Journal of Inequalities in Pure and Applied Mathematics

ON THE q-ANALOGUE OF GAMMA FUNCTIONS AND RELATED INEQUALITIES

TAEKYUN KIM AND C. ADIGA

Department of Mathematics Education
Kongju National University
Kongju 314-701, S. Korea.
EMail: tkim@kongju.ac.kr
Department of Studies in Mathematics University of Mysore, Manasagangotri Mysore 570006, India.
EMail: c_adiga@hotmail.com
volume 6 , issue 4 , article 118 , 2005.

Received 15 October, 2005; accepted 21 October, 2005.

Communicated by: J. Sándor

Abstract
Contents
Home Page
Go Back
Close

Abstract

In this paper, we obtain a q-analogue of a double inequality involving the Euler gamma function which was first proved geometrically by Alsina and Tomás [1] and then analytically by Sándor [6].

2000 Mathematics Subject Classification: 33B15.
Key words: Euler gamma function, q-gamma function.
The authors express their sincere gratitude to Professor J. Sándor for his valuable comments and suggestions.

Dedicated to H. M. Srivastava on his 65th birthday.

Contents

1 Introduction

2 Main Result 5
References

On the q-Analogue of Gamma Functions and Related Inequalities

Taekyun Kim and C. Adiga

Title Page
Contents

Go Back
Close
Quit
Page 2 of 8

1. Introduction

F. H. Jackson defined the q-analogue of the gamma function as

$$
\Gamma_{q}(x)=\frac{(q ; q)_{\infty}}{\left(q^{x} ; q\right)_{\infty}}(1-q)^{1-x}, \quad 0<q<1, \text { cf. }[2,4,5,7]
$$

and

$$
\Gamma_{q}(x)=\frac{\left(q^{-1} ; q^{-1}\right)_{\infty}}{\left(q^{-x} ; q^{-1}\right)_{\infty}}(q-1)^{1-x} q^{\binom{x}{2}}, \quad q>1
$$

where

$$
(a ; q)_{\infty}=\prod_{n=0}^{\infty}\left(1-a q^{n}\right)
$$

It is well known that $\Gamma_{q}(x) \rightarrow \Gamma(x)$ as $q \rightarrow 1^{-}$, where $\Gamma(x)$ is the ordinary Euler gamma function defined by

$$
\Gamma(x)=\int_{0}^{\infty} e^{-t} t^{x-1} d t, \quad x>0
$$

Recently Alsina and Tomás [1] have proved the following double inequality on employing a geometrical method:

Theorem 1.1. For all $x \in[0,1]$, and for all nonnegative integers n, one has

$$
\begin{equation*}
\frac{1}{n!} \leq \frac{\Gamma(1+x)^{n}}{\Gamma(1+n x)} \leq 1 \tag{1.1}
\end{equation*}
$$

On the q-Analogue of Gamma Functions and Related Inequalities

Taekyun Kim and C. Adiga

Title Page

Go Back
Close
Quit
Page 3 of 8

Sándor [6] has obtained a generalization of (1.1) by using certain simple analytical arguments. In fact, he proved that for all real numbers $a \geq 1$, and all $x \in[0,1]$,

$$
\begin{equation*}
\frac{1}{\Gamma(1+a)} \leq \frac{\Gamma(1+x)^{a}}{\Gamma(1+a x)} \leq 1 \tag{1.2}
\end{equation*}
$$

But to prove (1.2), Sándor used the following result:
Theorem 1.2. For all $x>0$,

$$
\begin{equation*}
\frac{\Gamma^{\prime}(x)}{\Gamma(x)}=-\gamma+(x-1) \sum_{k=0}^{\infty} \frac{1}{(k+1)(x+k)} \tag{1.3}
\end{equation*}
$$

In an e-mail message, Professor Sándor has informed the authors that, relation (1.2) follows also from the log-convexity of the Gamma function (i.e. in fact, the monotonous increasing property of the ψ-function). However, (1.3) implies many other facts in the theory of gamma functions. For example, the function $\psi(x)$ is strictly increasing for $x>0$, having as a consequence that, inequality (1.2) holds true with strict inequality (in both sides) for $a>1$. The main purpose of this paper is to obtain a q-analogue of (1.2). Our proof is simple and straightforward.

