Journal of Inequalities in Pure and

CONVEXITY OF WEIGHTED STOLARSKY MEANS
 ALFRED WITKOWSKI

Mielczarskiego 4/29, 85-796 Bydgoszcz, Poland
alfred.witkowski@atosorigin.com

Received 28 October, 2005; accepted 13 November, 2005
Communicated by P.S. Bullen

AbStract. We investigate monotonicity and logarithmic convexity properties of one-parameter family of means

$$
F_{h}(r ; a, b ; x, y)=E(r, r+h ; a x, b y) / E(r, r+h ; a, b)
$$

where E is the Stolarsky mean. Some inequalities between classic means are obtained.

Key words and phrases: Extended mean values, Mean, Convexity.
2000 Mathematics Subject Classification. 26D15.

1. Introduction

Extended mean values of positive numbers x, y introduced by Stolarsky in [6] are defined as

$$
E(r, s ; x, y)= \begin{cases}\left(\frac{r}{s} \frac{y^{s}-x^{s}}{y^{r}-x^{r}}\right)^{\frac{1}{s-r}} & s r(s-r)(x-y) \neq 0 \tag{1.1}\\ \left(\frac{1}{r} \frac{y^{r}-x^{r}}{\log y-\log x}\right)^{\frac{1}{r}} & r(x-y) \neq 0, s=0 \\ \left.e^{-\frac{1}{r}\left(\frac{y^{r}}{x^{x}}\right.}\right)^{\frac{1}{y^{r}-x^{r}}} & r=s, r(x-y) \neq 0 \\ \sqrt{x y} & r=s=0, x-y \neq 0 \\ x & x=y\end{cases}
$$

This mean is also called the Stolarsky mean.
In [9] the author extended the Stolarsky means to a four-parameter family of means by adding positive weights a, b :

$$
\begin{equation*}
F(r, s ; a, b ; x, y)=\frac{E(r, s ; a x, b y)}{E(r, s ; a, b)} \tag{1.2}
\end{equation*}
$$

ISSN (electronic): 1443-5756

(c) 2006 Victoria University. All rights reserved.

321-05

From the continuity of E it follows that F is continuous in $\mathbb{R}^{2} \times \mathbb{R}_{+}^{2} \times \mathbb{R}_{+}^{2}$. Our goal in this paper is to investigate the logarithmic convexity of

$$
\begin{equation*}
F_{h}(r ; a, b ; x, y)=F(r, r+h ; a, b ; x, y) . \tag{1.3}
\end{equation*}
$$

In [1] Horst Alzer investigated the one-parameter mean

$$
\begin{equation*}
J(r)=J(r ; x, y)=E(r, r+1 ; x, y) \tag{1.4}
\end{equation*}
$$

and proved that for $x \neq y, J$ is strictly log-convex for $r<-1 / 2$ and strictly log-concave for $r>-1 / 2$. He also proved that $J(r) J(-r) \leq J^{2}(0)$. In [2] he obtained a similar result for the Lehmer means

$$
\begin{equation*}
L(r)=L(r ; x, y)=\frac{x^{r+1}+y^{r+1}}{x^{r}+y^{r}} \tag{1.5}
\end{equation*}
$$

With an appropriate choice of parameters in (1.2) one can obtain both the one-parameter mean and the Lehmer mean. Namely,

$$
J(r ; x, y)=F(r, r+1 ; 1,1 ; x, y)
$$

and

$$
L(r, x, y)=F(r, r+1 ; x, y ; x, y) .
$$

Another example may be the mean created the same way from the Heronian mean

$$
\begin{equation*}
N(r ; x, y)=F(r, r+1 ; \sqrt{x}, \sqrt{y} ; x, y)=\frac{x^{r+1}+\sqrt{x y}^{r+1}+y^{r+1}}{x^{r}+\sqrt{x y}^{r}+y^{r}} . \tag{1.6}
\end{equation*}
$$

The following monotonicity properties of weighted Stolarsky means have been established in [9]:

Property 1.1. F increases in x and y.
Property 1.2. F increases in r and s if $(x-y)\left(a^{2} x-b^{2} y\right)>0$ and decreases if $(x-y)\left(a^{2} x-\right.$ $\left.b^{2} y\right)<0$.

