ε1, ε2], such thatε3 < ε4 and∀ ε̂ ∈ [ε3, ε4], f(·, ε̂) is strictly decreasing

and ∂
∂ε

f(·, ε)
∣∣
ε=ε̂

is strictly increasing, the above inequality is strict.

Proof. It suffices to show thatVar [f(X, ε)] is a decreasing function ofε. First, note that (with
probability 1) f(X, ·)2 is convex and decreasing sincef(X, ·) is convex decreasing and non-
negative. We note that its derivative ata is 2f(X, a)f ′(X, a) and hencef(X, ·)2 meets the
requirements of Lemma 2.2. Thus, we have

∂

∂ε
Var [f(X, ε)] =

∂

∂ε

{
E

[
f(X, ε)2

]
− (E [f(X, ε)])2}(3.2)

= E
[

∂

∂ε
f(X, ε)2

]
− 2E [f(X, ε)]

∂

∂ε
E [f(X, ε)]

= E
[
2f(X, ε)

∂

∂ε
f(X, ε)

]
− 2E [f(X, ε)] E

[
∂

∂ε
f(X, ε)

]
≤ 0,

where the last inequality follows by applying Lemma 2.1 to the decreasing functionf(·, ε), and
the increasing function∂

∂ε
f(·, ε), proving the initial assertion.

If ∃ ε3, ε4 ∈ [ε1, ε2], such thatε3 < ε4 and∀ ε̂ ∈ [ε3, ε4], f(·, ε̂) is strictly decreasing and
∂
∂ε

f(·, ε)
∣∣
ε=ε̂

is strictly increasing, Lemma 2.1 gives strict inequality. Integrating the inequality
from ε1 to ε2, we obtain

(3.3) Var [f(X, ε2)] < Var [f(X, ε1)] .

�

The inequality below on the variance of the reciprocals of shifted random variables follows
immediately from Theorem 3.1.

Example 3.1.Let X be a positive random variable, then for allq > 0 andε > 0,

(3.4) Var

[
1

(X + ε)q

]
< Var

[
1

Xq

]
provided the variances exist. Note that the theorem applies sinceX > 0 with probability1.

The next result compares the variance of two different convex functions of the same random
variable.

Theorem 3.2.LetX be a random variable. Iff andg are non-negative, differentiable, convex
decreasing functions such thatf ≤ g andf ′ ≥ g′ over the convex hull of the range ofX, then

(3.5) Var [f(X)] ≤ Var [g(X)]

provided the variances exist. Moreover, if0 > f ′ > g′, then the above inequality is strict.

Proof. Consider the functionh whereh(x, ε) = εf(x) + (1 − ε)g(x), ε ∈ [0, 1]. We observe
that

(1) h(x, ·) is non-negative, linear over[0, 1] (hence differentiable and convex decreasing),
and meets the requirements of Lemma 2.2.

(2) h(·, ε) is a decreasing function∀ε ∈ [0, 1] (since bothf andg are decreasing).
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(3) ∂
∂x

∂
∂ε

h(x, ε) = ∂
∂x

(f(x)− g(x)) = f ′ − g′ ≥ 0. That is, ∂
∂ε

h(·, ε) is an increasing
function.

Therefore, by Theorem 3.1,

(3.6) Var [f(X)] = Var [h(X, 1)] ≤ Var [h(X, 0)] = Var [g(X)] .

Furthermore, if0 > f ′ > g′, h(·, ε̂) is strictly decreasing and∂
∂ε

h(·, ε)|ε=ε̂ is strictly increasing
∀ε̂ ∈ [0, 1]. The result then holds with strict inequality by Theorem 3.1. �

Given a random variableX, the inverse of its distribution functionF−1
X is well defined except

on a set of measure zero since the set of points of discontinuity of an increasing function is
countable (see [3]). Given a uniform random variableU on [0, 1], X has the same distribution
function asF−1

X (U).
We now present an inequality comparing the variance of a convex function of two different

random variables.

