

Journal of Inequalities in Pure and Applied Mathematics

http://jipam.vu.edu.au/

Volume 7, Issue 2, Article 73, 2006

CONVEXITY OF WEIGHTED STOLARSKY MEANS

ALFRED WITKOWSKI

MIELCZARSKIEGO 4/29, 85-796 BYDGOSZCZ, POLAND alfred.witkowski@atosorigin.com

Received 28 October, 2005; accepted 13 November, 2005 Communicated by P.S. Bullen

ABSTRACT. We investigate monotonicity and logarithmic convexity properties of one-parameter family of means

 $F_h(r; a, b; x, y) = E(r, r+h; ax, by) / E(r, r+h; a, b)$

where E is the Stolarsky mean. Some inequalities between classic means are obtained.

Key words and phrases: Extended mean values, Mean, Convexity.

2000 Mathematics Subject Classification. 26D15.

1. INTRODUCTION

Extended mean values of positive numbers x, y introduced by Stolarsky in [6] are defined as

(1.1)
$$E(r,s;x,y) = \begin{cases} \left(\frac{r}{s}\frac{y^s - x^s}{y^r - x^r}\right)^{\frac{1}{s-r}} & sr(s-r)(x-y) \neq 0, \\ \left(\frac{1}{r}\frac{y^r - x^r}{\log y - \log x}\right)^{\frac{1}{r}} & r(x-y) \neq 0, \ s = 0, \\ e^{-\frac{1}{r}} \left(\frac{y^y}{x^{x^r}}\right)^{\frac{1}{y^r - x^r}} & r = s, \ r(x-y) \neq 0, \\ \sqrt{xy} & r = s = 0, \ x - y \neq 0, \\ x & x = y. \end{cases}$$

This mean is also called the Stolarsky mean.

In [9] the author extended the Stolarsky means to a four-parameter family of means by adding positive weights a, b:

(1.2)
$$F(r,s;a,b;x,y) = \frac{E(r,s;ax,by)}{E(r,s;a,b)}.$$

ISSN (electronic): 1443-5756

^{© 2006} Victoria University. All rights reserved.

³²¹⁻⁰⁵

From the continuity of E it follows that F is continuous in $\mathbb{R}^2 \times \mathbb{R}^2_+ \times \mathbb{R}^2_+$. Our goal in this paper is to investigate the logarithmic convexity of

(1.3)
$$F_h(r; a, b; x, y) = F(r, r+h; a, b; x, y).$$

In [1] Horst Alzer investigated the one-parameter mean

(1.4)
$$J(r) = J(r; x, y) = E(r, r+1; x, y)$$

and proved that for $x \neq y$, J is strictly log-convex for r < -1/2 and strictly log-concave for r > -1/2. He also proved that $J(r)J(-r) \leq J^2(0)$. In [2] he obtained a similar result for the Lehmer means

(1.5)
$$L(r) = L(r; x, y) = \frac{x^{r+1} + y^{r+1}}{x^r + y^r}.$$

With an appropriate choice of parameters in (1.2) one can obtain both the one-parameter mean and the Lehmer mean. Namely,

$$J(r; x, y) = F(r, r+1; 1, 1; x, y)$$

and

$$L(r, x, y) = F(r, r+1; x, y; x, y).$$

Another example may be the mean created the same way from the Heronian mean

(1.6)
$$N(r;x,y) = F(r,r+1;\sqrt{x},\sqrt{y};x,y) = \frac{x^{r+1} + \sqrt{xy^{r+1}} + y^{r+1}}{x^r + \sqrt{xy^r} + y^r}$$

The following monotonicity properties of weighted Stolarsky means have been established in [9]:

Property 1.1. *F* increases in *x* and *y*.

Property 1.2. *F* increases in *r* and *s* if $(x - y)(a^2x - b^2y) > 0$ and decreases if $(x - y)(a^2x - b^2y) < 0$.

Property 1.3. *F* increases in a if (x - y)(r + s) > 0 and decreases if (x - y)(r + s) < 0, *F* decreases in *b* if (x - y)(r + s) > 0 and increases if (x - y)(r + s) < 0.

Definition 1.1. A function $f : \mathbb{R} \to \mathbb{R}$ is said to be symmetrically convex (concave) with respect to the point r_0 if f is convex (concave) in (r_0, ∞) and for every t > 0 $f(r_0 + t) + f(r_0 - t) = 2f(r_0)$.

Definition 1.2. A function $f : \mathbb{R} \to \mathbb{R}_+$ is said to be symmetrically log-convex (log-concave) with respect to the point r_0 if log f is symmetrically convex (concave) w.r.t. r_0 .

For symmetrically log-convex functions the symmetry condition reads $f(r_0 + t)f(r_0 - t) = f^2(r_0)$. We shall recall now two properties of convex functions.

