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ABSTRACT. This paper concerns the study of the numerical approximation for the following
initial-boundary value problem:

(P)


ut = uxx − a|u|p−1u, 0 < x < 1, t > 0,

ux(0, t) = 0 ux(1, t) + b|u(1, t)|q−1u(1, t) = 0, t > 0,

u(x, 0) = u0(x) > 0, 0 ≤ x ≤ 1,

wherea > 0, b > 0 andq > p > 1. We show that the solution of a semidiscrete form of
(P ) goes to zero ast goes to infinity and give its asymptotic behavior. Using some nonstandard
schemes, we also prove some estimates of solutions for discrete forms of(P ). Finally, we give
some numerical experiments to illustrate our analysis.
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1. I NTRODUCTION

Consider the following initial-boundary value problem:

(1.1) ut = uxx − a|u|p−1u, 0 < x < 1, t > 0,

(1.2) ux(0, t) = 0 ux(1, t) + b|u(1, t)|q−1u(1, t) = 0, t > 0,

(1.3) u(x, 0) = u0(x) > 0, 0 ≤ x ≤ 1,

wherea > 0, b > 0, q > p > 1, u0 ∈ C1([0, 1]), u′0(0) = 0 andu′0(1) + b|u0(1)|q−1u0(1) = 0.
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2 NABONGO DIABATE AND THÉODOREK. BONI

The theoretical study of the asymptotic behavior of solutions for semilinear parabolic equa-
tions has been the subject of investigation for many authors (see [2], [4] and the references cited
therein). In particular, in [4], whenb = 0, the authors have shown that the solutionu of (1.1) –
(1.3) goes to zero ast tends to infinity and satisfies the following :

(1.4) 0 ≤ ‖u(x, t)‖∞ ≤ 1

(‖u0(x)‖∞ + a(p− 1)t)
1

p−1

for t ∈ [0, +∞),

(1.5) lim
t→∞

t
1

p−1‖u(x, t)‖∞ = C0,

whereC0 =
(

1
a(p−1)

) 1
p−1

. The same results have been obtained in [2] in the case whereb > 0

andq > p > 1.
In this paper we are interested in the numerical study of (1.1) – (1.3). At first, using a

semidiscrete form of (1.1) – (1.3), we prove similar results for the semidiscrete solution. We also
construct two nonstandard schemes and show that these schemes allow the discrete solutions to
obey an estimation as in (1.4). Previously, authors have used numerical methods to study the
phenomenon of blow-up and the one of extinction (see [1] and [3]). This paper is organized as
follows. In the next section, we prove some results about the discrete maximum principle. In
the third section, we take a semidiscrete form of (1.1) – (1.3), and show that the semidiscrete
solution goes to zero ast tends to infinity and give its asymptotic behavior. In the fourth section,
we show that the semidiscrete scheme of the third section converges. In Section 5, we construct
two nonstandard schemes and obtain some estimates as in (1.4). Finally, in the last section, we
give some numerical results.

2. SEMIDISCRETIZATIONS SCHEME

In this section, we give some lemmas which will be used later. LetI be a positive integer,
and define the gridxi = ih, 0 ≤ i ≤ I, whereh = 1/I. We approximate the solutionu of
the problem (1.1) – (1.3) by the solutionUh(t) = (U0(t), U1(t), . . . , UI(t))

T of the semidiscrete
equations

(2.1)
d

dt
Ui(t) = δ2Ui(t)− a|Ui(t)|p−1Ui(t), 0 ≤ i ≤ I − 1, t > 0,

(2.2)
d

dt
UI(t) = δ2UI(t)− a|UI(t)|p−1UI(t)−

2b

h
|UI(t)|q−1UI(t), t > 0,

(2.3) Ui(0) = U0
i > 0, 0 ≤ i ≤ I,

where

δ2Ui(t) =
Ui+1(t)− 2Ui(t) + Ui−1(t)

h2
, 1 ≤ i ≤ I − 1,

δ2U0(t) =
2U1(t)− 2U0(t)

h2
, δ2UI(t) =

2UI−1(t)− 2UI(t)

h2
.

The following lemma is a semidiscrete form of the maximum principle.

