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Abstract

In this paper, we established some retard integral inequalities in n independent
variables and by means of examples we show the usefulness of our results.
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The study of integral inequalities involving functions of one or more indepen-
dent variables is an important tool in the study of existence, uniqueness, bounds,
stability, invariant manifolds and other qualitative properties of solutions of dif-
ferential equations and integral equations. During the past few years, many new

inequalities have been discovered (skel] 4, 7, €]). In the qualitative analy-

sis of some classes of partial differential equations, the bounds provided by the

earlier inequalities are inadequate and it is necessary to seek some new inequal-
ities in order to achieve a diversity of desired goals. Our aim in this paper is to

establish some new inequalitiessinindependent variables, meanwhile, some
applications of our results are also given.
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In this paper, we suppose, = |
0,...,0), a(t) = (a1(t1),...,an(
(81,...,8,) € R, T = (r1,...,7m0), 70 =
%= (210, 2m0), T = (T1,..., T,) € RY.

If f:R? — R, we suppose
l.s<tes; <t (i=1,2,...,n);
2. fﬁa(t) f(s)ds = Oal(tl) e Oa"(t") f(s1,...,80)dsy ... dsq;

4 ; _
3. Di—d—ti,Z—l,Q,...,n.

0,00), is subset of real numbef®, 0 =
tn) € RY, t = (ti,...,t,) € R}, s =
(7"10,...,7“710), E = (Zl,...

),
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In this part, we obtain our main results as follows:

Theorem 3.1.Lety € C(R,,R,) be a nondecreasing function withv) >
0 on (0,00), and letc be a nonnegative constant. Let € C'(R,,R,) be
nondecreasing with;(¢;) < t;onRy (i =1,...,n). Ifu, f € C(R},R; ) and

a(t)
(3.1) u(t) < c+ / f(s)v(u(s))ds, On Some New Retard Integral
0 Inequalities in  n Independent
Variables and Their
for0 <t < T, then Applications
() Xueqin Zhao and Fanwei Meng
(3.2) ut) <G |G(c) + ﬂ f(s)ds] :
0 Title Page
where s Contents
G(z) = —, zZ> 29> 0.
5 V(s) « >
G~ 'istheinverse off, T' € R is chosen so that < >
a(t) ) B Go Back
. B < .
(3.3) G(c) +/6 f(s)ds € Dom(G™), 0<t<T p——
Define the nondecreasing positive functigin) and make Quit
a(t) B Page 5 of 27
(3.4) 2(t) =c+e+ [ f(s)¥(u(s))ds, 0<t<T,
0
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wherez is an arbitrary small positive number. We know that

~

(35)  wu(t)<z(t),  DiDy---Dpz(t) = f(@)(u(@))ajay - - ay,.
Using 3.5, we have

D1D2 cee DnZ(t)

3.6 < fl@)alagy - - al,.
For On Some New Retard Integral
Inequalities in  n Independent
iabl d Thei
DiD; - Dyy2(1) i
(3.7) D,
L/}(Z(t)) Xueqin Zhao and Fanwei Meng
= 5 : ,
YA() Title Page
usingDyD; - -+ Dy, _12(t) > 0,¢" >0, Dy2(t) > 0in (3.7), we get Contents
(38) Dn <D1D2~.-Dn12(t)) S DlDQ«..DnZ<t) S f(a{/)alla/zcl/; ‘4 }’
W(z(t)) P(=(1)) < >
Fixingty,...,t,_1, settingt,, = s,, integrating frony,, to oo, yields Go Back
3.9 DyDs - -Dn_lz(t) Close
' U(=(t)) Quit
Page 6 of 27

an(tn)
< / flar(ty), s an1(tn1), Sn)ajah -l dsp,.
0
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Using the same method, we deduce that

D z t) ch(tg) Oén(t'n)
(3.10) ﬁ((t)) S/o /o f(t1,82,...,8,)ads, ... dss,

and integration off¢, o) yields
(3.11) G(=(1))
al(t1) an(tn)
SG(C+€)+/ / f(s1,82,...,8,)ds,...ds;, teR].
0 0

From the definition of7 and lettings — 0, we can obtain inequality3(2).

