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ABSTRACT. We investigate monotonicity and logarithmic convexity properties of one-parameter
family of means

Fh(r; a, b;x, y) = E(r, r + h; ax, by)/E(r, r + h; a, b)

whereE is the Stolarsky mean. Some inequalities between classic means are obtained.
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1. I NTRODUCTION

Extended mean values of positive numbersx, y introduced by Stolarsky in [6] are defined as

(1.1) E(r, s;x, y) =



(
r
s

ys−xs

yr−xr

) 1
s−r

sr(s− r)(x− y) 6= 0,(
1
r

yr−xr

log y−log x

) 1
r

r(x− y) 6= 0, s = 0,

e−
1
r

(
yyr

xxr

) 1
yr−xr

r = s, r(x− y) 6= 0,
√
xy r = s = 0, x− y 6= 0,

x x = y.

This mean is also called the Stolarsky mean.
In [9] the author extended the Stolarsky means to a four-parameter family of means by adding
positive weightsa, b:

(1.2) F (r, s; a, b;x, y) =
E(r, s; ax, by)

E(r, s; a, b)
.

ISSN (electronic): 1443-5756

c© 2006 Victoria University. All rights reserved.

321-05

http://jipam.vu.edu.au/
mailto:alfred.witkowski@atosorigin.com
http://www.ams.org/msc/


2 ALFRED WITKOWSKI

From the continuity ofE it follows thatF is continuous inR2 × R2
+ × R2

+. Our goal in this
paper is to investigate the logarithmic convexity of

(1.3) Fh(r; a, b;x, y) = F (r, r + h; a, b;x, y).

In [1] Horst Alzer investigated the one-parameter mean

(1.4) J(r) = J(r;x, y) = E(r, r + 1; x, y)

and proved that forx 6= y, J is strictly log-convex forr < −1/2 and strictly log-concave for
r > −1/2. He also proved thatJ(r)J(−r) ≤ J2(0). In [2] he obtained a similar result for the
Lehmer means

(1.5) L(r) = L(r;x, y) =
xr+1 + yr+1

xr + yr
.

With an appropriate choice of parameters in (1.2) one can obtain both the one-parameter
mean and the Lehmer mean. Namely,

J(r;x, y) = F (r, r + 1; 1, 1;x, y)

and
L(r, x, y) = F (r, r + 1; x, y;x, y).

Another example may be the mean created the same way from the Heronian mean

(1.6) N(r;x, y) = F (r, r + 1;
√
x,
√
y;x, y) =

xr+1 +
√
xyr+1 + yr+1

xr +
√
xyr + yr

.

The following monotonicity properties of weighted Stolarsky means have been established
in [9]:

Property 1.1. F increases inx andy.

Property 1.2. F increases inr ands if (x− y)(a2x− b2y) > 0 and decreases if(x− y)(a2x−
b2y) < 0.

Property 1.3. F increases ina if (x − y)(r + s) > 0 and decreases if(x − y)(r + s) < 0, F
decreases inb if (x− y)(r + s) > 0 and increases if(x− y)(r + s) < 0.

Definition 1.1. A functionf : R →R is said to be symmetrically convex (concave) with respect
to the pointr0 if f is convex (concave) in(r0,∞) and for everyt > 0 f(r0 + t) + f(r0 − t) =
2f(r0).

Definition 1.2. A function f : R → R+ is said to be symmetrically log-convex (log-concave)
with respect to the pointr0 if log f is symmetrically convex (concave) w.r.t.r0.

For symmetrically log-convex functions the symmetry condition readsf(r0 + t)f(r0 − t) =
f 2(r0). We shall recall now two properties of convex functions.

Property 1.4. If f is convex (concave) then forh > 0 the functiong(t) = f(t + h) − f(t) is
increasing (decreasing). Forh < 0 the monotonicity ofg reverses.
For log-convexf the same holds forg(t) = f(t+ h)/f(t).

Property 1.5. If f is convex (concave) then for arbitraryx the function hx(t) = f(x − t) +
f(x + t) is increasing (decreasing) in(0,∞). For log-convexf the same holds forhx(t) =
f(x− t)f(x+ t).

The property 1.5 holds also for symmetrically convex (concave) functions:
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CONVEXITY OF WEIGHTED STOLARSKY MEANS 3

Lemma 1.6. Letf be symmetrically convex w.r.t.r0, and letx > r0. Then the functionhx(t) =
f(x− t) + f(x+ t) is increasing (decreasing) in(0,∞). If x < r0 thenhx(t) decreases.
For f symmetrically concave the monotonicity ofhx is reverse.
For the case wheref is symmetrically log-convex (log-concave)hx(t) = f(x + t)f(x − t) is
monotone accordingly.