Lemma 2.1. Letah(t) ∈ C0([0, T ], RI+1) and letVh(t) ∈ C1([0, T ], RI+1) such that

(2.4)
d

dt
Vi(t)− δ2Vi(t) + ai(t)Vi(t) ≥ 0, 0 ≤ i ≤ I, t ∈ (0, T ),

(2.5) Vi(0) ≥ 0, 0 ≤ i ≤ I.
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DISCRETIZATIONS OF ASEMILINEAR PARABOLIC EQUATION 3

Then we haveVi(t) ≥ 0 for 0 ≤ i ≤ I, t ∈ (0, T ).

Proof. Let T0 < T and letm = min0≤i≤I,0≤t≤T0 Vi(t). Since fori ∈ {0, . . . , I}, Vi(t) is a
continuous function, there existst0 ∈ [0, T0] such thatm = Vi0(t0) for a certaini0 ∈ {0, . . . , I}.
It is not hard to see that

(2.6)
dVi0(t0)

dt
= lim

k→0

Vi0(t0)− Vi0(t0 − k)

k
≤ 0,

(2.7) δ2Vi0(t0) =
V1(t0)− V0(t0)

h2
≥ 0 if i0 = 0,

(2.8) δ2Vi0(t0) =
Vi0+1(t0)− 2Vi0(t0) + Vi0−1(t0)

h2
≥ 0 if 1 ≤ i0 ≤ I − 1,

(2.9) δ2Vi0(t0) =
VI−1(t0)− VI(t0)

h2
≥ 0 if i0 = I.

Define the vectorZh(t) = eλtVh(t) whereλ is large enough such thatai0(t0) − λ > 0. A
straightforward computation reveals:

(2.10)
dZi0(t0)

dt
− δ2Zi0(t0) + (ai0(t0)− λ)Zi0(t0) ≥ 0.

We observe from (2.6) – (2.9) that
dZi0

(t0)

dt
≤ 0 andδ2Zi0(t0) ≥ 0. Using (2.10), we arrive at

(ai0(t) − λ)Zi0(t0) ≥ 0, which implies thatZi0(t0) ≥ 0. Therefore,Vi0(t0) = m ≥ 0 and we
have the desired result. �

Another form of the maximum principle is the following comparison lemma.

Lemma 2.2. Let Vh(t), Uh(t) ∈ C1([0,∞), RI+1) and f ∈ C0(R × R, R) such that fort ∈
(0,∞),

(2.11)
dVi(t)

dt
− δ2Vi(t) + f(Vi(t), t) <

dUi(t)

dt
− δ2Ui(t) + f(Ui(t), t), 0 ≤ i ≤ I,

(2.12) Vi(0) < Ui(0), 0 ≤ i ≤ I.

Then we haveVi(t) < Ui(t), 0 ≤ i ≤ I, t ∈ (0,∞).

Proof. Define the vectorZh(t) = Uh(t) − Vh(t). Let t0 be the firstt > 0 such thatZi(t) > 0
for t ∈ [0, t0), i = 0, . . . , I, butZi0(t0) = 0 for a certaini0 ∈ {0, . . . , I}. We observe that

dZi0(t0)

dt
= lim

k→0

Zi0(t0)− Zi0(t0 − k)

k
≤ 0.

δ2Zi0(t0) =


Zi0+1(t0)−2Zi0

(t0)+Zi0−1(t0)

h2 ≥ 0 if 1 ≤ i0 ≤ I − 1,

2Z1(t0)−2Z0(t0)
h2 ≥ 0 if i0 = 0,

2ZI−1(t0)−2ZI(t0)

h2 ≥ 0 if i0 = I,

which implies:

dZi0(t0)

dt
− δ2Zi0(t0) + f(Ui0(t0), t0)− f(Vi0(t0), t0) ≤ 0.

But this inequality contradicts (2.11). �
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4 NABONGO DIABATE AND THÉODOREK. BONI

3. ASYMPTOTIC BEHAVIOR

In this section, we show that the solutionUh of (2.1) – (2.3) goes to zero ast → +∞ and
give its asymptotic behavior. Firstly, we prove that the solution tends to zero ast → +∞ by the
following:

Theorem 3.1. The solutionUh(t) of (2.1) – (2.3) goes to zero ast → ∞ and we have the
following estimate

0 ≤ ‖Uh(t)‖∞ ≤ 1

(‖Uh(0)‖1−p
∞ + a(p− 1)t)

1
p−1

for t ∈ [0, +∞).

