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1. Introduction

Inequalities relating to the variances of convex functions of real-valued random vari-
ables are developed. Given a random variable,X, we denote its expectation by
E [X], its variance byVar [X], and useFX andF−1

X to denote its (cumulative) dis-
tribution function and the inverse of its (cumulative) distribution function respec-
tively. In this paper, we assume that all random variables are real-valued and non-
degenerate.

One familiar and elementary inequality in probability (supposing the expectations
exist) is:

(1.1) E [1/X] ≥ 1/E [X]

whereX is a non-negative random variable. This may be proven using convexity
(as an application of Jensen’s inequality) or by more elementary approaches [2], [4],
[5]. More generally, if one considers the expectations of convex functions of random
variables, then Jensen’s inequality gives:

(1.2) E [f(X)] ≥ f(E [X]),

whereX is a random variable andf is convex over the (convex hull of the) range of
X (see [6]).

In the literature, there have been few studies on the variance of convex functions
of random variables. In this note, we aim to provide some useful inequalities, in par-
ticular, for financial applications. Subsequently, we will deal with functions which
are continuous, convex and decreasing. Note thatVar [f(X)] = Var [−f(X)]. This
means our results also apply to concave increasing functions, which characterize the
utility functions of risk-adverse individuals in decision theory.

http://jipam.vu.edu.au
mailto:
mailto:
http://jipam.vu.edu.au


Convex Functions of Random
Variables

Chuen-Teck See and
Jeremy Chen

vol. 9, iss. 3, art. 80, 2008

Title Page

Contents

JJ II

J I

Page 4 of 12

Go Back

Full Screen

Close

2. Technical Lemmas

Lemma 2.1. Let X be a random variable, and letf, g be continuous functions on
R.

If f is monotonically increasing andg monotonically decreasing, then

(2.1) E [f(X)g(X)] ≤ E [f(X)] E [g(X)] .

If f, g are both monotonically increasing or decreasing, then

(2.2) E [f(X)g(X)] ≥ E [f(X)] E [g(X)] .

Moreover, in both cases, if both functions are strictly monotone, the inequality is
strict (see [6] or [ 4]).

Lemma 2.2. For any random variableX, if with probability1, f(X, ·) is a differen-
tiable, convex decreasing function on[a, b] (a < b) and its derivative ata exists and
is bounded, then

∂

∂ε
E [f(X, ε)] = E

[
∂

∂ε
f(X, ε)

]
.

Proof. Let g(x, ε) = ∂
∂ε

f(x, ε).
For ε ∈ [a, b), let

(2.3) mn(x, ε) = (n + Nε)

[
f

(
x, ε +

1

n + Nε

)
− f(x, ε)

]
,

whereNε = d 2
b−ε

e, and forε = b, let

(2.4) mn(x, ε) = (n + Nε)

[
f(x, ε)− f

(
x, ε− 1

n + Nε

)]
,
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whereNε = d 2
b−a

e.
Clearly the sequence{mn}n≥1 converges point-wise tog. Since with probabil-

ity 1, f(X, ·) is convex and decreasing, and (by the hypothesis of boundedness)
|mn(X, ε)| ≤ |g(X, a)| ≤ M for all ε ∈ [a, b].

By Lebesgue’s Dominated Convergence Theorem (see, for instance, [1]),

(2.5) E
[

∂

∂ε
f(X, ε)

]
= E [g(X, ε)] = lim

n→∞
E [mn(X, ε)] =

∂

∂ε
E [f(X, ε)]

and the proof is complete.
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3. Main Results

Theorem 3.1.For any random variableX, and functionf such that, with probabil-
ity 1,

1. f(X, ·) meets the requirements of Lemma2.2on [a, b] and is non-negative,

2. f(·, ε) is decreasing∀ε ∈ [a, b], and

3. ∂
∂ε

f(·, ε) is increasing∀ε ∈ [a, b],

then forε1, ε2 ∈ [a, b] with ε1 < ε2,

(3.1) Var [f(X, ε2)] ≤ Var [f(X, ε1)]

provided the variances exist.
Moreover, if∃ ε3, ε4 ∈ [ε1, ε2], such thatε3 < ε4 and∀ ε̂ ∈ [ε3, ε4], f(·, ε̂) is strictly

decreasing and∂
∂ε

f(·, ε)
∣∣
ε=ε̂

is strictly increasing, the above inequality is strict.

