Journal of Inequalities in Pure and Applied Mathematics

CONVEXITY OF WEIGHTED STOLARSKY MEANS

ALFRED WITKOWSKI

Mielczarskiego 4/29, 85-796 Bydgoszcz, Poland.

EMail: alfred.witkowski@atosorigin.com

volume 7, issue 2, article 73, 2006.

Received 28 October, 2005; accepted 13 November, 2005. Communicated by: P.S. Bullen

©2000 Victoria University ISSN (electronic): 1443-5756 321-05

Abstract

We investigate monotonicity and logarithmic convexity properties of one-parameter family of means

 $F_h(r; a, b; x, y) = E(r, r+h; ax, by)/E(r, r+h; a, b)$

where ${\it E}$ is the Stolarsky mean. Some inequalities between classic means are obtained.

2000 Mathematics Subject Classification: 26D15. Key words: Extended mean values, Mean, Convexity.

Contents

1	Introduction	3
2	Main Result	7
3	Application	11
Ref	erences	

Convexity of Weighted Stolarsky Means

Alfred Witkowski

J. Ineq. Pure and Appl. Math. 7(2) Art. 73, 2006 http://jipam.vu.edu.au

1. Introduction

Extended mean values of positive numbers x, y introduced by Stolarsky in [6] are defined as

(1.1)
$$E(r,s;x,y) = \begin{cases} \left(\frac{r}{s}\frac{y^s - x^s}{y^r - x^r}\right)^{\frac{1}{s-r}} & sr(s-r)(x-y) \neq 0, \\ \left(\frac{1}{r}\frac{y^r - x^r}{\log y - \log x}\right)^{\frac{1}{r}} & r(x-y) \neq 0, \ s = 0, \\ e^{-\frac{1}{r}} \left(\frac{y^y}{x^{x^r}}\right)^{\frac{1}{y^r - x^r}} & r = s, \ r(x-y) \neq 0, \\ \sqrt{xy} & r = s = 0, \ x - y \neq 0, \\ x & x = y. \end{cases}$$

This mean is also called the Stolarsky mean.

In [9] the author extended the Stolarsky means to a four-parameter family of means by adding positive weights a, b:

(1.2)
$$F(r,s;a,b;x,y) = \frac{E(r,s;ax,by)}{E(r,s;a,b)}.$$

From the continuity of E it follows that F is continuous in $\mathbb{R}^2 \times \mathbb{R}^2_+ \times \mathbb{R}^2_+$. Our goal in this paper is to investigate the logarithmic convexity of

(1.3)
$$F_h(r; a, b; x, y) = F(r, r+h; a, b; x, y)$$

In [1] Horst Alzer investigated the one-parameter mean

(1.4)
$$J(r) = J(r; x, y) = E(r, r+1; x, y)$$

J. Ineq. Pure and Appl. Math. 7(2) Art. 73, 2006 http://jipam.vu.edu.au

and proved that for $x \neq y$, J is strictly log-convex for r < -1/2 and strictly log-concave for r > -1/2. He also proved that $J(r)J(-r) \leq J^2(0)$. In [2] he obtained a similar result for the Lehmer means

(1.5)
$$L(r) = L(r; x, y) = \frac{x^{r+1} + y^{r+1}}{x^r + y^r}.$$

With an appropriate choice of parameters in (1.2) one can obtain both the one-parameter mean and the Lehmer mean. Namely,

$$J(r; x, y) = F(r, r+1; 1, 1; x, y)$$

and

$$L(r, x, y) = F(r, r + 1; x, y; x, y).$$

Another example may be the mean created the same way from the Heronian mean

(1.6)
$$N(r;x,y) = F(r,r+1;\sqrt{x},\sqrt{y};x,y) = \frac{x^{r+1} + \sqrt{xy^{r+1}} + y^{r+1}}{x^r + \sqrt{xy^r} + y^r}.$$

The following monotonicity properties of weighted Stolarsky means have been established in [9]:

Property 1.1. *F* increases in *x* and *y*.