Proof. We introduce the functionα(t) which is defined as

α(t) =
1

(‖Uh(0)‖1−p
∞ + a(p− 1)t)

1
p−1

and letWh be the vector such thatWi(t) = α(t). It is not hard to see that

dWi(t)

dt
− δ2Wi(t) + a|Wi(t)|p−1Wi(t) = 0, 0 ≤ i ≤ I − 1, t ∈ (0, T ),

dWI(t)

dt
− δ2WI(t) + a|WI(t)|p−1WI(t) +

2b

h
|WI(t)|q−1WI(t) ≥ 0, t ∈ (0, T ),

Wi(0) ≥ Ui(0), 0 ≤ i ≤ I,

where(0, T ) is the maximal time interval on which‖Uh(t)‖∞ < ∞. SettingZh(t) = Wh(t)−
Uh(t) and using the mean value theorem, we see that

dZi(t)

dt
− δ2Zi(t) + ap|θi(t)|p−1Zi(t) = 0, 0 ≤ i ≤ I − 1, t ∈ (0, T )

dZI(t)

dt
− δ2ZI(t) +

(
ap|θI(t)|p−1 +

2b

h
|θI(t)|q−1

)
ZI(t) ≥ 0, t ∈ (0, T ),

Zi(0) ≥ 0, 0 ≤ i ≤ I,

whereθi is an intermediate value betweenUi(t) andWi(t). From Lemma 2.1, we have0 ≤
Ui(t) ≤ Wi(t) for t ∈ (0, T ). If T < ∞, we have

‖Uh(T )‖∞ ≤ 1

(‖Uh(0)‖1−p
∞ + a(p− 1)T )

1
p−1

< ∞,

which leads to a contradiction. HenceT = ∞ and we have the desired result. �

Remark 1. The estimate of Theorem 3.1 is a semidiscrete version of the result established in
(1.4) for the continuous problem.

Let us give the statement of the main theorem of this section.

Theorem 3.2.LetUh be the solution of (2.1) – (2.2). Then we have

lim
t→∞

t
1

p−1‖Uh(t)‖∞ = C0,

whereC0 =
(

1
a(p−1)

) 1
p−1

.

The proof of Theorem 3.2 is based on the following lemmas. We introduce the function

µ(x) = −λ(C0 + x) + (C0 + x)p,

whereC0 =
(

1
a(p−1)

) 1
p−1

.

Firstly, we establish an upper bound of the solution for the semidiscrete problem.
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Lemma 3.3. LetUh be the solution of (2.1) – (2.3). For anyε > 0, there exist positive timesT
andτ such that

Ui(t + τ) ≤ (C0 + ε)(t + T )−λ + (t + T )−λ−1, 0 ≤ i ≤ I.

Proof. Define the vectorWh such that

Wi(t) = (C0 + ε)t−λ + t−λ−1.

A straightforward computation reveals that

dWi

dt
− δ2Wi + a|Wi|p−1Wi

= −λ(C0 + ε)t−λ−1 − (λ + 1)t−λ−2 + a((C0 + ε)t−λ + t−λ−1)p

= t−λ−1(−λ(C0 + ε)− (λ + 1)t−1 + a(C0 + ε + t−1)p),

becauseλp = λ + 1. Using the mean value theorem, we get

(C0 + ε + t−1)p = (C0 + ε)p + ξit
−1,

whereξi(t) is a bounded function. We deduce that

dWi

dt
− δ2Wi + a|Wi|p−1Wi = t−λ−1(µ(ε)− (λ + 1)t−1 + ξit

−1),

dWI

dt
− δ2WI + a|WI |p−1WI +

2b

h
|WI |q−1WI

= t−λ−1

(
µ(ε)− (λ + 1)t−1 + ξit

−1 +
2b

h
t−qλ+λ+1(C0 + ε + t−1)q

)
.

Obviously−qλ + λ + 1 = p−q
p−1

< 0. We also observe thatµ(0) = 0 andµ′(0) = 1, which
implies thatµ(ε) > 0. Therefore there exists a positive timeT such that

dWi

dt
− δ2Wi + a|Wi|p−1Wi > 0, 0 ≤ i ≤ I − 1, t ∈ [T, +∞),

dWI

dt
− δ2WI + a|WI |p−1WI +

2b

h
|WI(t)|q−1WI(t) > 0, t ∈ [T, +∞),

Wi(T ) >
T−λC0

2
.