On the q-Analogue of Gamma Functions and Related Inequalities

Taekyun Kim and C. Adiga

Title Page
Contents

Page 4 of 8

2. Main Result

In this section, we prove our main result.
Theorem 2.1. If $0<q<1, a \geq 1$ and $x \in[0,1]$, then

$$
\frac{1}{\Gamma_{q}(1+a)} \leq \frac{\Gamma_{q}(1+x)^{a}}{\Gamma_{q}(1+a x)} \leq 1
$$

Proof. We have

$$
\begin{equation*}
\Gamma_{q}(1+x)=\frac{(q ; q)_{\infty}}{\left(q^{1+x} ; q\right)_{\infty}}(1-q)^{-x} \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\Gamma_{q}(1+a x)=\frac{(q ; q)_{\infty}}{\left(q^{1+a x} ; q\right)_{\infty}}(1-q)^{-a x} \tag{2.2}
\end{equation*}
$$

Taking the logarithmic derivatives of (2.1) and (2.2), we obtain
(2.3) $\frac{d}{d x}\left(\log \Gamma_{q}(1+x)\right)=-\log (1-q)+\log q \sum_{n=0}^{\infty} \frac{q^{1+x+n}}{1-q^{1+x+n}}$, cf. [3, 4, 5], and

$$
\begin{equation*}
\frac{d}{d x}\left(\log \Gamma_{q}(1+a x)\right)=-a \log (1-q)+a \log q \sum_{n=0}^{\infty} \frac{q^{1+a x+n}}{1-q^{1+a x+n}} \tag{2.4}
\end{equation*}
$$

On the q-Analogue of Gamma Functions and Related Inequalities

Taekyun Kim and C. Adiga

Title Page
Contents
Go Back
Close
Quit
Page 5 of 8

Since $x \geq 0, a \geq 1, \quad \log q<0$ and

$$
\frac{q^{1+a x+n}}{1-q^{1+a x+n}}-\frac{q^{1+x+n}}{1-q^{1+x+n}}=\frac{q^{1+a x+n}-q^{1+x+n}}{\left(1-q^{1+a x+n}\right)\left(1-q^{1+x+n}\right)} \leq 0
$$

we have

$$
\begin{equation*}
\frac{d}{d x}\left(\log \Gamma_{q}(1+a x)\right) \geq a \frac{d}{d x}\left(\log \Gamma_{q}(1+x)\right) \tag{2.5}
\end{equation*}
$$

Let

$$
g(x)=\log \frac{\Gamma_{q}(1+x)^{a}}{\Gamma_{q}(1+a x)}, \quad a \geq 1, x \geq 0
$$

Then

$$
g(x)=a \log \Gamma_{q}(1+x)-\log \Gamma_{q}(1+a x)
$$

and

$$
g^{\prime}(x)=a \frac{d}{d x}\left(\log \Gamma_{q}(1+x)\right)-\frac{d}{d x}\left(\log \Gamma_{q}(1+a x)\right)
$$

By (2.5), we get $g^{\prime}(x) \leq 0$, so g is decreasing. Hence the function

$$
f(x)=\frac{\Gamma_{q}(1+x)^{a}}{\Gamma_{q}(1+a x)}, \quad a \geq 1
$$

is a decreasing function of $x \geq 0$. Thus for $x \in[0,1]$ and $a \geq 1$, we have

$$
\frac{\Gamma_{q}(2)^{a}}{\Gamma_{q}(1+a)} \leq \frac{\Gamma_{q}(1+x)^{a}}{\Gamma_{q}(1+a x)} \leq \frac{\Gamma_{q}(1)^{a}}{\Gamma_{q}(1)} .
$$

On the q-Analogue of Gamma Functions and Related Inequalities

Taekyun Kim and C. Adiga

Title Page

| Contents |
| :---: | :---: |
| Go Back |
| Quit |
| Page 6 of 8 |

We complete the proof by noting that $\Gamma_{q}(1)=\Gamma_{q}(2)=1$.

Remark 1. Letting q to 1 in the above theorem. we obtain (1.2).
Remark 2. Letting q to 1 and then putting $a=n$ in the above theorem, we get (1.1).

References

[1] C. ALSINA AND M.S. TOMÁS, A geometrical proof of a new inequality for the gamma function, J. Inequal. Pure and Appl. Math., 6(2) (2005), Art. 48. [ONLINE http://jipam.vu.edu.au/article. php?sid=517].
[2] T. KIM And S.H. RIM, A note on the q-integral and q-series, Advanced Stud. Contemp. Math., 2 (2000), 37-45.
[3] T. KIM, q-Volkenborn Integration, Russian J. Math. Phys., 9(3) (2002), 288-299.
[4] T. KIM, On a q-analogue of the p-adic log gamma functions and related integrals, J. Number Theory, 76 (1999), 320-329.
[5] T. KIM, A note on the q-multiple zeta functions, Advan. Stud. Contemp. Math., 8 (2004), 111-113.
[6] J. SÁNDOR, A note on certain inequalities for the gamma function, J. Inequal. Pure and Appl. Math., 6(3) (2005), Art. 61. [ONLINE http: //jipam.vu.edu.au/article.php?sid=534].
[7] H. M. SRIVASTAVA, T. KIM AND Y. SIMSEK, q-Bernoulli numbers and polynomials associated with multiple q-zeta functions and basic L-series, Russian J. Math. Phys., 12 (2005), 241-268.

On the q-Analogue of Gamma Functions and Related Inequalities

Taekyun Kim and C. Adiga

Title Page
Contents

Go Back
Close
Quit
Page 8 of 8