Remark 1. If we letG(z) — oo, z — oo, then condition §.3) can be omitted.

Corollary 3.2. If we lety) = s", 0 < r < 1in Theorem3.1, then fort € R,
we have

1
1—r

[cl”” +(1—-r) faa(t) f(s)ds] , 0<r<;

3.12)  u(t) <
cexp (fﬁa(t) f(s)ds) : r=1.

Remark 2. If we letn = 1, » = 1, a(t) = t, in Corollary 3.2, we obtain the

Mate-Nevai inequality.

Theorem 3.3.Letyp € C'(R,,R,) be an increasing function with(co) = oo.
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constant. Lety; € C'(R,,R,) be nondecreasing with;(¢;) < t; onR, (i =
L,...,n). Ifu, f e C(R},R;)and

a(t)
(3.19) plult) <c+ [ Fopiuls)ds
0
for0 <t < T, then
3.14 < L G—l G &) d On Some New Retard Integral
( ' ) u(t) > [ (C) + I f(S) S] ) Inequalities in n Independent
0 Variables and Their
Applications

whereG(Z) = fgzo m> z > é'VO > O, 90_17 G_l are respectively the inverse Xueqin Zhao and Fanwei Meng
ofpandG, T' € R is chosen so that

a) ) B Title Page

. - < .
(3.15) G(c) + /6 f(s)ds € Dom(G™"), 0<t<T Contents
Proof. From the definition of the, we know (.13 can be restated as 4 44
a(t) | | 2
(3.16) e(u(t)) < c+ : fs)le™ (plu(s)lds,  teRL. Go Back
Now an application of Theore® 1 gives Close
Quit
a(t) -
(3.17) o(u(t)) <G |G(e) +[ f(s)ds] : 0<t<T. Page 8 of 27
0
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So,

(3.18) u(t) <! {G_l[G(c) + /ﬁa(t) f(s)ds]} : 0<t<T.

O
Corollary 3.4. If we lety = s, ¢ = 5%, p, ¢ are constants, ang > ¢ > 0in
TheorenB.3 for0 <t < T, then
[cler( —)ft)f ds} q,when P> q;
(3.19) wu(t) <
cv exp <% faa(t) f(s)ds> , when p=q.

Theorem 3.5. Letu, f and g be nonnegative continuous functions defined on
R, let c be a nonnegative constant. Moreover, et w, € C(R.,R;) be
nondecreasing functions witly;(u) > 0(i = 1,2) on (0,00). Leta; €
CY(R.,R,) be nondecreasing with;(t;) < t; onR, (i=1,...,n). If

(3.20) <c+/ f(s)wi(u ))ds—l—/o g(s)wa(u(s))ds,

for0 <t < T, then

() for the caseavs(u) < wy(u),

(3.21) ut) < G { / (s ds+/ ()d}
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(17) for the casew;(u) < wq(u),

/ 7(s ds+/ <>d}

(322  u(t)<G {

where

(3.23) G-(M)—/Eﬁ 7> 5>0 (i=1,2)
. ) zZ)= 20 wz(s)) z - ZO ) 1= 9

andG; ' (i = 1,2) is the inverse of7;, T € R" is chosen so that

(3.24) Gi(c / f(s

[ g(s)ds € Dom(G; b, (i=1,2), 0<t<T.