Property 1.2. F increases in r and s if $(x - y)(a^2x - b^2y) > 0$ and decreases if $(x - y)(a^2x - b^2y) < 0$.

Property 1.3. *F* increases in a if (x-y)(r+s) > 0 and decreases if (x-y)(r+s) < 0, *F* decreases in b if (x-y)(r+s) > 0 and increases if (x-y)(r+s) < 0.

J. Ineq. Pure and Appl. Math. 7(2) Art. 73, 2006 http://jipam.vu.edu.au

Definition 1.1. A function $f : \mathbb{R} \to \mathbb{R}$ is said to be symmetrically convex (concave) with respect to the point r_0 if f is convex (concave) in (r_0, ∞) and for every t > 0 $f(r_0 + t) + f(r_0 - t) = 2f(r_0)$.

Definition 1.2. A function $f : \mathbb{R} \to \mathbb{R}_+$ is said to be symmetrically log-convex (log-concave) with respect to the point r_0 if $\log f$ is symmetrically convex (concave) w.r.t. r_0 .

For symmetrically log-convex functions the symmetry condition reads $f(r_0+t)f(r_0-t) = f^2(r_0)$. We shall recall now two properties of convex functions.

Property 1.4. If f is convex (concave) then for h > 0 the function g(t) = f(t+h) - f(t) is increasing (decreasing). For h < 0 the monotonicity of g reverses.

For log-convex f the same holds for g(t) = f(t+h)/f(t).

Property 1.5. If f is convex (concave) then for arbitrary x the function $h_x(t) = f(x-t) + f(x+t)$ is increasing (decreasing) in $(0,\infty)$. For log-convex f the same holds for $h_x(t) = f(x-t)f(x+t)$.

The property 1.5 holds also for symmetrically convex (concave) functions:

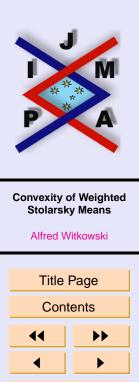
Lemma 1.6. Let f be symmetrically convex w.r.t. r_0 , and let $x > r_0$. Then the function $h_x(t) = f(x - t) + f(x + t)$ is increasing (decreasing) in $(0, \infty)$. If $x < r_0$ then $h_x(t)$ decreases.

For f symetrically concave the monotonicity of h_x is reverse. For the case where f is symmetrically log-convex (log-concave) $h_x(t) = f(x + t)f(x - t)$ is monotone accordingly.

J. Ineq. Pure and Appl. Math. 7(2) Art. 73, 2006 http://jipam.vu.edu.au

Proof. We shall prove the lemma for f symmetrically convex and $x > r_0$. For $x < r_0$ or f symmetrically convex the proofs are similar. Consider two cases:

- $0 < t < x r_0$. In this case $h_x(t)$ is increasing by Property 1.5.
- $t > x r_0$. Now $h_x(t) = f(x+t) + f(x-t) = 2f(r_0) + f(x+t) f(t-x+2r_0)$ increases by Property 1.4 because $t x + 2r_0 > r_0$ and $(x+t) (t-x+2r_0) > 0$.



Go Back

Close

Quit

Page 6 of 14

J. Ineq. Pure and Appl. Math. 7(2) Art. 73, 2006 http://jipam.vu.edu.au

2. Main Result

It is obvious that the monotonicity of F_h matches that of F. The main result consists of the following theorem:

Theorem 2.1. If $(x-y)(a^2x-b^2y) > 0$ (resp. < 0) then $F_h(r)$ is symmetrically log-concave (resp. log-convex) with respect to the point -h/2).

To prove it we need the following

Lemma 2.2. Let

$$g(t, A, B) = \frac{A^t \log^2 A}{(A^t - 1)^2} - \frac{B^t \log^2 B}{(B^t - 1)^2}$$

Then

 $I. \ g(t,A,B) = g(\pm t,A^{\pm 1},B^{\pm 1}),$

2. g is increasing in t on $(0,\infty)$ if $\log^2 A - \log^2 B > 0$ and decreasing otherwise.