Since from Theorem 3.1limt→∞ Ui(t) = 0, there existsτ > T such thatUi(τ) < T−λC0

2
<

Wi(T ). We introduce the vectorZh(t) such thatZi(t) = Ui(t + τ − T ), 0 ≤ i ≤ I. We obtain

dZi

dt
− δ2Zi + a|Zi|p−1Zi > 0, 0 ≤ i ≤ I − 1, t ≥ T,

dZI

dt
− δ2ZI + a|ZI |p−1ZI +

2b

h
|ZI(t)|q−1ZI(t) > 0, t ≥ T,

Zi(T ) = Ui(τ) < Wi(T ).

We deduce from Lemma 2.2 thatZi(t) ≤ Wi(t), that is to say

(3.1) Ui(t + τ − T ) ≤ Wi(t) for t ≥ T,

which leads us to the result. �

The lemma below gives a lower bound of the solution for the semidiscrete problem.
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Lemma 3.4. Let Uh be the solution of (2.1) – (2.3). For anyε > 0, there exists a positive time
τ such that

Ui(t + 1) ≥ (C0 − ε)(t + τ)−λ + (t + τ)−λ−1, 0 ≤ i ≤ I.

Proof. Introduce the vectorVh such that

Vi(t) = (C0 − ε)t−λ + t−λ−1.

A direct calculation yields

dVi

dt
− δ2Vi + a|Vi|p−1Vi = −λ(C0 − ε)t−λ−1 − (λ + 1)t−λ−2 + a((C0 − ε)t−λ + t−λ−1)p

= t−λ−1(−λ(C0 − ε)− (λ + 1)t−1 + a(C0 − ε + t−1)p)

becauseλp = λ + 1. From the mean value theorem, we have

(C0 − ε + t−1)p = (C0 − ε)p + χi(t)t
−1,

whereχi(t) is a bounded function. We deduce that

dVi

dt
− δ2Vi + a|Vi|p−1Vi = t−λ−1(µ(−ε)− (λ + 1)t−1 + χit

−1),

dVI

dt
− δ2VI + a|VI |p−1VI +

2b

h
|VI |q−1VI

= t−λ−1

(
µ(ε)− (λ + 1)t−1 + χit

−1 +
2b

h
t−qλ+λ+1(C0 − ε + t−1)q

)
.

Obviously−qλ + λ + 1 < 0. Also, sinceµ(0) = 0 andµ′(0) = 1, it is easy to see that
µ(−ε) < 0. Hence there existsT > 0 such that

dVi

dt
− δ2Vi + a|Vi|p−1Vi < 0, 0 ≤ i ≤ I − 1, t ∈ [T, +∞),

dVI

dt
− δ2VI + a|VI |p−1VI +

2b

h
|VI |q−1VI < 0, t ∈ [T, +∞).

SinceVi(t) goes to zero ast → +∞, there existsτ > max(T, 1) such thatVi(τ) < Ui(1).
SettingXi(t) = Vi(t + τ − 1), we observe that

dXi

dt
− δ2Xi + a|Xi|p−1Xi < 0, 0 ≤ i ≤ I − 1, t ≥ 1,

dXI

dt
− δ2XI + a|XI |p−1XI +

2b

h
|XI |q−1XI < 0, t ≥ 1,

Xi(1) = Vi(τ) < Ui(1).

We deduce from Lemma 2.2 that

(3.2) Ui(t) ≥ Vi(t + τ − 1) for t ≥ 1,

which leads us to the result. �

Now, we are in a position to give the proof of the main result of this section.

Proof of Theorem 3.2.From Lemma 3.3 and Lemma 3.4, we deduce

(C0 − ε) ≤ lim
t→∞

inf

(
Ui(t)

tλ

)
≤ lim

t→∞
sup

(
Ui(t)

tλ

)
≤ (C0 + ε),

and we have the desired result. �
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4. CONVERGENCE

In this section, we will show that for each fixed time interval[0, T ], whereu is defined, the
solutionUh(t) of (2.1) – (2.3) approximatesu, when the mesh parameterh goes to zero.