Proof. Define the nonincreasing positive functieft) and make

a(t)

@25)  s)=ctet [ (s + / g(s)w(u(s))ds,

wheree is an arbitrary small positive number. From inequali&y?(), we know

(3.26) u(t) < 2(t)
and
(3.:27)  DiDy--- Dyz(t) = [f(@)wi(u(@))ajas - - o, + g(t)wa(u(?))]-
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The rest of the proof can be completed by following the proof of Thedem
with suitable modifications. O

Theorem 3.6. Letu, f and g be nonnegative continuous functions defined on
R%, and lety € C(R;,R,) be an increasing function with(co) = oo and

let ¢ be a nonnegative constant. Moreover,dgt w, € C(R,,RR,) be nonde-
creasing functions withw;(u) > 0(i = 1,2) on (0,00), o; € C'(R,,R,) be
nondecreasing with;(¢;) < t;onR (i =1,...,n). If

(328)  plu(t) <c+ / F(s)w (u(s))ds + / g(s)ws (u(s))ds,

for0 <t < T, then

(1) for the casaws(u) < wi(u),

(829) w(t) <y '{GT!

a(t) ¢
Gi(c) + . f(s)ds + /6 g(s)ds] } :

(77) for the caseaw; (u) < wq(u),

(3.30) wu(t) < 'qGy!

a(t) ¢
Go(c) + : f(s)ds + /6 g(s)ds] } ,

where N
# ds

A= | ey

>z, (i=1,2),
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andp~!,G; ! (i = 1,2) are respectively the inverse 6f,p, T € R is
chosen so that

a(t)

(3.31) Gi(e) + : f(s)ds

t
—l—ﬂ g(s)ds € Dom(G;Y), (i=1,2), 0<t<T.
0

Proof. From the definition ofp, we know (.28 can be restated as

a(t)
@32)  plut) <ot [ Fehmle elul)is
+/a g(s)wale™ (p(u(s)))lds,  t € RY,

Now an application of Theore@ 5gives

a(t) ¢ B
so(u(t))sc;l{ei(cw / £(s)ds + / g(s)ds}, G<t<T,

whereT" satisfies 8.31). We can obtain the desired inequaliti€s29 and
(3.30. N

Theorem 3.7. Let u, f and g be nonnegative continuous functions defined on
R? and letc be a nonnegative constant. Moreover, dete C(R,,R,) be
an increasing function witlp(co) = o0, ¥ € C(R4, R, ) be a nondecreasing
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function withy)(u) > 0 on (0, c0) anda; € C*(R4, R, ) be nondecreasing with
O[Z(tz> <t OnR+ (Z =1,... ,TL). If

a(t)
833  p(u(t) < C+/6 [f (s)u(s)ip(u(s)) + g(s)u(s)]ds,

for0 <t < T, then

(3.34) u(?)
a(t) a(®)
<! {Q ¢ (G[mc) v [ s+ [ WS)] } |
where
Q(r) = v rensl
R s T |
co- [ ds 27 >0,

5 Ve Q)]

Q-1 o=t G tare respectively the inverse 9f o, G. AndT € R is chosen so

that
G

a(t) a(t) N
Q(c) —i—ﬂ g(s)ds +ﬁ f(s)ds € Dom(G™1), 0<t<T,
0 0

and

G! {G

a(t)
Qc) + /6 g(s)ds

a(t) -
+[ f(s)ds} € Dom(Q7Y), 0<t<T.
0
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Proof. Let us first assume that > 0. Defining the nondecreasing positive

function z(¢) by the right-hand side of3(33

a(t)
2(t) =c+ /0 [f (s)u(s)¥(uls)) + g(s)u(s)]ds,

we know

(3.35) u(t) < ¢~ [z(1)]

and

(3.36) DiDy- - Dya(t) = [f(@)u(@)(u(@)) + g(@)u(@))atah ol

Using (3.35, we have

DDy ---Dyz(t)

@37) SN < @) () + o(@atod o,
For

DiDy -+ Dy_12(t)
(3.39) D"( o 1(=(0) )

_ DiDs - Diz(t)p™(2(t)) — DiDs - Duoaz(t) (' (2(1))) Daz(t)
(p=1(2(1)))? 7
usingD, Dy - - - D,_12(t) > 0, D,2(t) > 0, (= 1(2(1))) > 0in (3.39), we get
DDy - Dnlz(t)) _ DDy Dy(t)
p~1(2(t)) p~1(2(t))
< [f@u(p™'2(a)) + g(@)]aiay - ay,.