Proof. It suffices to show thatVar [f(X, ε)] is a decreasing function ofε. First, note
that (with probability1) f(X, ·)2 is convex and decreasing sincef(X, ·) is convex
decreasing and non-negative. We note that its derivative ata is 2f(X, a)f ′(X, a) and
hencef(X, ·)2 meets the requirements of Lemma2.2. Thus, we have

∂

∂ε
Var [f(X, ε)] =

∂

∂ε

{
E

[
f(X, ε)2

]
− (E [f(X, ε)])2}(3.2)

= E
[

∂

∂ε
f(X, ε)2

]
− 2E [f(X, ε)]

∂

∂ε
E [f(X, ε)]

= E
[
2f(X, ε)

∂

∂ε
f(X, ε)

]
− 2E [f(X, ε)] E

[
∂

∂ε
f(X, ε)

]
≤ 0,
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where the last inequality follows by applying Lemma2.1to the decreasing function
f(·, ε), and the increasing function∂

∂ε
f(·, ε), proving the initial assertion.

If ∃ ε3, ε4 ∈ [ε1, ε2], such thatε3 < ε4 and∀ ε̂ ∈ [ε3, ε4], f(·, ε̂) is strictly de-
creasing and∂

∂ε
f(·, ε)

∣∣
ε=ε̂

is strictly increasing, Lemma2.1 gives strict inequality.
Integrating the inequality fromε1 to ε2, we obtain

(3.3) Var [f(X, ε2)] < Var [f(X, ε1)] .

The inequality below on the variance of the reciprocals of shifted random vari-
ables follows immediately from Theorem3.1.

Example3.1. Let X be a positive random variable, then for allq > 0 andε > 0,

(3.4) Var

[
1

(X + ε)q

]
< Var

[
1

Xq

]
provided the variances exist. Note that the theorem applies sinceX > 0 with proba-
bility 1.

The next result compares the variance of two different convex functions of the
same random variable.

Theorem 3.2. Let X be a random variable. Iff andg are non-negative, differen-
tiable, convex decreasing functions such thatf ≤ g andf ′ ≥ g′ over the convex hull
of the range ofX, then

(3.5) Var [f(X)] ≤ Var [g(X)]

provided the variances exist. Moreover, if0 > f ′ > g′, then the above inequality is
strict.
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Proof. Consider the functionh whereh(x, ε) = εf(x) + (1− ε)g(x), ε ∈ [0, 1]. We
observe that

1. h(x, ·) is non-negative, linear over[0, 1] (hence differentiable and convex de-
creasing), and meets the requirements of Lemma2.2.

2. h(·, ε) is a decreasing function∀ε ∈ [0, 1] (since bothf andg are decreasing).

3. ∂
∂x

∂
∂ε

h(x, ε) = ∂
∂x

(f(x)− g(x)) = f ′ − g′ ≥ 0. That is, ∂
∂ε

h(·, ε) is an increas-
ing function.

Therefore, by Theorem3.1,

(3.6) Var [f(X)] = Var [h(X, 1)] ≤ Var [h(X, 0)] = Var [g(X)] .

Furthermore, if0 > f ′ > g′, h(·, ε̂) is strictly decreasing and∂
∂ε

h(·, ε)|ε=ε̂ is strictly
increasing∀ε̂ ∈ [0, 1]. The result then holds with strict inequality by Theorem3.1.

Given a random variableX, the inverse of its distribution functionF−1
X is well

defined except on a set of measure zero since the set of points of discontinuity of an
increasing function is countable (see [3]). Given a uniform random variableU on
[0, 1], X has the same distribution function asF−1

X (U).
We now present an inequality comparing the variance of a convex function of two

different random variables.