Theorem 4.1. Assume that (1.1) – (1.3) has a solutionu ∈ C4,1([0, 1] × [0, T ]) and the initial
condition at (2.3) satisfies

(4.1) ‖U0
h − uh(0)‖∞ = o(1) as h → 0,

whereuh(t) = (u(x0, t), . . . , u(xI , t))
T . Then, forh sufficiently small, the problem (2.1) – (2.3)

has a unique solutionUh ∈ C1([0, T ], RI+1) such that

(4.2) max
0≤t≤T

‖Uh(t)− uh(t)‖∞ = O(‖U0
h − uh(0)‖∞ + h2) as h → 0.

Proof. Let K > 0 andL be such that

2‖uxxx‖∞
3

≤ K

2
,

‖uxxxx‖∞
12

≤ K

2
, ‖u‖∞ ≤ K, ap(K + 1)p−1 ≤ L,

(4.3) 2q(K + 1)q−1 ≤ L.

The problem (2.1) – (2.3) has for eachh, a unique solutionUh ∈ C1([0, T h
q ), RI+1). Let t(h)

the greatest value oft > 0 such that

(4.4) ‖Uh(t)− uh(t)‖∞ < 1fort ∈ (0, t(h)).

The relation (4.1) implies thatt(h) > 0 for h sufficiently small. Lett∗(h) = min{t(h), T}. By
the triangular inequality, we obtain

‖Uh(t)‖∞ ≤ ‖u(x, t)‖∞ + ‖Uh(t)− uh(t)‖∞ for t ∈ (0, t∗(h)),

which implies that

(4.5) ‖Uh(t)‖∞ ≤ 1 + K, for t ∈ (0, t∗(h)).

Let eh(t) = Uh(t) − uh(x, t) be the error of discretization. Using Taylor’s expansion, we have
for t ∈ (0, t∗(h)),

d

dt
ei(t)− δ2ei(t) =

h2

12
uxxxx(x̃i, t)− apξp−1

i ei(t),

d

dt
eI(t)− δ2eI(t) =

2

h
qθq−1

I eI +
2h2

3
uxxx(x̃I , t) +

h2

12
uxxxx(x̃I , t)− apξp−1

I eI(t),

whereθI ∈ (UI(t), u(xI , t) andξi ∈ (Ui(t), u(xi, t). Using (4.3) and (4.5), we arrive at

(4.6)
d

dt
ei(t)− δ2ei(t) ≤ L|ei(t)|+ Kh2, 0 ≤ i ≤ I − 1,

(4.7)
deI(t)

dt
− (2eI−1(t)− 2eI(t))

h2
≤ L|eI(t)|

h
+ L|eI(t)|+ Kh2.

Consider the function

z(x, t) = e((M+1)t+Cx2)(‖U0
h − uh(0)‖∞ + Qh2)

whereM , C, Q are constants which will be determined later. We get

zt(x, t)− zxx(x, t) = (M + 1− 2C − 4C2x2)z(x, t),

zx(0, t) = 0, zx(1, t) = 2Cz(1, t),

z(x, 0) = eCx2

(
∥∥U0

h − uh(0)
∥∥
∞ + Qh).
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By a semidiscretization of the above problem, we may chooseM, C, Q large enough that

(4.8)
d

dt
z(xi, t) > δ2z(xi, t) + L|z(xi, t)|+ Kh2, 0 ≤ i ≤ I − 1,

(4.9)
d

dt
z(xI , t) > δ2z(xI , t) +

L

h
|z(xI , t)|+ L|z(xI , t)|+ Kh2,

(4.10) z(xi, 0) > ei(0), 0 ≤ i ≤ I.

It follows from Lemma 3.4 that

z(xi, t) > ei(t) for t ∈ (0, t∗(h)), 0 ≤ i ≤ I.

By the same way, we also prove that

z(xi, t) > −ei(t) for t ∈ (0, t∗(h)), 0 ≤ i ≤ I,

which implies that

‖Uh(t)− uh(t)‖∞ ≤ e(Mt+C)(
∥∥U0

h − uh(0)
∥∥
∞ + Qh2), t ∈ (0, t∗(h)).

Let us show thatt∗(h) = T . Suppose thatT > t(h). From (4.4), we obtain

(4.11) 1 = ‖Uh(t(h))− uh(t(h))‖∞ ≤ e(MT+C)(
∥∥U0

h − uh(0)
∥∥
∞ + Qh2).