Property 1.4. If f is convex (concave) then for h > 0 the function g(t) = f(t+h) - f(t) is increasing (decreasing). For h < 0 the monotonicity of g reverses. For log-convex f the same holds for g(t) = f(t+h)/f(t).

Property 1.5. If f is convex (concave) then for arbitrary x the function $h_x(t) = f(x-t) + f(x+t)$ is increasing (decreasing) in $(0,\infty)$. For log-convex f the same holds for $h_x(t) = f(x-t)f(x+t)$.

The property 1.5 holds also for symmetrically convex (concave) functions:

Lemma 1.6. Let f be symmetrically convex w.r.t. r_0 , and let $x > r_0$. Then the function $h_x(t) = f(x-t) + f(x+t)$ is increasing (decreasing) in $(0, \infty)$. If $x < r_0$ then $h_x(t)$ decreases. For f symmetrically concave the monotonicity of h_x is reverse.

For the case where f is symmetrically log-convex (log-concave) $h_x(t) = f(x+t)f(x-t)$ is monotone accordingly.

Proof. We shall prove the lemma for f symmetrically convex and $x > r_0$. For $x < r_0$ or f symmetrically convex the proofs are similar. Consider two cases:

- $0 < t < x r_0$. In this case $h_x(t)$ is increasing by Property 1.5.
- $t > x r_0$. Now $h_x(t) = f(x+t) + f(x-t) = 2f(r_0) + f(x+t) f(t-x+2r_0)$ increases by Property 1.4 because $t - x + 2r_0 > r_0$ and $(x+t) - (t-x+2r_0) > 0$.

2. MAIN RESULT

It is obvious that the monotonicity of F_h matches that of F. The main result consists of the following theorem:

Theorem 2.1. If $(x - y)(a^2x - b^2y) > 0$ (resp. < 0) then $F_h(r)$ is symmetrically log-concave (resp. log-convex) with respect to the point -h/2).

To prove it we need the following

Lemma 2.2. Let

$$g(t, A, B) = \frac{A^t \log^2 A}{(A^t - 1)^2} - \frac{B^t \log^2 B}{(B^t - 1)^2}.$$

Then

(1)
$$g(t, A, B) = g(\pm t, A^{\pm 1}, B^{\pm 1})$$

(2) g is increasing in t on $(0, \infty)$ if $\log^2 A - \log^2 B > 0$ and decreasing otherwise.

Proof. (1) becomes obvious when we write

$$g(t, A, B) = \frac{\log^2 A}{A^t - 2 + A^{-t}} - \frac{\log^2 B}{B^t - 2 + B^{-t}}$$

From (1) if follows that replacing A, B with A^{-1}, B^{-1} if necessary we may assume that A, B > 1. In this case $sgn(log^2 A - log^2 B) = sgn(A^t - B^t)$.

$$\frac{\partial g}{\partial t} = -\frac{A^t (A^t + 1) \log^3 A}{(A^t - 1)^3} + \frac{B^t (B^t + 1) \log^3 B}{(B^t - 1)^3}$$
$$= -\frac{1}{t^3} (\phi(A^t) - \phi(B^t)) = -\frac{1}{t^3} (A^t - B^t) \phi'(\xi)$$

where $\xi > 1$ lies between A^t and B^t and

$$\phi(u) = \frac{u(u+1)\log^3 u}{(u-1)^3}$$

To complete the proof it is enough to show that $\phi'(u) < 0$ for u > 1.

$$\phi'(u) = \frac{(u^2 + 4u + 1)\log^2 u}{(u - 1)^4} \left[\frac{3(u^2 - 1)}{u^2 + 4u + 1} - \log u\right],$$

so the sign of ϕ' is the same as the sign of $\psi(u) = \frac{3(u^2-1)}{u^2+4u+1} - \log u$. But $\psi(1) = 0$ and $\psi'(u) = -(u-1)^4/u(u^2+4u+1)^2 < 0$, so $\phi(u) < 0$.

