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ABSTRACT. Our aim in this paper is to obtain Hardy’s inequality in variable exponent Lebesgue
spacesLp(x)(0,∞), where the test functionu(x) vanishes at infinity. We use a local Dini-
Lipschitz condition and its the natural analogue at infinity, which play a central role in our proof.
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1. I NTRODUCTION

Over the last decades the variable exponent Lebesgue spaceLp(·)(Ω) and the corresponding
Sobolev spaceWm,p(·)(Ω) have been a subject of active research stimulated by development
of the studies of problems in elasticity, fluid dynamics, calculus of variations, and differential
equations withp(x)− growth [10, 12]. These spaces are a special case of the Musielak-Orlicz
spaces [8]. Ifp is the constant, thenLp(·)(Ω) coincides with the classical Lebesgue spaces.
We refer to [4, 7] for fundamental properties of these spaces and to [5, 6, 11] for Hardy type
inequalities.

The classical Hardy inequality [9] is

(1.1)
∫ ∞

0

|u(x)|p xβdx ≤
(

p

β + 1

)p ∫ ∞

0

|u′(x)|p xβ+pdx,

where1 < p < ∞,−1 < β < ∞, u is an absolutely continuous function on(0,∞) and
u(∞) = lim

x→∞
u(x) = 0.
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Kokilashvili and Samko [6] gave the boundedness of Hardy operators with fixed singularity
in the spacesLp(·)(ρ, Ω) over a bounded open set inRn with a power weightρ(x) = |x− x0|β,
x0 ∈ Ω̄ and an exponentp(x) satisfying the Dini-Lipschitz condition. The Hardy type inequality
can be derived

(1.2)
∥∥∥x

β
p(x) u

∥∥∥
p(x),(0,`)

≤ C(p(x), `)
∥∥∥x

β
p(x)

+1u′
∥∥∥

p(x),(0,`)
,

whereβ > −1, 1 < p− ≤ p+ < ∞, ` is a positive finite number, andu is an absolutely continu-
ous function on(0, `) in the Lebesgue space with variable exponent for bounded domains from
Theorem E in [6].

Recently, Harjulehto, Hästö and Koskenoja [5] have obtained the norm version of Hardy’s
inequality using Diening’s corollaries in the variable exponent Sobolev space. Also they have
given a necessary and sufficient condition for Hardy’s inequality to hold.

We consider the problem of the extension of Hardy’s inequality to the case of variable
p(x). Such inequalities with variablep(x) are already known for a finite interval(0, `) in
the one-dimensional case. Our aim in this paper is to obtain a Hardy type inequality in a
one-dimensional Lebesgue spaceLp(x)(0,∞) using a distinct method, by considering relevant
studies in [1] and [6].

2. PRELIMINARIES

Let Ω ⊂ Rn be an open set,p(·) : Ω → [1,∞) be a measurable bounded function and be
denoted asp+ = esssup

x∈Ω
p(x) andp− = essinf

x∈Ω
p(x). We define the variable exponent Lebesgue

spaceLp(·)(Ω) consisting of all measurable functionsf : Ω → R such that the modular

Ap(f) :=

∫
Ω

|f(x)|p(x)dx

is finite. If p+ < ∞ then we callp a bounded exponent and we can introduce the norm on
Lp(·)(Ω) by

(2.1) ‖f‖p(·),Ω := inf

{
λ > 0 : Ap

(
f

λ

)
≤ 1

}
andLp(·)(Ω) becomes a Banach space. The norm‖f‖p(·),Ω is in close relation with the modular
Ap(f).

Lemma 2.1([4]). Letp(x) be a measurable exponent such that1 ≤ p− ≤ p(x) ≤ p+ < ∞ and
let Ω be a measurable set inRn. Then,

(i) ‖f‖p(x) = λ 6= 0 if and only ifAp

(
f
λ

)
= 1;

(ii) ‖f‖p(x) < 1(= 1; > 1) ⇔ Ap(f) < 1 (= 1; > 1);

(iii) For anyp(x), the following inequalities

‖f‖p+

p(x) ≤ Ap(f) ≤ ‖f‖p−

p(x) , ‖f‖p(x) ≤ 1

and
‖f‖p−

p(x) ≤ Ap(f) ≤ ‖f‖p+

p(x) , ‖f‖p(x) ≥ 1

hold.

Lemma 2.2([4, 7]). The generalization of Hölder’s inequality∣∣∣∣∫
Ω

f(x)ϕ(x)dx

∣∣∣∣ ≤ c ‖f‖p(x) ‖ϕ‖p′(x)

holds, wherep′(x) = p(x)
p(x)−1

and the constantc > 0 depends only onp(x).
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We say that the exponentp(·) : Ω → [1,∞) is Dini-Lipschitz if there exists a constantc > 0
such that

(2.2) |p(x)− p(y)| ≤ c

− log |x− y|
,

for everyx, y ∈ Ω with |x− y| ≤ 1
2
. The natural analogue of (2.2) is

(2.3) |p(x)− p(y)| ≤ c

log (e + |x|)
for everyx, y ∈ Ω, |y| ≥ |x| at infinity. Under these conditions, most of the properties of
the classical Lebesgue space can be readily generalized to the Lebesgue space with variable
exponent.