Property 1.3. F increases in a if $(x-y)(r+s)>0$ and decreases if $(x-y)(r+s)<0, F$ decreases in b if $(x-y)(r+s)>0$ and increases if $(x-y)(r+s)<0$.
Definition 1.1. A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is said to be symmetrically convex (concave) with respect to the point r_{0} if f is convex (concave) in $\left(r_{0}, \infty\right)$ and for every $t>0 f\left(r_{0}+t\right)+f\left(r_{0}-t\right)=$ $2 f\left(r_{0}\right)$.
Definition 1.2. A function $f: \mathbb{R} \rightarrow \mathbb{R}_{+}$is said to be symmetrically log-convex (log-concave) with respect to the point r_{0} if $\log f$ is symmetrically convex (concave) w.r.t. r_{0}.
For symmetrically log-convex functions the symmetry condition reads $f\left(r_{0}+t\right) f\left(r_{0}-t\right)=$ $f^{2}\left(r_{0}\right)$. We shall recall now two properties of convex functions.

Property 1.4. If f is convex (concave) then for $h>0$ the function $g(t)=f(t+h)-f(t)$ is increasing (decreasing). For $h<0$ the monotonicity of g reverses.
For log-convex f the same holds for $g(t)=f(t+h) / f(t)$.
Property 1.5. If f is convex (concave) then for arbitrary x the function $h_{x}(t)=f(x-t)+$ $f(x+t)$ is increasing (decreasing) in $(0, \infty)$. For log-convex f the same holds for $h_{x}(t)=$ $f(x-t) f(x+t)$.

The property 1.5 holds also for symmetrically convex (concave) functions:

Lemma 1.6. Let f be symmetrically convex w.r.t. r_{0}, and let $x>r_{0}$. Then the function $h_{x}(t)=$ $f(x-t)+f(x+t)$ is increasing (decreasing) in $(0, \infty)$. If $x<r_{0}$ then $h_{x}(t)$ decreases.
For f symmetrically concave the monotonicity of h_{x} is reverse.
For the case where f is symmetrically log-convex (log-concave) $h_{x}(t)=f(x+t) f(x-t)$ is monotone accordingly.

Proof. We shall prove the lemma for f symmetrically convex and $x>r_{0}$. For $x<r_{0}$ or f symmetrically convex the proofs are similar.
Consider two cases:

- $0<t<x-r_{0}$. In this case $h_{x}(t)$ is increasing by Property 1.5 .
- $t>x-r_{0}$. Now $h_{x}(t)=f(x+t)+f(x-t)=2 f\left(r_{0}\right)+f(x+t)-f\left(t-x+2 r_{0}\right)$ increases by Property 1.4 because $t-x+2 r_{0}>r_{0}$ and $(x+t)-\left(t-x+2 r_{0}\right)>0$.

2. Main Result

It is obvious that the monotonicity of F_{h} matches that of F. The main result consists of the following theorem:
Theorem 2.1. If $(x-y)\left(a^{2} x-b^{2} y\right)>0($ resp. $<0)$ then $F_{h}(r)$ is symmetrically log-concave (resp. log-convex) with respect to the point $-h / 2$).

To prove it we need the following
Lemma 2.2. Let

$$
g(t, A, B)=\frac{A^{t} \log ^{2} A}{\left(A^{t}-1\right)^{2}}-\frac{B^{t} \log ^{2} B}{\left(B^{t}-1\right)^{2}}
$$

Then
(1) $g(t, A, B)=g\left(\pm t, A^{ \pm 1}, B^{ \pm 1}\right)$,
(2) g is increasing in t on $(0, \infty)$ if $\log ^{2} A-\log ^{2} B>0$ and decreasing otherwise.

Proof. (1) becomes obvious when we write

$$
g(t, A, B)=\frac{\log ^{2} A}{A^{t}-2+A^{-t}}-\frac{\log ^{2} B}{B^{t}-2+B^{-t}}
$$

From (1] if follows that replacing A, B with A^{-1}, B^{-1} if necessary we may assume that $A, B>$ 1. In this case $\operatorname{sgn}\left(\log ^{2} A-\log ^{2} B\right)=\operatorname{sgn}\left(A^{t}-B^{t}\right)$.

