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Abstract: The aim of this short note is to establish an integral inequality and its reverse
which give an affirmative answer to an open problem posed by QUÔC ANH
NGÔ, DU DUC THANG, TRANT TAT DAT, and DANG ANH TUAN, in the
paper [Notes on an integral inequality,J. Ineq. Pure and Appl. Math., 7(4)(2006),
Art. 120.]
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1. Introduction

Very recently, in the paper [1] the authors studied some integral inequalities and
proposed the following open problem:

Problem 1.1. Letf be a continuous function on[0, 1] satisfying

(1.1)
∫ 1

x

f(t)dt ≥
∫ 1

x

tdt, ∀x ∈ [0, 1].

Under what conditions does the inequality

(1.2)
∫ 1

0

fα+β(x)dx ≥
∫ 1

0

xαfβ(x)dx

hold forα andβ?

This type of integral inequality is a complement, variant and continuation of Qi’s
inequality [2]. Before giving an affirmative answer to Problem1.1 and its reverse,
we establish the following essential lemma:

Lemma 1.2. Let f(x) be nonnegative function, continuous on[a, b] and differen-
tiable on(a, b).

If
∫ b

x
f(t)dt ≤

∫ b

x
(t− a)dt, ∀x ∈ [a, b], then

(1.3) f(x) ≤ x− a.

If
∫ b

x
f(t)dt ≥

∫ b

x
(t− a)dt, ∀x ∈ [a, b], then

(1.4) f(x) ≥ x− a.
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Proof. In order to prove (1.3), set

G(x) =

∫ b

x

[f(t)− (t− a)]dt ≤ 0, ∀x ∈ [a, b],

we have
G

′
(x) = x− a− f(x), ∀x ∈ [a, b].

We shall give an indirect proof, we supposef(x) ≥ x − a, thenG
′
(x) ≤ 0, G(x)

decreases, andG(x) ≥ 0, because ofG(b) = 0. This contradiction establishes (1.3).
The proof of (1.4) is the same as the proof of (1.3).

Now, our results can be stated as follows:
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2. Main Results

Theorem 2.1.Letf(x) be a nonnegative function, continuous on[a, b] and differen-
tiable on(a, b), and letα andβ be positive numbers.
If
∫ b

x
f(t)dt ≤

∫ b

x
(t− a)dt, ∀x ∈ [a, b], then

(2.1)
∫ b

a

fα+β(x)dx ≤
∫ b

a

(x− a)αfβ(x)dx.

If
∫ b

x
f(t)dt ≥

∫ b

x
(t− a)dt, ∀x ∈ [a, b], then

(2.2)
∫ b

a

fα+β(x)dx ≥
∫ b

a

(x− a)αfβ(x)dx.

Proof. Set

F (x) =

∫ x

a

[
fα+β(t)− (t− a)αfβ(t)dt

]
, ∀x ∈ [a, b].

We can see that
F

′
(x) = fα+β(x)− (x− a)αfβ(x),

so that
F

′
(x) = [fα(x)− (x− a)α] fβ(x).

If ∫ b

x

f(t)dt ≤
∫ b

x

(t− a)dt, ∀x ∈ [a, b],

and from (1.3) of Lemma1.2, we have,f(x) ≤ (x− a), so thatfα(x) ≤ (x− a)α.
ThusF

′
(x) ≤ 0, andF (x) is decreasing on[a, b]. SinceF (a) = 0, we haveF (x) ≤

0, ∀x ∈ [a, b], which gives the inequality (2.1).
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When ∫ b

x

f(t)dt ≥
∫ b

x

(t− a)dt, ∀x ∈ [a, b],

we have from (1.4) fα(x) ≥ (x − a)α, and the rest of the proof is the same as that
of (2.1).

Remark1. If f(x) = 0 or f(x) = x− a, the equality in (2.1) holds.