Theorem 3.3. Let X,Y be non-negative random variables with inverse distribution functions
F−1

X , F−1
Y respectively. Given a non-negative convex decreasing functiong, if F−1

Y − F−1
X is

(1) non-negative and
(2) monotone decreasing

on [0, 1], then

(3.7) Var [g(Y )] ≤ Var [g(X)]

provided the variances exist.
Moreover, ifg is strictly convex and strictly decreasing and either of the following hold almost

everywhere:
(1) (F−1

Y )′ − (F−1
X )′ < 0, or

(2) F−1
Y − F−1

X > 0 and ε̂(F−1
Y )′ + (1 − ε̂)(F−1

X )′ > 0 for all ε̂ ∈ [ε1, ε2] ⊆ [0, 1] with
ε1 < ε2,

then the above inequality is strict.

Proof. Consider the functionh whereh(u, ε) = g
(
F−1

X (u) + ε
[
F−1

Y (u)− F−1
X (u)

])
ε ∈ [0, 1].

Note thatg ≥ 0, g′ ≤ 0, g′′ ≥ 0 sinceg is non-negative convex and decreasing; and that the
inverse distribution function of a non-negative random variable is non-negative. Hence,

(1) h(u, ·) is non-negative, differentiable, convex and decreasing, and

∂

∂ε
h(u, ε)

∣∣∣∣
ε=0

=
[
F−1

Y (u)− F−1
X (u)

]
g′

(
F−1

X (u)
)

exists and is bounded with probability 1, soh meets the requirements of Lemma 2.2.
(2) h(·, ε) is a decreasing function∀ε ∈ [0, 1].
(3) ∂

∂ε
h(·, ε) is an increasing function since

∂

∂u

∂

∂ε
h(u, ε)

=
∂

∂u

{[
F−1

Y (u)− F−1
X (u)

]
g′

(
F−1

X (u) + ε
[
F−1

Y (u)− F−1
X (u)

])}
=

[
(F−1

Y )′(u)− (F−1
X )′(u)

]
g′

(
F−1

X (u) + ε
[
F−1

Y (u)− F−1
X (u)

])
+ ε(F−1

Y )′(u)
[
F−1

Y (u)− F−1
X (u)

]
g′′

(
F−1

X (u) + ε
[
F−1

Y (u)− F−1
X (u)

])
(3.8)

+ (1− ε)(F−1
X )′(u)

[
F−1

Y (u)− F−1
X (u)

]
g′′

(
F−1

X (u) + ε
[
F−1

Y (u)− F−1
X (u)

])
≥ 0.
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To justify the inequality, consider (3.8), the first term is non-negative due to condition (2) and
g being a decreasing function (g′ ≤ 0), and the second (resp. third) term is non-negative since
by the properties of distribution functions(F−1

Y )′ ≥ 0 (resp.(F−1
X )′ ≥ 0), condition (1) holds,

andg is convex (g′′ ≥ 0).
Therefore, by Theorem 3.1,

(3.9) Var [g(Y )] = Var [h(U, 1)] ≤ Var [h(U, 0)] = Var [g(X)] .

If the subsidiary conditions for strict inequality are met, sinceg′ < 0 andg′′ > 0, it is then clear
that Theorem 3.1 gives strict inequality. �

4. APPLICATIONS

Applications of such inequalities include comparing variances of present worth of financial
cash flows under stochastic interest rates. Specifically, the present worth ofy dollars inq years
at a interest rate ofX is given by y

(1+X)q (q > 0, X > 0). When the interest rateX increases by
a positive amount,ε, it is clear that the expected present worth decreases:

E
[

y

(1 + X + ε)q

]
< E

[
y

(1 + X)q

]
.

Example 3.1 shows that its variance decreases as well, that is,

Var

[
y

(1 + X + ε)q

]
< Var

[
y

(1 + X)q

]
.

In this example, the random variableX represents the projected interest rate (which is not
known with certainty), whileX + ε represents the interest rate should an increase ofε be envis-
aged.
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