Proof. We shall prove the lemma forf symmetrically convex andx > r0. For x < r0 or f
symmetrically convex the proofs are similar.
Consider two cases:

• 0 < t < x− r0. In this casehx(t) is increasing by Property 1.5.
• t > x− r0. Now hx(t) = f(x + t) + f(x− t) = 2f(r0) + f(x + t)− f(t− x + 2r0)

increases by Property 1.4 becauset− x+ 2r0 > r0 and(x+ t)− (t− x+ 2r0) > 0.

�

2. M AIN RESULT

It is obvious that the monotonicity ofFh matches that ofF . The main result consists of the
following theorem:

Theorem 2.1. If (x− y)(a2x− b2y) > 0 (resp.< 0) thenFh(r) is symmetrically log-concave
(resp. log-convex) with respect to the point−h/2).

To prove it we need the following

Lemma 2.2. Let

g(t, A,B) =
At log2A

(At − 1)2
− Bt log2B

(Bt − 1)2
.

Then
(1) g(t, A,B) = g(±t, A±1, B±1),
(2) g is increasing int on (0,∞) if log2A− log2B > 0 and decreasing otherwise.

Proof. (1) becomes obvious when we write

g(t, A,B) =
log2A

At − 2 + A−t
− log2B

Bt − 2 +B−t
.

From (1) if follows that replacingA,B with A−1, B−1 if necessary we may assume thatA,B >
1. In this casesgn(log2A− log2B) = sgn(At −Bt).

∂g

∂t
= −A

t(At + 1) log3A

(At − 1)3
+
Bt(Bt + 1) log3B

(Bt − 1)3

= − 1

t3
(φ(At)− φ(Bt)) = − 1

t3
(At −Bt)φ′(ξ),

whereξ > 1 lies betweenAt andBt and

φ(u) =
u(u+ 1) log3 u

(u− 1)3
.

To complete the proof it is enough to show thatφ′(u) < 0 for u > 1.

φ′(u) =
(u2 + 4u+ 1) log2 u

(u− 1)4

[
3(u2 − 1)

u2 + 4u+ 1
− log u

]
,

so the sign ofφ′ is the same as the sign ofψ(u) = 3(u2−1)
u2+4u+1

− log u. But ψ(1) = 0 and
ψ′(u) = −(u− 1)4/u(u2 + 4u+ 1)2 < 0, soφ(u) < 0. �
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4 ALFRED WITKOWSKI

Proof of Theorem 2.1.First of all note that

log2 ax

by
− log2 a

b
= log

x

y
log

a2x

b2y

and becausesgn(x− y) = sgn log x
y

we see that

(2.1) sgn(x− y)(a2x− by) = sgn

(
log2 ax

by
− log2 a

b

)
.

LetA = ax
by

andB = a
b
. Suppose thatA,B 6= 1 (in other cases we use a standard continuity

argument).Fh(r) can be written as

Fh(r) = y

(
Ar+h − 1

Br+h − 1

/
Ar − 1

Br − 1

) 1
h

,

We show symmetry by performing simple calculations:

F h
h (−h/2− r)F h

h (−h/2 + r)

= y2hA
h/2−r − 1

Bh/2−r − 1
· B

−h/2−r − 1

A−h/2−r − 1
· A

h/2+r − 1

Bh/2+r − 1
· B

−h/2+r − 1

A−h/2+r − 1

= y2hB
−h

A−h
· A

h/2−r − 1

Bh/2−r − 1
· 1−Bh/2+r

1− Ah/2+r
· A

h/2+r − 1

Bh/2+r − 1
· 1−Bh/2−r

1− Ah/2−r

= y2h

(
x

y

)h

= (xy)h = F 2h
h (−h/2).

(2.2)

Differentiating twice we obtain

d2

dr2
logFh(r) =

g(r, A,B)− g(r + h,A,B)

h

=
g(|r|, A,B)− g(|r + h|, A,B)

h
(by Lemma 2.2 (1)),

hence by Lemma 2.2 (2)

sgn
d2

dr2
logFh(r) = sgnh(|r| − |r + h|)(log2A− log2B)

= sgn(r + h/2)(x− y)(a2x− b2y).

The last equation follows from (2.1) and from the fact that the inequality|r| < |r + h| is valid
if and only if r > −h/2 andh > 0 or r < −h/2 andh < 0. �

The following theorem is an immediate consequence of Theorem 2.1 and Lemma 1.6.