(3.39) D, (
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Fixing ¢4, ...,t,_1, settingt,, = s, integrating from0 to ¢,, with respect tos,,
yields

Dy Dy_12(t)
e (2(t))

(3.40) Dy

an (tn)
< /0 [flan(t), . o1 (tnor), sn) (0 (2(0n(th), - - . o1 (tnet), 5n)))

+glar(ty), s an_1(tn_1), sn)]aialy - -, ds,.
Using the same method, we deduce that

Dy z(t)
G40 0

as(tz) an(tn)
<[ [ ) s s () s)
0 0
+ glai(ty), sa, .., 8p)]yds, . . . dss.
Settingt; = s, and integrating it front) to ¢; with respect tos; yields

alt) a(t)
(342)  Q(:(1) < Q) + / F(s)e(o (2(5))ds + / o(s)ds,

Let 7} < T be arbitrary, we denote(T}) = Q(c) + foa(Tl) g(s)ds, from (3.42),
we deduce that

Q) < pT)+ [ Flsyilp2(s)ds, O<t<T <T.
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Now an application of Theore®.3 gives

2(t) < Q! {G—l G(p(Ty)) + /;(t) f(s)ds] } , 0<t<Ty<T,

SO

a(t) _
G (G(p(Tl)) +/6 f(s)ds)] } CU<t<T<T

Takingt = T; in the above inequality, sincg, is arbitrary, we can prove the
desired inequality3.34). O

u(t) <! {Ql

If ¢ = 0 we carry out the above procedure with> 0 instead ofc and
subsequently let — 0.

Settingf(¢) = 0, n = 1, we can obtain a retarded Ou-lang inequality.
Letu, f andg be nonnegative continuous functions definedignand letc
be a nonnegative constant. Moreover,jjet C'(R,,RR, ) be a nondecreasing
function with«)(u) > 0 on (0, 00) ande; € C*'(R, R, ) be nondecreasing with

Oéz<tz) <t OnR+ (Z = 1, R ,n). If

a(t)
Pt <At / [F(s)u(s)p(u(s)) + g(s)u(s)]ds,
for(0 <t < T, then

u(t) < Q1

1 &0 1 a
Q (c—i— 5/6 g(s)ds) + 5/6 f(s)ds] ,
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where B
* ds
O(2) =
) 2 Y(s)

Q~'isthe inverse of, andT" € R is chosen so that

Z > 2,

1 [ a(t) ~
Q <c+ 5[ 9(8)d8> +5 [ fls)ds€Dom(Q7),  0<t<T
0 0

Corollary 3.8. Letu, f and g be nonnegative continuous functions defined on
R” and letc be a nonnegative constant. Moreover,leg be positive constants
Wlthp >q,p # 1. Leta; € C' (R, R, ) be nondecreasing with;(¢;) < t; on

Ry (i=1,...,n).If

a(t)
wO et [ ) glulslds, 120
0
for0 <t < T then

<c(1—%>+%10~ ()ds) exp[f f(s } whenp = g;

1
p—q

{( + 2= ! f ds) S Bl fﬁa(t)f(s)ds} o , whenp > q.