Since the term in the right hand side of the inequality goes to zero ash goes to zero, we deduce
from (4.11) that1 ≤ 0, which is impossible. Consequentlyt∗(h) = T , and we obtain the desired
result. �

5. FULL DISCRETIZATIONS

In this section, we study the asymptotic behavior, using full discrete schemes (explicit and
implicit) of (1.1) – (1.3). Firstly, we approximate the solutionu(x, t) of (1.1) – (1.3) by the
solutionU

(n)
h = (Un

0 , Un
1 , . . . , Un

I )T of the following explicit scheme

(5.1)
U

(n+1)
i − U

(n)
i

∆t
= δ2U

(n)
i − a

∣∣∣U (n)
i

∣∣∣p−1

U
(n+1)
i , 0 ≤ i ≤ I − 1,

(5.2)
U

(n+1)
I − U

(n)
I

∆t
= δ2U

(n)
I − a

∣∣∣U (n)
I

∣∣∣p−1

U
(n+1)
I − 2b

h

∣∣∣U (n)
I

∣∣∣q−1

U
(n+1)
I ,

(5.3) U
(0)
i = φi > 0, 0 ≤ i ≤ I,

wheren ≥ 0, ∆t ≤ h2

2
. We need the following lemma which is a discrete form of the maximum

principle for ordinary differential equations.

Lemma 5.1. Letf ∈ C1(R) and letan andbn be two bounded sequences such that

(5.4)
an+1 − an

∆t
+ f(an) ≥ bn+1 − bn

∆t
+ f(bn), n ≥ 0,

(5.5) a0 ≥ b0.

Then we havean ≥ bn, n ≥ 0 for h small enough.
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Proof. Let Zn = an − bn. We get

(5.6)
Zn+1 − Zn

∆t
+ f ′(ξn)Zn ≥ 0,

whereξn is an intermediate value betweenan andbn. Obviously

(5.7) Zn+1 ≥ Zn(1−∆tf ′(ξn)).

Sincean andbn are bounded andf ∈ C1(R), there exists a positiveM such that|f ′(ξn)| ≤ M .
Let j be the first integer such thatZj < 0. From (5.5),j ≥ 0. We haveZj ≥ Zj−1(1−∆tM).
Since∆tM goes to zero ash → 0 andZj−1 ≥ 0, we deduce thatZj ≥ 0 ash → 0 which is a
contradiction. Therefore,Zn ≥ 0 for anyn and we have proved the lemma. �

Now, we may state the following.

Theorem 5.2.LetUh be the solution of (5.1) – (5.3). We haveU
(n)
h ≥ 0 and∥∥∥U

(n)
h

∥∥∥
∞
≤ 1(∥∥∥U

(0)
h

∥∥∥1−p

∞
+ A(p− 1)n∆t

) 1
p−1

,

whereA = a

1+a∆t
∥∥∥U

(0)
h

∥∥∥p−1

∞

.

Proof. A straightforward calculation yields

(5.8) U
(n+1)
i =

∆t
h2 U

(n)
i+1 +

(
1− 2∆t

h2

)
U

(n)
i + U

(n)
i−1

1 + a∆t
∣∣∣U (n)

i

∣∣∣p−1 , 1 ≤ i ≤ I − 1,

(5.9) U
(n+1)
0 =

2∆t
h2 U

(n)
1 +

(
1− 2∆t

h2

)
U

(n)
0

1 + a∆t
∣∣∣U (n)

0

∣∣∣p−1 ,

(5.10) U
(n+1)
I =

2∆t
h2 U

(n)
I−1 +

(
1− 2∆t

h2

)
U

(n)
I

1 + a∆t
∣∣∣U (n)

I

∣∣∣p−1

+ 2 b
h
∆t

∣∣∣U (n)
I

∣∣∣q−1 .

Since1− 2∆t
h2 is nonnegative, using a recursive argument, it is easy to see thatU

(n)
h ≥ 0. Let i0

be such thatU (n)
i0

=
∥∥∥U

(n)
h

∥∥∥
∞

. From (5.8), we get

∥∥∥U
(n+1)
h

∥∥∥
∞
≤

∆t
h2 U

(n)
i0+1 +

(
1− 2∆t

h2

) ∥∥∥U
(n)
h

∥∥∥
∞

+ U
(n)
i0−1

1 + a∆t
∥∥∥U

(n)
h

∥∥∥p−1

∞

if 1 ≤ i0 ≤ I − 1.