Proof of Theorem 2.1. First of all note that

$$\log^2 \frac{ax}{by} - \log^2 \frac{a}{b} = \log \frac{x}{y} \log \frac{a^2x}{b^2y}$$

and because $sgn(x - y) = sgn \log \frac{x}{y}$ we see that

(2.1)
$$\operatorname{sgn}(x-y)(a^2x-b^y) = \operatorname{sgn}\left(\log^2\frac{ax}{by} - \log^2\frac{a}{b}\right).$$

Let $A = \frac{ax}{by}$ and $B = \frac{a}{b}$. Suppose that $A, B \neq 1$ (in other cases we use a standard continuity argument). $F_h(r)$ can be written as

$$F_{h}(r) = y \left(\frac{A^{r+h} - 1}{B^{r+h} - 1} \middle/ \frac{A^{r} - 1}{B^{r} - 1} \right)^{\frac{1}{h}},$$

We show symmetry by performing simple calculations:

$$F_{h}^{h}(-h/2-r)F_{h}^{h}(-h/2+r)$$

$$= y^{2h}\frac{A^{h/2-r}-1}{B^{h/2-r}-1}\cdot\frac{B^{-h/2-r}-1}{A^{-h/2-r}-1}\cdot\frac{A^{h/2+r}-1}{B^{h/2+r}-1}\cdot\frac{B^{-h/2+r}-1}{A^{-h/2+r}-1}$$

$$= y^{2h}\frac{B^{-h}}{A^{-h}}\cdot\frac{A^{h/2-r}-1}{B^{h/2-r}-1}\cdot\frac{1-B^{h/2+r}}{1-A^{h/2+r}}\cdot\frac{A^{h/2+r}-1}{B^{h/2+r}-1}\cdot\frac{1-B^{h/2-r}}{1-A^{h/2-r}}$$

$$= y^{2h}\left(\frac{x}{y}\right)^{h} = (xy)^{h} = F_{h}^{2h}(-h/2).$$

Differentiating twice we obtain

$$\begin{aligned} \frac{d^2}{dr^2} \log F_h(r) &= \frac{g(r, A, B) - g(r + h, A, B)}{h} \\ &= \frac{g(|r|, A, B) - g(|r + h|, A, B)}{h} \quad \text{(by Lemma 2.2 (1))}, \end{aligned}$$

hence by Lemma 2.2 (2)

$$\operatorname{sgn} \frac{d^2}{dr^2} \log F_h(r) = \operatorname{sgn} h(|r| - |r + h|) (\log^2 A - \log^2 B)$$
$$= \operatorname{sgn}(r + h/2)(x - y)(a^2 x - b^2 y).$$

The last equation follows from (2.1) and from the fact that the inequality |r| < |r+h| is valid if and only if r > -h/2 and h > 0 or r < -h/2 and h < 0.

The following theorem is an immediate consequence of Theorem 2.1 and Lemma 1.6.

Theorem 2.3. If $(x - y)(a^2x - b^2y)(r_0 + h/2) > 0$ then the function

$$\Phi(t) = F_h(r_0 - t)F_h(r_0 + t)$$

is decreasing in $(0, \infty)$. In particular for every real t

(2.3) $F_h(r_0 - t)F_h(r_0 + t) \le F_h^2(r_0).$

If $(x - y)(a^2x - b^2y)(r_0 + h/2) < 0$ then $\Phi(t)$ is increasing in $(0, \infty)$. In particular for every real t

(2.4)
$$F_h(r_0 - t)F_h(r_0 + t) \ge F_h^2(r_0).$$

The following corollaries are immediate consequences of Theorems 2.1 and 2.3:

Corollary 2.4. For $x \neq y$ the one-parameter mean J(r) defined by (1.4) is log-convex for r < -1/2 and log-concave for r > -1/2. If $r_0 > -1/2$ then for all real t, $J(r_0 - t)J(r_0 + t) \leq J^2(r_0)$. For $r_0 < -1/2$ the inequality reverses.

Proof. $J(r; x, y) = F_1(r; 1, 1; x, y).$

Corollary 2.5. For $x \neq y$ the Lehmer mean L(r) defined by (1.5) is log-convex for r < -1/2and log-concave for r > -1/2. If $r_0 > -1/2$ then for all real t, $L(r_0 - t)L(r_0 + t) \leq L^2(r_0)$. For $r_0 < -1/2$ the inequality reverses.

Proof.
$$L(r; x, y) = F_1(r; x, y; x, y).$$

Corollary 2.6. For $x \neq y$ the mean N(r) defined by (1.6) is log-convex for r < -1/2 and log-concave for r > -1/2. If $r_0 > -1/2$ then for all real t, $N(r_0 - t)N(r_0 + t) \leq N^2(r_0)$. For $r_0 < -1/2$ the inequality reverses.