Theorem 3.9. Letu, f and g be nonnegative continuous functions defined on
R%, and lety € C(R;,R,) be an increasing function with(co) = oo and
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let ¢ be a nonnegative constant. Moreover,dgt wy, € C(R,,RR,) be nonde-
creasing functions withv;(u) > 0 (i = 1,2) on(0,00), anda; € C* (R, R,)
be nondecreasing with; (t;) <t; (i =1,...,n). If

a(t) ¢
(3.43) p(u(t)) < c—l—/6 f(s)u(s)wl(u(s))ds+/6 g(s)u(s)wy(u(s))ds,

for0) <t < T, then

(1) for the casaws(u) < wi(u),
(3.44) u(t)

a(t) !
<ot {Ql Gyt <G1(Q(C)) * o fle)da+ /6 9(5)d8>] } |

(27) for the casew; (u) < wq(u),

() ¢
Gyt <G2(9<C)> + : f(s)ds + /6 g(s)ds)] },

(3.45) u(t)

S ()071 {Ql

where
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Q1 o1, G~ are respectively the inverse 6f ¢, G, andT € R, is
chosen so that

a(t) t "
G; (Q(c) +[ f(s)ds + [ g(s)ds) € Dom(G;1), 0<t<T,
0 0
and
at) t
GGy (Q(c) +[ f(s)ds + l g(s)ds) € Dom(Q™), 0<t<T.
0 0

Proof. Let ¢ > 0 and define the nonincreasing positive functigh) and make

(3.46) z(t)=c+ /;(t) f(s)u(s)wy(u(s))ds + /;g(s)u(s)wg(u(s))ds.
From inequality 8.43, we know

(3.47) u(t) < 7' [=(1)],

and

(3.48) DyDy---Dy,z(t)
= [f(@)u(@)w: (u(@))aioy - - - af + g(t)ut)wa(u(t))].
Using 3.47), we have

D1D2 cee DnZ<t)
p1(2(1))

(3.49) < f(@)wy (u(@))ajah - -l + g(t)wa(u(t)).
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For

DiDs -+ Dyy12(1)
(3.50) D"( o100 )

_ DDy Doa(t)e~ ! (2(t) = DiDs - - Duaz(t) (97" (2(1))) Duz(t)
(=1(2(1))) ’

usingD Dy - -+ D,,_12(t) > 0, (¢~ (2(t))) > 0, D,z(t) > 0in (3.50, we get

DiDy---Dy_12(t)\ _ DiDy--- Dyz(t)
D"( (=) )S 1)

< f@)ajay - apui (o™ (@) + g(t)wa (e~ (1)

Fixingty,...,t,_1, settingt,, = s,, integrating frony,, to oo, yields

DiDy--- Dn,lz(t) an(tn)
s [T e, et s

x wi(p Hay(ty),. ..,

tn
+ / g(th s >tn71> Sn)w2<3071<t17 s 7tn717 Sn))dsn-
0

an—1<tn—1)7 Sn))alla; U a;fldsn

Deductively
as(t2) an(tn)
/ f(al(tl);'sZy"'aSn)
0

/0 <
/tn

Dy z(t)
S IFO

o

wi (@ o (th), 82, .., 80))ydsy, . . . dss

(t1, 89, Sp)Wa (@ H(t1, 82, -, 80))dSy . . . dso.
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Fixing t., ..., t,, settingt; = s;, integrating fromo0 to ¢; with respect tos;
yields

(3.52) Qz(t)) < Qc) + A f(s1,. 0 sn)wi(p(2(8))

From TheorenB.6, we obtain

) ¢
Gt (Gl(Q(c)) +/6 f(s)ds+/69(s)ds>] ,

using B.47), we get the inequality3 44).

If ¢ = 0 we carry out the above procedure with> 0 instead ofc and
subsequently let — 0.
(il) when wq (u) < ws(u).