$$
\begin{aligned}
\frac{\partial g}{\partial t} & =-\frac{A^{t}\left(A^{t}+1\right) \log ^{3} A}{\left(A^{t}-1\right)^{3}}+\frac{B^{t}\left(B^{t}+1\right) \log ^{3} B}{\left(B^{t}-1\right)^{3}} \\
& =-\frac{1}{t^{3}}\left(\phi\left(A^{t}\right)-\phi\left(B^{t}\right)\right)=-\frac{1}{t^{3}}\left(A^{t}-B^{t}\right) \phi^{\prime}(\xi)
\end{aligned}
$$

where $\xi>1$ lies between A^{t} and B^{t} and

$$
\phi(u)=\frac{u(u+1) \log ^{3} u}{(u-1)^{3}} .
$$

To complete the proof it is enough to show that $\phi^{\prime}(u)<0$ for $u>1$.

$$
\phi^{\prime}(u)=\frac{\left(u^{2}+4 u+1\right) \log ^{2} u}{(u-1)^{4}}\left[\frac{3\left(u^{2}-1\right)}{u^{2}+4 u+1}-\log u\right],
$$

so the sign of ϕ^{\prime} is the same as the sign of $\psi(u)=\frac{3\left(u^{2}-1\right)}{u^{2}+4 u+1}-\log u$. But $\psi(1)=0$ and $\psi^{\prime}(u)=-(u-1)^{4} / u\left(u^{2}+4 u+1\right)^{2}<0$, so $\phi(u)<0$.

Proof of Theorem 2.1. First of all note that

$$
\log ^{2} \frac{a x}{b y}-\log ^{2} \frac{a}{b}=\log \frac{x}{y} \log \frac{a^{2} x}{b^{2} y}
$$

and because $\operatorname{sgn}(x-y)=\operatorname{sgn} \log \frac{x}{y}$ we see that

$$
\begin{equation*}
\operatorname{sgn}(x-y)\left(a^{2} x-b^{y}\right)=\operatorname{sgn}\left(\log ^{2} \frac{a x}{b y}-\log ^{2} \frac{a}{b}\right) \tag{2.1}
\end{equation*}
$$

Let $A=\frac{a x}{b y}$ and $B=\frac{a}{b}$. Suppose that $A, B \neq 1$ (in other cases we use a standard continuity argument). $F_{h}(r)$ can be written as

$$
F_{h}(r)=y\left(\frac{A^{r+h}-1}{B^{r+h}-1} / \frac{A^{r}-1}{B^{r}-1}\right)^{\frac{1}{h}}
$$

We show symmetry by performing simple calculations:

$$
\begin{align*}
F_{h}^{h} & (-h / 2-r) F_{h}^{h}(-h / 2+r) \\
& =y^{2 h} \frac{A^{h / 2-r}-1}{B^{h / 2-r}-1} \cdot \frac{B^{-h / 2-r}-1}{A^{-h / 2-r}-1} \cdot \frac{A^{h / 2+r}-1}{B^{h / 2+r}-1} \cdot \frac{B^{-h / 2+r}-1}{A^{-h / 2+r}-1} \\
& =y^{2 h} \frac{B^{-h}}{A^{-h}} \cdot \frac{A^{h / 2-r}-1}{B^{h / 2-r}-1} \cdot \frac{1-B^{h / 2+r}}{1-A^{h / 2+r}} \cdot \frac{A^{h / 2+r}-1}{B^{h / 2+r}-1} \cdot \frac{1-B^{h / 2-r}}{1-A^{h / 2-r}} \tag{2.2}\\
& =y^{2 h}\left(\frac{x}{y}\right)^{h}=(x y)^{h}=F_{h}^{2 h}(-h / 2) .
\end{align*}
$$

Differentiating twice we obtain

$$
\begin{aligned}
\frac{d^{2}}{d r^{2}} \log F_{h}(r) & =\frac{g(r, A, B)-g(r+h, A, B)}{h} \\
& =\frac{g(|r|, A, B)-g(|r+h|, A, B)}{h} \quad(\text { by Lemma 2.2 }(1)),
\end{aligned}
$$

hence by Lemma 2.2 (2)

$$
\begin{aligned}
\operatorname{sgn} \frac{d^{2}}{d r^{2}} \log F_{h}(r) & =\operatorname{sgn} h(|r|-|r+h|)\left(\log ^{2} A-\log ^{2} B\right) \\
& =\operatorname{sgn}(r+h / 2)(x-y)\left(a^{2} x-b^{2} y\right)
\end{aligned}
$$

The last equation follows from (2.1) and from the fact that the inequality $|r|<|r+h|$ is valid if and only if $r>-h / 2$ and $h>0$ or $r<-h / 2$ and $h<0$.