Proof. $N(r; x, y) = F_1(r; \sqrt{x}, \sqrt{y}; x, y).$

3. APPLICATION

In this section we show some inequalities between classic means:

Power means	$A_r = A_r(x, y) = \left(\frac{x^r + y^r}{2}\right)^{\frac{1}{r}}$
Harmonic mean	$H = A_{-1}(x, y) = \frac{2xy}{x+y},$
Geometric mean	$G = A_0(x, y) = \sqrt{xy},$
Logarithmic mean	$L = L(x, y) = \frac{x - y}{\log x - \log y},$
Heronian mean	$N = N(x, y) = \frac{x + \sqrt{xy} + y}{3},$
Arithmetic mean	$A = A_1(x, y) = \frac{x+y}{2},$
Centroidal mean	$T = T(x, y) = \frac{2}{3} \frac{x^2 + xy + y^2}{x + y}$
Root-mean-square	$R = A_2(x, y) = \sqrt{\frac{x^2 + y^2}{2}},$
Contrharmonic mean	$C = C(x, y) = \frac{x^2 + y^2}{x + y}.$

Corollary 3.1 (Tung-Po Lin inequality [4]).

$$L \le A_{1/3}$$

Proof. By Theorem 2.3

$$F_{1/3}(0;1,1,;x,y)F_{1/3}(2/3;1,1;x,y) \le F_{1/3}^2(1/3;1,1;x,y)$$

or

$$\left(3\frac{\sqrt[3]{x}-\sqrt[3]{y}}{\log x - \log y}\right)^{3} \left(\frac{2}{3}\frac{x-y}{\sqrt[3]{x^{2}}-\sqrt[3]{y^{2}}}\right)^{3} \le \left(\frac{1}{2}\frac{\sqrt[3]{x^{2}}-\sqrt[3]{y^{2}}}{\sqrt[3]{x}-\sqrt[3]{y}}\right)^{6}.$$

Simplifying we obtain

$$L^{3}(x,y) \le A^{3}_{1/3}(x,y).$$

J. Inequal.	Pure and Appl.	Math., 7(2) Art.	73, 2006
-------------	----------------	------------------	----------

 \square

 \square

No	Inequality	h	r_0	t	a	b
1	$L^2 \ge GN$	1/2	0	1	1	1
2	$L^2 \ge HT$	1	0	2	1	1
3	$A_{1/2}^2 \ge AG$	1/2	0	1/2	x	y
4	$A_{1/2}^{2'} \ge LN$	1/2	1/2	1/2	1	1
5	$N^2 \ge AL$	1	1/2	1/2	1	1
6	$A^2 \ge LT$	1	1	1	1	1
7	$A^2 \geq CH$	1	0	1	x	y
8	$LN \ge AG$	1/2	1/2	1	1	1
9	$GN \ge HT$	1	-1	1/2	x	y
10	$AN \ge TG$	1/2	0	1	x	y
11	$LT \ge HC$	1	1	2	1	1
12	$TA \ge NR$	1	1/2	1/2	x	y
13	$L^3 \ge AG^2$	1	0	1	1	1
14	$L^3 \ge GA_{1/2}^2$	1/2	-1/2	1/2	1	1
15	$N^3 \ge AA_{1/2}^{2'}$	1/2	1	1/2	1	1
16	$T^3 \ge AR^2$	1	2	1	1	1
17	$LN^2 \geq G^2T$	1	1/2	3/2	1	1

Inequalities in the table below can be shown the same way as above by an appropriate choice of parameters in (2.3) and (2.4).

Note that 4 is stronger than 3 (due to inequality 8), 14 is stronger than 13 (due to 3). Also, 1 is stronger than 2 because of 9.

REFERENCES

- [1] H. ALZER, Über eine einparametrige Familie von Mittelwerten, *Bayer. Akad. Wiss. Math.-Natur. Kl. Sitzungsber*, 1987 (1988), 1–9.
- [2] H. ALZER, Über Lehmers Mittelwertefamilie, Elem. Math., 43 (1988), 50-54.
- [3] E. LEACH AND M. SHOLANDER, Extended mean values, Amer. Math. Monthly, 85 (1978), 84–90.
- [4] T.-P. LIN, The power mean and the logarithmic mean, Amer. Math. Monthly, 81(8) (1974), 879–883.
- [5] E. NEUMAN AND Zs. PÁLES, On comparison of Stolarsky and Gini means, J. Math. Anal. Appl., 278 (2003), 274–285.
- [6] K.B. STOLARSKY, Generalizations of the logarithmic mean, Math. Mag., 48 (1975), 87–92.
- [7] FENG QI, Generalized weighted mean values with two parameters, *Proc. Roy. Soc. London Ser. A*, **454** (1998), No. 1978, 2723–2732.
- [8] A. WITKOWSKI, Monotonicity of generalized extended mean values, Colloq. Math., 99(2) (2004), 203–206. RGMIA Research Report Collection, 7(1) (2004), Art. 12. [ONLINE: http:/rgmia. vu.edu.au/v7n1.html].
- [9] A. WITKOWSKI, Weighted extended mean values, Colloq. Math., 100(1) (2004), 111–117. RGMIA Research Report Collection, 7(1) (2004), Art. 6. [ONLINE: http:/rgmia.vu.edu.au/v7n1. html].