Theorem 2.3. If (x− y)(a2x− b2y)(r0 + h/2) > 0 then the function

Φ(t) = Fh(r0 − t)Fh(r0 + t)

is decreasing in(0,∞). In particular for every realt

(2.3) Fh(r0 − t)Fh(r0 + t) ≤ F 2
h (r0).

If (x− y)(a2x− b2y)(r0 + h/2) < 0 thenΦ(t) is increasing in(0,∞). In particular for every
real t

(2.4) Fh(r0 − t)Fh(r0 + t) ≥ F 2
h (r0).

The following corollaries are immediate consequences of Theorems 2.1 and 2.3:
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Corollary 2.4. For x 6= y the one-parameter meanJ(r) defined by(1.4) is log-convex for
r < −1/2 and log-concave forr > −1/2. If r0 > −1/2 then for all realt, J(r0− t)J(r0 + t) ≤
J2(r0). For r0 < −1/2 the inequality reverses.

Proof. J(r;x, y) = F1(r; 1, 1;x, y). �

Corollary 2.5. For x 6= y the Lehmer meanL(r) defined by(1.5) is log-convex forr < −1/2
and log-concave forr > −1/2. If r0 > −1/2 then for all realt, L(r0 − t)L(r0 + t) ≤ L2(r0).
For r0 < −1/2 the inequality reverses.

Proof. L(r;x, y) = F1(r;x, y;x, y). �

Corollary 2.6. For x 6= y the meanN(r) defined by(1.6) is log-convex forr < −1/2 and
log-concave forr > −1/2. If r0 > −1/2 then for all realt, N(r0− t)N(r0 + t) ≤ N2(r0). For
r0 < −1/2 the inequality reverses.

Proof. N(r;x, y) = F1(r;
√
x,
√
y;x, y). �

3. APPLICATION

In this section we show some inequalities between classic means:

Power means Ar = Ar(x, y) =

(
xr + yr

2

) 1
r

,

Harmonic mean H = A−1(x, y) =
2xy

x+ y
,

Geometric mean G = A0(x, y) =
√
xy,

Logarithmic mean L = L(x, y) =
x− y

log x− log y
,

Heronian mean N = N(x, y) =
x+

√
xy + y

3
,

Arithmetic mean A = A1(x, y) =
x+ y

2
,

Centroidal mean T = T (x, y) =
2

3

x2 + xy + y2

x+ y
,

Root-mean-square R = A2(x, y) =

√
x2 + y2

2
,

Contrharmonic mean C = C(x, y) =
x2 + y2

x+ y
.

Corollary 3.1 (Tung-Po Lin inequality [4]).

L ≤ A1/3.

Proof. By Theorem 2.3

F1/3(0; 1, 1, ;x, y)F1/3(2/3; 1, 1;x, y) ≤ F 2
1/3(1/3; 1, 1;x, y)

or (
3

3
√
x− 3

√
y

log x− log y

)3
(

2

3

x− y
3
√
x2 − 3

√
y2

)3

≤

(
1

2

3
√
x2 − 3

√
y2

3
√
x− 3

√
y

)6

.

Simplifying we obtain
L3(x, y) ≤ A3

1/3(x, y).

�
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Inequalities in the table below can be shown the same way as above by an appropriate choice
of parameters in (2.3) and (2.4).

No Inequality h r0 t a b

1 L2 ≥ GN 1/2 0 1 1 1
2 L2 ≥ HT 1 0 2 1 1
3 A2

1/2 ≥ AG 1/2 0 1/2 x y

4 A2
1/2 ≥ LN 1/2 1/2 1/2 1 1

5 N2 ≥ AL 1 1/2 1/2 1 1
6 A2 ≥ LT 1 1 1 1 1
7 A2 ≥ CH 1 0 1 x y
8 LN ≥ AG 1/2 1/2 1 1 1
9 GN ≥ HT 1 −1 1/2 x y
10 AN ≥ TG 1/2 0 1 x y
11 LT ≥ HC 1 1 2 1 1
12 TA ≥ NR 1 1/2 1/2 x y
13 L3 ≥ AG2 1 0 1 1 1
14 L3 ≥ GA2

1/2 1/2 −1/2 1/2 1 1

15 N3 ≥ AA2
1/2 1/2 1 1/2 1 1

16 T 3 ≥ AR2 1 2 1 1 1
17 LN2 ≥ G2T 1 1/2 3/2 1 1

Note that 4 is stronger than 3 (due to inequality 8), 14 is stronger than 13 (due to 3). Also, 1
is stronger than 2 because of 9.
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