Now we establish new integral inequalities similar to (2.1) and (2.2) involving n
functions:fi(x), i = 1, . . . , n.

Theorem 2.2. Let fi(x), i = 1, 2, . . . , n be nonnegative functions, continuous on
[a, b] and differentiable on(a, b), and letαi, βi, i = 1, . . . , n be positive numbers.
If ∫ b

x

fi(t)dt ≤
∫ b

x

(t− a)dt, ∀x ∈ [a, b],

then

(2.3)
∫ b

a

n∏
i=1

fαi+βi

i (x)dx ≤
∫ b

a

(x− a)
∑n

i=1 αi

n∏
i=1

fβi

i (x)dx.

If ∫ b

x

fi(t)dt ≥
∫ b

x

(t− a)dt, ∀x ∈ [a, b],

then

(2.4)
∫ b

a

n∏
i=1

fαi+βi

i (x)dx ≥
∫ b

a

(x− a)
∑n

i=1 αi

n∏
i=1

fβi

i (x)dx.
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Proof. As in proof of (2.1) and (2.2), we let

F (x) =

∫ x

a

[
n∏

i=1

fαi+βi

i (t)− (t− a)
∑n

i=1 αi

n∏
i=1

fβi

i (t)

]
dt,

thus

F
′
(x) =

[
n∏

i=1

fαi
i (x)− (x− a)

∑n
i=1 αi

]
n∏

i=1

fβi

i (x),

when∫ b

x

fi(t)dt ≤
∫ b

x

(t− a)dt

(
resp.

∫ b

x

fi(t)dt ≥
∫ b

x

(t− a)dt

)
, ∀x ∈ [a, b],

using Lemma1.2, we have

fi(x) ≤ x− a (resp.fi(x) ≥ x− a) , i = 1, 2, . . . , n,

and

fαi
i (x) ≤ (x− a)αi (resp.fαi

i (x) ≥ (x− a)αi) , i = 1, 2, . . . , n,

thus

n∏
i=1

fαi
i (x) ≤ (x− a)

∑n
i=1 αi

(
resp.

n∏
i=1

fαi
i (x) ≥ (x− a)

∑n
i=1 αi

)
.

The rest of the proof is the same as in Theorem2.1, and we omit (2.3) and (2.4).

In order to illustrate a possible practical use of this result, we shall give in the
following a simple example in which we can apply Theorem2.1.
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Example2.1. Forα = β = 1 :

i) Let f(t) = cos t + t on [0, π
2
], we see that all the conditions of Theorem2.1are

fulfilled. Indeed,∫ π
2

x

(cos t + t) dt = 1− sin x +
1

2

(
π2

4
− x2

)
≥
∫ π

2

x

tdt =
1

2

(
π2

4
− x2

)
, ∀x ∈

[
0,

π

2

]
,

and straightforward computation yields∫ π
2

0

(cos x + x)2 dx =
5π

4
+

π3

24
− 2

>

∫ π
2

0

x (cos x + x) dx

=
π

2
+

π3

24
− 1.

That is, ∫ π
2

0

f 2(x)dx >

∫ π
2

0

xf(x)dx.

ii) Let f(t) = t− π
2
+cos t on [π

2
, π], all the conditions of Theorem2.1be satisfied.

We see that∫ π

x

(
t− π

2
+ cos t

)
dt ≤

∫ π

x

(
t− π

2

)
dt, ∀x ∈

[π
2
, π
]
,
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which is equivalent to∫ π

x

cos tdt = − sin x ≤ 0, x ∈
[π
2
, π
]
,

and direct computation yields∫ π

π
2

(
x− π

2
+ cos x

)2

dx =
π

4
+

π3

24
− 2

<

∫ π

π
2

(
x− π

2

)
f(x)dx

=
π3

24
− 1.

That is ∫ π

π
2

f 2(x)dx <

∫ π

π
2

(
x− π

2

)
f(x)dx.
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