The following theorem is an immediate consequence of Theorem 2.1. and Lemma 1.6.
Theorem 2.3. If $(x-y)\left(a^{2} x-b^{2} y\right)\left(r_{0}+h / 2\right)>0$ then the function

$$
\Phi(t)=F_{h}\left(r_{0}-t\right) F_{h}\left(r_{0}+t\right)
$$

is decreasing in $(0, \infty)$. In particular for every real t

$$
\begin{equation*}
F_{h}\left(r_{0}-t\right) F_{h}\left(r_{0}+t\right) \leq F_{h}^{2}\left(r_{0}\right) \tag{2.3}
\end{equation*}
$$

If $(x-y)\left(a^{2} x-b^{2} y\right)\left(r_{0}+h / 2\right)<0$ then $\Phi(t)$ is increasing in $(0, \infty)$. In particular for every real t

$$
\begin{equation*}
F_{h}\left(r_{0}-t\right) F_{h}\left(r_{0}+t\right) \geq F_{h}^{2}\left(r_{0}\right) \tag{2.4}
\end{equation*}
$$

The following corollaries are immediate consequences of Theorems 2.1 and 2.3 .

Corollary 2.4. For $x \neq y$ the one-parameter mean $J(r)$ defined by (1.4) is log-convex for $r<-1 / 2$ and log-concave for $r>-1 / 2$. If $r_{0}>-1 / 2$ then for all real $t, J\left(r_{0}-t\right) J\left(r_{0}+t\right) \leq$ $J^{2}\left(r_{0}\right)$. For $r_{0}<-1 / 2$ the inequality reverses.
Proof. $J(r ; x, y)=F_{1}(r ; 1,1 ; x, y)$.
Corollary 2.5. For $x \neq y$ the Lehmer mean $L(r)$ defined by (1.5) is log-convex for $r<-1 / 2$ and log-concave for $r>-1 / 2$. If $r_{0}>-1 / 2$ then for all real $t, L\left(r_{0}-t\right) L\left(r_{0}+t\right) \leq L^{2}\left(r_{0}\right)$. For $r_{0}<-1 / 2$ the inequality reverses.
Proof. $L(r ; x, y)=F_{1}(r ; x, y ; x, y)$.
Corollary 2.6. For $x \neq y$ the mean $N(r)$ defined by (1.6) is log-convex for $r<-1 / 2$ and log-concave for $r>-1 / 2$. If $r_{0}>-1 / 2$ then for all real $t, N\left(r_{0}-t\right) N\left(r_{0}+t\right) \leq N^{2}\left(r_{0}\right)$. For $r_{0}<-1 / 2$ the inequality reverses.
Proof. $N(r ; x, y)=F_{1}(r ; \sqrt{x}, \sqrt{y} ; x, y)$.

3. Application

In this section we show some inequalities between classic means:

$$
\begin{aligned}
\text { Power means } & A_{r}=A_{r}(x, y)=\left(\frac{x^{r}+y^{r}}{2}\right)^{\frac{1}{r}}, \\
\text { Harmonic mean } & H=A_{-1}(x, y)=\frac{2 x y}{x+y}, \\
\text { Geometric mean } & G=A_{0}(x, y)=\sqrt{x y}, \\
\text { Logarithmic mean } & L=L(x, y)=\frac{x-y}{\log x-\log y}, \\
\text { Heronian mean } & N=N(x, y)=\frac{x+\sqrt{x y}+y}{3}, \\
\text { Arithmetic mean } & A=A_{1}(x, y)=\frac{x+y}{2}, \\
\text { Centroidal mean } & T=T(x, y)=\frac{2}{3} \frac{x^{2}+x y+y^{2}}{x+y}, \\
\text { Root-mean-square } & R=A_{2}(x, y)=\sqrt{\frac{x^{2}+y^{2}}{2}}, \\
\text { Contrharmonic mean } & C=C(x, y)=\frac{x^{2}+y^{2}}{x+y} .
\end{aligned}
$$

Corollary 3.1 (Tung-Po Lin inequality [4]).