Applying the triangle inequality and the fact that1− 2∆t
h2 is nonnegative, we arrive at

(5.11)
∥∥∥U

(n+1)
h

∥∥∥
∞
≤

∥∥∥U
(n)
h

∥∥∥
∞

1 + a∆t
∥∥∥U

(n)
h

∥∥∥p−1

∞

.
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We obtain the same estimation ifi0 = 0 or i0 = I. The inequality (5.11) implies that∥∥∥U
(n+1)
h

∥∥∥
∞
≤

∥∥∥U
(n)
h

∥∥∥
∞

and by iterating, we obtain
∥∥∥U

(n)
h

∥∥∥
∞
≤

∥∥∥U
(0)
h

∥∥∥
∞

. From (5.11), we

also observe that ∥∥∥U
(n+1)
h

∥∥∥
∞
− ‖U (n)‖∞

∆t
≤ −

a
∥∥∥U

(n)
h

∥∥∥p

∞

1 + a∆t
∥∥∥U

(n)
h

∥∥∥p−1

∞

.

Using the fact that
∥∥∥U

(n)
h

∥∥∥
∞
≤

∥∥∥U
(0)
h

∥∥∥
∞

, we have∥∥∥U
(n+1)
h

∥∥∥
∞
−

∥∥∥U
(n)
h

∥∥∥
∞

∆t
≤ −A

∥∥∥U
(n)
h

∥∥∥p

∞
.

We introduce the functionα(t) which is defined as follows

α(t) =
1(∥∥∥U

(0)
h

∥∥∥1−p

∞
+ A(p− 1)t

) 1
p−1

.

We remark thatα(t) obeys the following differential equation

α′(t) = −Aαp(t), α(0) =
∥∥∥U

(0)
h

∥∥∥
∞

.

Using a Taylor’s expansion, we have

α(tn+1) = α(tn) + ∆tα′(tn) +
(∆t)2

2
α′′(t̃n),

wheret̃n is an intermediate value betweentn andtn+1. It is not hard to see thatα(t) is a convex
function. Therefore, we obtain

α(tn+1)− α(tn)

∆t
≥ −Aαp(tn).

From Lemma 5.1, we get
∥∥∥U

(n)
h

∥∥∥
∞
≤ α(tn), which ensures that∥∥∥U

(n)
h

∥∥∥
∞
≤ 1(∥∥∥U

(0)
h

∥∥∥1−p

∞
+ A(p− 1)n∆t

) 1
p−1

,

and we have the desired result. �

Remark 2. The estimate of Theorem 5.2 is the discrete form of the one given in (1.4) for the
continuous problem.

Now, we approximate the solutionu(x, t) of problem (1.1) – (1.3) by the solutionU (n)
h of the

following implicit scheme

(5.12)
U

(n+1)
i − U

(n)
i

∆t
= δ2U

(n+1)
i −

∣∣∣U (n)
i

∣∣∣p−1

U
(n+1)
i , 0 ≤ i ≤ I − 1,

(5.13)
U

(n+1)
I − U

(n)
I

∆t
= δ2U

(n+1)
I − a

∣∣∣U (n)
I

∣∣∣p−1

U
(n+1)
I − 2b

h

∣∣∣U (n)
I

∣∣∣p−1

U
(n+1)
I ,

(5.14) U
(0)
i = φi > 0, 0 ≤ i ≤ I,
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wheren ≥ 0. Let us note that in the above construction, we do not need a restriction on the step
time.

The above equations may be rewritten in the following form:

U
(n)
0 = −2∆t

h2
U

(n+1)
1 +

(
1 + 2

∆t

h2
+ a∆t

∣∣∣U (n)
0

∣∣∣p−1
)

U
(n+1)
0 ,

U
(n)
i = −∆t

h2
U

(n+1)
i−1 +

(
1 + 2

∆t

h2
+ a∆t

∣∣∣U (n)
i

∣∣∣p−1
)

U
(n+1)
i − ∆t

h2
U

(n+1)
i+1 , 1 ≤ i ≤ I − 1,

U
(n)
I = −2∆t

h2
U

(n+1)
I−1 +

(
1 + 2

∆t

h2
+ a∆t

∣∣∣U (n)
I

∣∣∣p−1

+
2b

h
∆t

∣∣∣U (n)
I

∣∣∣q−1
)

U
(n+1)
I ,

which gives the following linear system

A(n)U
(n+1)
h = U

(n)
h

whereA(n) is the tridiagonal matrix defined as follows

A(n) =



d0
−2∆t

h2 0 0 · · · 0 0
−∆t
h2 d1

−∆t
h2 0 · · · 0 0

0 −∆t
h2 d2

−∆t
h2 0 · · · 0

...
...