The proof can be completed with suitable changes. O

2(t) < Q71
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Example 4.1. Consider the integral equation:

(4.1) uP(ty,....t)

a(t)
= fte, ... ta)+ [ K(s1,...,80)9(51, ..., Sn,u(S1, ..., 8n))ds1 .. . dsy,

0
wheref, K : R} — R, g : R} x R — R are continuous functions and> 0
andp # lis constanta;(t) € C'(R,,R,) is nondecreasing with;(t) < ¢,
onR, (i =1,...,n). In[8] B.G. Pachpatte studied the problem wheft) =
t, n = 1. Here we assume that every solution under discussion exists on an
interval R} . We suppose that the functiofisk, g in (4.1) satisfy the following
conditions

(4.2) [t tn)

| 1 |K(t17"'7tn)|§027
|g<t17 SR )tn7u>|

<c
<ty ta)|ul?+ bty ..o ta)|ul,

wherec;, c,, are nonnegative constants, apd> ¢ > 0, andr : R} — R,
h : R? — R, are continuous functions. From (1) and using ¢.2), we get

(4.3) |uP(t1,...,tn)]

a(t)
<+ / [car(s1y .-+, Sp)|u|? 4 cah(sy, ..., sn)|uldsy ... ds,.
0
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Now an application of Corollang.8yields

. p—1
(-1 1) @ ’
(Cl s % fﬁ (®) h(s)dsl .. dSn)
X eXp [% fﬁa(t) r(s)dsy ... dsn}
when p = gq,
Ju(t)] < =
[ (77 S 0 (s s,
4o p c2(p—q) f dSl .ds ]
when p > q.

\

If the integrals ofr(s), h(s) are bounded, then we can have the bound of the
solutionu(t) of (4.1). Similarly, we can obtain many other kinds of estimates.

Example 4.2. Consider the partial delay differential equation:

@a LD eyt - by - i)
(4.5) uP(z,0) = a1 (z) uP(0,y) = as(y)
(4.6) a1(0) = az(0) =0, la1(z) + as(y)| < ¢,
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wheref € C(Ry x Ry x R% R), a; € C*(R;,R), ay € C'(Ry,R), candp
are nonnegative constants; € C'(R,,R,), hy € C*(R,,R,), such that

x —hy(z) >0, y — ha(y) >0,
hy(z) <1, hy(y) < 1.

Suppose that
(4.7) [f(@,y,u,0)| < a(z, y)lo|* + bz, y)[v],
wherea,b € C(R; x R, R) and let

1 1
4.8 M, = —_ M, = —_,
(4.8) S gy 2= max g

If u(x,y) is any solution of4.4) — (4.7), then

@) if p = q, we have

(49) Ju(r.y) |

1 M, My(p — 1 $1(x)  pér(y) _ p—1
S (C(lp) + %\/ / b(0_7 T)dO'dT
p 0 0

MM, [¢@) rory)
X exp [ 2 / / a(o, T)dodr
p 0 0
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(ii) if p > ¢, we have

(4.10) |u(z,y)

M My(p —1 d1(z)  pér(y) _ p—1
< [+ ﬁ/ / b(o, 7)dodr
On Some New Retard Integral

My M. _ #1(z) ré1(y) _
it At . ) 2(p — 9) / / a(o,7)dodr
Inequalities in  n Independent

Inwhich¢(z) = x — hi(z), z € R, ¢2(y) =y — ho(y), y € R} and Variables and Their

Applications
b(o,7) = b(o + hy(s), T+ ha(t)),a(0,7) = a(o + hy(s), T + ha(t)),

foro,s,7,t € R}.
Infact, ifu(z, y) is a solution of 4.4) — (4.7), then it satisfies the equivalent

Xueqin Zhao and Fanwei Meng

Title Page
integral equation:

Contents
(4.11) [u(w,y)? « |l »m
— ay(x) + asly //fstust u(s — h(s), £ — ho(t)))dtds. " S
forz,y € (R? x R?,R). Colac
Using @.5), (4.7) in (4 1]) and making the change of variables, we have Close
(4.12) |u(z,y)P Quit

|
$1(x)  per(y) - Page 25 of 27
< c+ MM, / / a(o, 7)|u(e, 7)|7+ b(o, 7)|u(e, T)|dodrT.
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Now a suitable application of the inequality in CorollaB8 to (4.12
yields @.9) and @.10.
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