$$
L \leq A_{1 / 3} .
$$

Proof. By Theorem 2.3

$$
F_{1 / 3}(0 ; 1,1, ; x, y) F_{1 / 3}(2 / 3 ; 1,1 ; x, y) \leq F_{1 / 3}^{2}(1 / 3 ; 1,1 ; x, y)
$$

or

$$
\left(3 \frac{\sqrt[3]{x}-\sqrt[3]{y}}{\log x-\log y}\right)^{3}\left(\frac{2}{3} \frac{x-y}{\sqrt[3]{x^{2}}-\sqrt[3]{y^{2}}}\right)^{3} \leq\left(\frac{1}{2} \frac{\sqrt[3]{x^{2}}-\sqrt[3]{y^{2}}}{\sqrt[3]{x}-\sqrt[3]{y}}\right)^{6}
$$

Simplifying we obtain

$$
L^{3}(x, y) \leq A_{1 / 3}^{3}(x, y)
$$

Inequalities in the table below can be shown the same way as above by an appropriate choice of parameters in (2.3) and (2.4).

No	Inequality	h	r_{0}	t	a	b
1	$L^{2} \geq G N$	$1 / 2$	0	1	1	1
2	$L^{2} \geq H T$	1	0	2	1	1
3	$A_{1 / 2}^{2} \geq A G$	$1 / 2$	0	$1 / 2$	x	y
4	$A_{1 / 2}^{2} \geq L N$	$1 / 2$	$1 / 2$	$1 / 2$	1	1
5	$N^{2} \geq A L$	1	$1 / 2$	$1 / 2$	1	1
6	$A^{2} \geq L T$	1	1	1	1	1
7	$A^{2} \geq C H$	1	0	1	x	y
8	$L N \geq A G$	$1 / 2$	$1 / 2$	1	1	1
9	$G N \geq H T$	1	-1	$1 / 2$	x	y
10	$A N \geq T G$	$1 / 2$	0	1	x	y
11	$L T \geq H C$	1	1	2	1	1
12	$T A \geq N R$	1	$1 / 2$	$1 / 2$	x	y
13	$L^{3} \geq A G^{2}$	1	0	1	1	1
14	$L^{3} \geq G A_{1 / 2}^{2}$	$1 / 2$	$-1 / 2$	$1 / 2$	1	1
15	$N^{3} \geq A A_{1 / 2}^{2}$	$1 / 2$	1	$1 / 2$	1	1
16	$T^{3} \geq A R^{2}$	1	2	1	1	1
17	$L N^{2} \geq G^{2} T$	1	$1 / 2$	$3 / 2$	1	1

Note that 4 is stronger than 3 (due to inequality 8), 14 is stronger than 13 (due to 3). Also, 1 is stronger than 2 because of 9 .

References

[1] H. ALZER, Über eine einparametrige Familie von Mittelwerten, Bayer. Akad. Wiss. Math.-Natur. Kl. Sitzungsber, 1987 (1988), 1-9.
[2] H. ALZER, Über Lehmers Mittelwertefamilie, Elem. Math., 43 (1988), 50-54.
[3] E. LEACH AND M. SHOLANDER, Extended mean values, Amer. Math. Monthly, 85 (1978), 84-90.
[4] T.-P. LIN, The power mean and the logarithmic mean, Amer. Math. Monthly, 81(8) (1974), 879-883.
[5] E. NEUMAN AND Zs. PÁLES, On comparison of Stolarsky and Gini means, J. Math. Anal. Appl., 278 (2003), 274-285.
[6] K.B. STOLARSKY, Generalizations of the logarithmic mean, Math. Mag., 48 (1975), 87-92.
[7] FENG QI, Generalized weighted mean values with two parameters, Proc. Roy. Soc. London Ser. A, 454 (1998), No. 1978, 2723-2732.
[8] A. WITKOWSKI, Monotonicity of generalized extended mean values, Colloq. Math., 99(2) (2004), 203-206. RGMIA Research Report Collection, 7(1) (2004), Art. 12. [ONLINE: http:/rgmia. vu.edu.au/v7n1.html].
[9] A. WITKOWSKI, Weighted extended mean values, Colloq. Math., 100(1) (2004), 111-117. RGMIA Research Report Collection, 7(1) (2004), Art. 6. [ONLINE:http:/rgmia.vu.edu.au/v7n1. html.