Theorem 2.3([5, Theorem 5.2]). Let I = [0, M) for M < ∞, p : I → [1,∞) be bounded,
p(0) > 1 and

lim sup
x→0+

(p(x)− p(0)) log
1

x
< ∞

andp−(0,x0) = p(0) for somex0 ∈ (0, 1). If a ∈
[
0, 1− 1

p(0)

)
, then Hardy’s inequality

(2.4)

∥∥∥∥u(x)

x1−a

∥∥∥∥
p(x)

≤ C ‖u′(x)xa‖p(x)

holds for everyu ∈ W 1,p(x)(I) with u(0) = 0.

Throughout this paper, we will assume thatp(x) is a measurable function and use this notation

‖f‖p(x) := ‖f‖p(x),(0,∞) .

Moreover, we will usec andci as generic constants, i.e. its value may change from line to line.

3. M AIN RESULT

Theorem 3.1.Letβ > −1 andp : (0,∞) → (1,∞) be such that1 ≤ p− ≤ p+ < ∞ and

(3.1) |p(x)− p(y)| ≤ c

− log |x− y|
, |x− y| ≤ 1

2
, x, y ∈ R+.

Assume that there exists a numberp(∞) ∈ [1,∞) anda ≥ 1 such that

(3.2) 0 ≤ p(x)− p(∞) ≤ c

log(e + x)
, x ≥ a.

Then, we have

(3.3)
∥∥∥x

β
p(x) u(x)

∥∥∥
p(x)

≤ c
∥∥∥x

β
p(x)

+1u′(x)
∥∥∥

p(x)

for every absolutely continuous functionu : (0,∞) → R with u(∞) = 0.

Proof. To prove this inequality it suffices to consider the case∥∥∥x
β

p(x)
+1u′(x)

∥∥∥
p(x)

= 1

for a monotone decreasing functionu. Using Hölder’s inequality, we obtain

(3.4) u(a) = −
∫ ∞

a

u′(t)dt ≤ c‖t
β

p(t)
+1u′(t)‖p(t),(a,∞)‖t−

β
p(t)

−1‖p′(t),(a,∞) ≤ c1,
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wherep′(x) = p(x)
p(x)−1

, and the positive constantc1 depends only onp(x) andβ. Sinceu(x) ≤ c1

for (0,∞), using Hardy’s inequality for the fixed exponentp(∞) we have

(3.5)
∫ ∞

a

xβu(x)p(x)dx ≤ cp+

2

∫ ∞

a

xβu(x)p(∞)dx ≤ c3

∫ ∞

a

xβ(−xu′(x))p(∞)dx.

If we divide the interval(a,∞) into three sets such that

A = {t ∈ (a,∞) : t|u′(t)| > 1},
B = {t ∈ (a,∞) : t−β−2 < t|u′(t)| ≤ 1},
C = {t ∈ (a,∞) : t|u′(t)| ≤ t−β−2},

then we can write∫ ∞

a

tβ|tu′(t)|p(∞)dt =

∫
A

tβ|tu′(t)|p(∞)dt +

∫
B

tβ|tu′(t)|p(∞)dt +

∫
C

tβ|tu′(t)|p(∞)dt.

Now, let us estimate each integral. It is easy to see that∫
A

tβ|tu′(t)|p(∞)dt ≤
∫ ∞

a

tβ|tu′(t)|p(t)dt ≤ 1

and ∫
C

tβ|tu′(t)|p(∞)dt ≤
∫

C

tβt−β−2dt ≤
∫ ∞

a

tβt−β−2dt ≤ c.

Since

t(β+2)(p(t)−p(∞)) = (tp(t)−p(∞))β+2

≤
(
t

1
log(e+t)

)β+2

≤
(
e

log t
log(e+t)

)β+2

≤ eβ+2,

we have ∫
B

tβ|tu′(t)|p(∞)dt ≤
∫

B

tβ
(
tβ+2|tu′(t)|

)p(t)−p(∞)|tu′(t)|p(∞)dt

≤
∫ ∞

a

t(β+2)(p(t)−p(∞))tβ|tu′(t)|p(t)dt

≤ eβ+2

∫ ∞

a

tβ|tu′(t)|p(t)dt

≤ eβ+2.

Hence, we obtain

(3.6)
∫ ∞

a

tβ |u(t)|p(t) dt ≤ c.

On the other hand, by using inequality (1.2) and the assumption (3.1) for the interval(0, a), we
can write

(3.7)
∫ a

0

tβ |u(t)|p(t) dt ≤ c.

Combining inequalities (3.6) and (3.7), we get∫ ∞

0

tβ |u(t)|p(t) dt ≤ c
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and hence from the relation between norm and modular we have

(3.8) ‖t
β

p(t) u(t)‖p(t) ≤ c.

Consequently, we have the required result from (3.8) for

u(t)∥∥∥t
β

p(t)
+1u′(t)

∥∥∥
p(t)

.

�
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