Proof. (1) becomes obvious when we write

$$g(t, A, B) = \frac{\log^2 A}{A^t - 2 + A^{-t}} - \frac{\log^2 B}{B^t - 2 + B^{-t}}$$

From (1) if follows that replacing A, B with A^{-1}, B^{-1} if necessary we may assume that A, B > 1. In this case $sgn(\log^2 A - \log^2 B) = sgn(A^t - B^t)$.

$$\frac{\partial g}{\partial t} = -\frac{A^t (A^t + 1) \log^3 A}{(A^t - 1)^3} + \frac{B^t (B^t + 1) \log^3 B}{(B^t - 1)^3}$$
$$= -\frac{1}{t^3} (\phi(A^t) - \phi(B^t)) = -\frac{1}{t^3} (A^t - B^t) \phi'(\xi),$$

J. Ineq. Pure and Appl. Math. 7(2) Art. 73, 2006 http://jipam.vu.edu.au

where $\xi > 1$ lies between A^t and B^t and

$$\phi(u) = \frac{u(u+1)\log^3 u}{(u-1)^3}.$$

To complete the proof it is enough to show that $\phi'(u) < 0$ for u > 1.

$$\phi'(u) = \frac{(u^2 + 4u + 1)\log^2 u}{(u - 1)^4} \left[\frac{3(u^2 - 1)}{u^2 + 4u + 1} - \log u\right],$$

so the sign of ϕ' is the same as the sign of $\psi(u) = \frac{3(u^2-1)}{u^2+4u+1} - \log u$. But $\psi(1) = 0$ and $\psi'(u) = -(u-1)^4/u(u^2+4u+1)^2 < 0$, so $\phi(u) < 0$.

Proof of Theorem 2.1. First of all note that

$$\log^2 \frac{ax}{by} - \log^2 \frac{a}{b} = \log \frac{x}{y} \log \frac{a^2x}{b^2y}$$

and because $\operatorname{sgn}(x-y) = \operatorname{sgn}\log \frac{x}{y}$ we see that

(2.1)
$$\operatorname{sgn}(x-y)(a^2x-b^y) = \operatorname{sgn}\left(\log^2\frac{ax}{by} - \log^2\frac{a}{b}\right).$$

Let $A = \frac{ax}{by}$ and $B = \frac{a}{b}$. Suppose that $A, B \neq 1$ (in other cases we use a standard continuity argument). $F_h(r)$ can be written as

$$F_h(r) = y \left(\frac{A^{r+h} - 1}{B^{r+h} - 1} \middle/ \frac{A^r - 1}{B^r - 1} \right)^{\frac{1}{h}}$$

Page 8 of 14

J. Ineq. Pure and Appl. Math. 7(2) Art. 73, 2006 http://jipam.vu.edu.au

We show symmetry by performing simple calculations:

$$F_{h}^{h}(-h/2-r)F_{h}^{h}(-h/2+r)$$

$$= y^{2h}\frac{A^{h/2-r}-1}{B^{h/2-r}-1}\cdot\frac{B^{-h/2-r}-1}{A^{-h/2-r}-1}\cdot\frac{A^{h/2+r}-1}{B^{h/2+r}-1}\cdot\frac{B^{-h/2+r}-1}{A^{-h/2+r}-1}$$

$$(2.2) \qquad = y^{2h}\frac{B^{-h}}{A^{-h}}\cdot\frac{A^{h/2-r}-1}{B^{h/2-r}-1}\cdot\frac{1-B^{h/2+r}}{1-A^{h/2+r}}\cdot\frac{A^{h/2+r}-1}{B^{h/2+r}-1}\cdot\frac{1-B^{h/2-r}}{1-A^{h/2-r}}$$