Theorem 3.3.LetX, Y be non-negative random variables with inverse distribution
functionsF−1

X , F−1
Y respectively. Given a non-negative convex decreasing function

g, if F−1
Y − F−1

X is

1. non-negative and
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2. monotone decreasing

on [0, 1], then

(3.7) Var [g(Y )] ≤ Var [g(X)]

provided the variances exist.
Moreover, ifg is strictly convex and strictly decreasing and either of the following

hold almost everywhere:

1. (F−1
Y )′ − (F−1

X )′ < 0, or

2. F−1
Y − F−1

X > 0 and ε̂(F−1
Y )′ + (1 − ε̂)(F−1

X )′ > 0 for all ε̂ ∈ [ε1, ε2] ⊆ [0, 1]
with ε1 < ε2,

then the above inequality is strict.

Proof. Consider the functionh whereh(u, ε) = g
(
F−1

X (u) + ε
[
F−1

Y (u)− F−1
X (u)

])
ε ∈ [0, 1]. Note thatg ≥ 0, g′ ≤ 0, g′′ ≥ 0 sinceg is non-negative convex and de-
creasing; and that the inverse distribution function of a non-negative random variable
is non-negative. Hence,

1. h(u, ·) is non-negative, differentiable, convex and decreasing, and

∂

∂ε
h(u, ε)

∣∣∣∣
ε=0

=
[
F−1

Y (u)− F−1
X (u)

]
g′

(
F−1

X (u)
)

exists and is bounded with probability 1, soh meets the requirements of Lemma
2.2.

2. h(·, ε) is a decreasing function∀ε ∈ [0, 1].
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3. ∂
∂ε

h(·, ε) is an increasing function since

∂

∂u

∂

∂ε
h(u, ε)

=
∂

∂u

{[
F−1

Y (u)− F−1
X (u)

]
g′

(
F−1

X (u) + ε
[
F−1

Y (u)− F−1
X (u)

])}
=

[
(F−1

Y )′(u)− (F−1
X )′(u)

]
g′

(
F−1

X (u) + ε
[
F−1

Y (u)− F−1
X (u)

])
+ ε(F−1

Y )′(u)
[
F−1

Y (u)− F−1
X (u)

]
× g′′

(
F−1

X (u) + ε
[
F−1

Y (u)− F−1
X (u)

])
(3.8)

+ (1− ε)(F−1
X )′(u)

[
F−1

Y (u)− F−1
X (u)

]
× g′′

(
F−1

X (u) + ε
[
F−1

Y (u)− F−1
X (u)

])
≥ 0.

To justify the inequality, consider (3.8), the first term is non-negative due to con-
dition (2) andg being a decreasing function (g′ ≤ 0), and the second (resp. third)
term is non-negative since by the properties of distribution functions(F−1

Y )′ ≥ 0
(resp.(F−1

X )′ ≥ 0), condition (1) holds, andg is convex (g′′ ≥ 0).
Therefore, by Theorem3.1,

(3.9) Var [g(Y )] = Var [h(U, 1)] ≤ Var [h(U, 0)] = Var [g(X)] .

If the subsidiary conditions for strict inequality are met, sinceg′ < 0 andg′′ > 0, it
is then clear that Theorem3.1gives strict inequality.
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4. Applications

Applications of such inequalities include comparing variances of present worth of
financial cash flows under stochastic interest rates. Specifically, the present worth of
y dollars inq years at a interest rate ofX is given by y

(1+X)q (q > 0, X > 0). When
the interest rateX increases by a positive amount,ε, it is clear that the expected
present worth decreases:

E
[

y

(1 + X + ε)q

]
< E

[
y

(1 + X)q

]
.

Example3.1shows that its variance decreases as well, that is,

Var

[
y

(1 + X + ε)q

]
< Var

[
y

(1 + X)q

]
.

In this example, the random variableX represents the projected interest rate (which
is not known with certainty), whileX + ε represents the interest rate should an
increase ofε be envisaged.
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