... ... ...
...

...
0 0 · · · −∆t

h2 dI−2
−∆t
h2 0

0 0 0 · · · −∆t
h2 dI−1

−∆t
h2

0 0 0 · · · 0 −2∆t
h2 dI


,

with

di = 1 + 2
∆t

h2
+ a∆t|U (n)

i |p−1 for 0 ≤ i ≤ I − 1

and

dI = 1 + 2
∆t

h2
+ a∆t

∣∣∣U (n)
I

∣∣∣p−1

+
2b

h
∆t

∣∣∣U (n)
I

∣∣∣q−1

.

Let us remark that the tridiagonal matrixA(n) satisfies the following properties

A
(n)
ii > 0 and A

(n)
ij < 0 i 6= j,∣∣∣A(n)

ii

∣∣∣ >
∑
i6=j

∣∣∣A(n)
ij

∣∣∣ .

These properties imply thatUn
h exists for anyn andU

(n)
h ≥ 0 (see for instance [2]). As we

know that the solution of the discrete implicit scheme exists, we may state the following.

Theorem 5.3.LetU (n)
h be the solution of (5.12) – (5.14). We haveU

(n)
h ≥ 0 and∥∥∥U

(n)
h

∥∥∥
∞
≤ 1(∥∥∥U

(0)
h

∥∥∥1−p

∞
+ A(p− 1)n∆t

) 1
p−1

,

whereA = a

1+a∆t
∥∥∥U

(0)
h

∥∥∥p−1

∞

.
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12 NABONGO DIABATE AND THÉODOREK. BONI

Proof. We know thatU (n)
h ≥ 0 as we have seen above. Now, let us obtain the above estimate to

complete the proof. Leti0 be such thatU (n)
i0

=
∥∥∥U

(n)
h

∥∥∥
∞

. Using the equality (5.12), we have(
1 + 2

∆t

h2
+ a∆t

∥∥∥U
(n)
h

∥∥∥
∞

) ∥∥∥U
(n+1)
h

∥∥∥
∞
≤

∥∥∥U
(n)
h

∥∥∥
∞

+
∆t

h2
U

(n)
i0−1 +

∆t

h2
U

(n)
i0+1

if 1 ≤ i0 ≤ I − 1.

Applying the triangle inequality, we derive the following estimate

∥∥∥U
(n+1)
h

∥∥∥
∞
≤

∥∥∥U
(n)
h

∥∥∥
∞

1 + a∆t
∥∥∥U

(n)
h

∥∥∥p−1

∞

.

We obtain the same estimation if we takei0 = 0 or i0 = I. Reasoning as in the proof of
Theorem 5.3, we obtain the desired result. �

6. NUMERICAL RESULTS

In this section, we consider the explicit scheme in (5.1) – (5.3) and the implicit scheme in
(5.12) – (5.14). We suppose thatp = 2, q = 3, a = 1, b = 1, U0

i = 0.8 + 0.8 ∗ cos(πhi) and
∆t = h2

2
. In the following tables, in the rows, we give the firstn when∥∥∥n∆tU

(n)
h − 1

∥∥∥
∞

< ε,

the corresponding timeT n = n∆t, the CPU time and the order(s) of method computed from

s =
log((T4h − T2h)/(T2h − Th))

log(2)
.

Table 1: (ε = 10−2): Numerical times, numbers of iterations, CPU times (seconds), and
orders of the approximations obtained with the implicit Euler method

I T n n CPU time s
16 674.0820 345129 103 -
32 674.2632 1.380890. 660 -
64 674.3085 5.523.934 6020 2.01
128 674.3278 22095735 58290 1.24
256 674.4807 87383041 574823 2.99

Table 2: (ε = 10−2): Numerical times, numbers of iterations, CPU times (seconds) and
orders of the approximations obtained with the explicit Euler method

I T n n CPU time s
16 674.3281 345.255 90 -
32 674.3452 1.381.058 720 -
64 674.3290 5.524.102 10820 0.08
128 674.3187 22845950 323528 0.65
256 674.3098 88237375 19457811 0.21
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