$$= y^{2h}\left(\frac{x}{y}\right)^{h} = (xy)^{h} = F_{h}^{2h}(-h/2).$$

Differentiating twice we obtain

$$\frac{d^2}{dr^2} \log F_h(r) = \frac{g(r, A, B) - g(r + h, A, B)}{h}$$

= $\frac{g(|r|, A, B) - g(|r + h|, A, B)}{h}$ (by Lemma 2.2 (1)),

hence by Lemma 2.2 (2)

$$\operatorname{sgn} \frac{d^2}{dr^2} \log F_h(r) = \operatorname{sgn} h(|r| - |r + h|) (\log^2 A - \log^2 B)$$
$$= \operatorname{sgn}(r + h/2)(x - y)(a^2 x - b^2 y).$$

The last equation follows from (2.1) and from the fact that the inequality |r| < |r+h| is valid if and only if r > -h/2 and h > 0 or r < -h/2 and h < 0. \Box

The following theorem is an immediate consequence of Theorem 2.1 and Lemma 1.6.

Convexity of Weighted Stolarsky Means

Alfred Witkowski

J. Ineq. Pure and Appl. Math. 7(2) Art. 73, 2006 http://jipam.vu.edu.au

Theorem 2.3. If
$$(x - y)(a^2x - b^2y)(r_0 + h/2) > 0$$
 then the function
 $\Phi(t) = F_h(r_0 - t)F_h(r_0 + t)$

is decreasing in $(0, \infty)$. In particular for every real t

(2.3)
$$F_h(r_0 - t)F_h(r_0 + t) \le F_h^2(r_0).$$

If $(x - y)(a^2x - b^2y)(r_0 + h/2) < 0$ then $\Phi(t)$ is increasing in $(0, \infty)$. In particular for every real t

(2.4)
$$F_h(r_0 - t)F_h(r_0 + t) \ge F_h^2(r_0).$$

The following corollaries are immediate consequences of Theorems 2.1 and 2.3:

Corollary 2.4. For $x \neq y$ the one-parameter mean J(r) defined by (1.4) is logconvex for r < -1/2 and log-concave for r > -1/2. If $r_0 > -1/2$ then for all real t, $J(r_0 - t)J(r_0 + t) \leq J^2(r_0)$. For $r_0 < -1/2$ the inequality reverses.

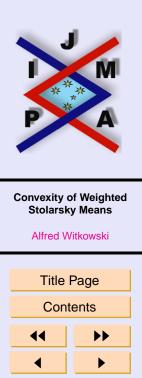
Proof. $J(r; x, y) = F_1(r; 1, 1; x, y).$

Corollary 2.5. For $x \neq y$ the Lehmer mean L(r) defined by (1.5) is log-convex for r < -1/2 and log-concave for r > -1/2. If $r_0 > -1/2$ then for all real t, $L(r_0 - t)L(r_0 + t) \leq L^2(r_0)$. For $r_0 < -1/2$ the inequality reverses.

Proof. $L(r; x, y) = F_1(r; x, y; x, y).$

Corollary 2.6. For $x \neq y$ the mean N(r) defined by (1.6) is log-convex for r < -1/2 and log-concave for r > -1/2. If $r_0 > -1/2$ then for all real t, $N(r_0 - t)N(r_0 + t) \leq N^2(r_0)$. For $r_0 < -1/2$ the inequality reverses.

Proof. $N(r; x, y) = F_1(r; \sqrt{x}, \sqrt{y}; x, y).$



Go Back

Close

Quit

Page 10 of 14

J. Ineq. Pure and Appl. Math. 7(2) Art. 73, 2006 http://jipam.vu.edu.au

3. Application

In this section we show some inequalities between classic means:

Power means
$$A_r = A_r(x, y) = \left(\frac{x^r + y^r}{2}\right)^{\frac{1}{r}}$$
Harmonic mean $H = A_{-1}(x, y) = \frac{2xy}{x + y}$ Geometric mean $G = A_0(x, y) = \sqrt{xy}$ Logarithmic mean $L = L(x, y) = \frac{x - y}{\log x - \log y}$ Heronian mean $N = N(x, y) = \frac{x + \sqrt{xy} + y}{3}$ Arithmetic mean $A = A_1(x, y) = \frac{x + y}{2}$ Centroidal mean $T = T(x, y) = \frac{2}{3} \frac{x^2 + xy + y^2}{x + y}$ Root-mean-square $R = A_2(x, y) = \sqrt{\frac{x^2 + y^2}{2}}$ Contrharmonic mean $C = C(x, y) = \frac{x^2 + y^2}{x + y}$

Corollary 3.1 (Tung-Po Lin inequality [4]).

$$L \le A_{1/3}$$

Page 11 of 14

J. Ineq. Pure and Appl. Math. 7(2) Art. 73, 2006 http://jipam.vu.edu.au

Proof. By Theorem 2.3

$$F_{1/3}(0;1,1,;x,y)F_{1/3}(2/3;1,1;x,y) \le F_{1/3}^2(1/3;1,1;x,y)$$

or

$$\left(3\frac{\sqrt[3]{x}-\sqrt[3]{y}}{\log x - \log y}\right)^3 \left(\frac{2}{3}\frac{x-y}{\sqrt[3]{x^2} - \sqrt[3]{y^2}}\right)^3 \le \left(\frac{1}{2}\frac{\sqrt[3]{x^2} - \sqrt[3]{y^2}}{\sqrt[3]{x} - \sqrt[3]{y}}\right)^6$$

Simplifying we obtain

$$L^3(x,y) \le A^3_{1/3}(x,y)$$

Inequalities in the table below can be shown the same way as above by an appropriate choice of parameters in (2.3) and (2.4).

J. Ineq. Pure and Appl. Math. 7(2) Art. 73, 2006 http://jipam.vu.edu.au

J		b	a	t	r_0	h	Inequality	No
		1	1	1	0	1/2	$L^2 \ge GN$	1
* *		1	1	2	0	$\stackrel{'}{1}$	$L^2 > HT$	2
P		y	x	1/2	0	1/2	$A_{1/2}^2 \ge AG$	3
		1	1	1/2	1/2	1/2		4
		1	1	1/2	1/2	1	$N^2 \ge AL$	5
	-	1	1	1	1	1	$A^2 \ge LT$	6
Convexity of V		y	x	1	0	1	$A^2 \ge CH$	7
Stolarsky M		1	1	1	1/2	1/2	$LN \ge AG$	8
Alfred Witk		y	x	1/2	-1	1	$GN \ge HT$	9
	-	y	x	1	0	1/2	$AN \ge TG$	10
Title Pa		1	1	2	1	1	$LT \ge HC$	11
		y	x	1/2	1/2	1	$TA \ge NR$	12
Conter		1	1	1	0	1	$L^3 \ge AG^2$	13
••		1	1	1/2	-1/2	1/2	$L^3 \ge GA_{1/2}^2$	14
		1	1	1/2	1	1/2	$N^3 \ge AA_{1/2}^{\bar{2}'}$	15
		1	1	1	2	1	$T^3 \ge AR^2$	16
Go Ba		1	1	3/2	1/2	1	$LN^2 \ge G^2T$	17

Note that 4 is stronger than 3 (due to inequality 8), 14 is stronger than 13 (due to 3). Also, 1 is stronger than 2 because of 9.



J. Ineq. Pure and Appl. Math. 7(2) Art. 73, 2006 http://jipam.vu.edu.au

References

- [1] H. ALZER, Über eine einparametrige Familie von Mittelwerten, *Bayer*. *Akad. Wiss. Math.-Natur. Kl. Sitzungsber*, 1987 (1988), 1–9.
- [2] H. ALZER, Über Lehmers Mittelwertefamilie, *Elem. Math.*, 43 (1988), 50–54.
- [3] E. LEACH AND M. SHOLANDER, Extended mean values, *Amer. Math. Monthly*, **85** (1978), 84–90.
- [4] T.-P. LIN, The power mean and the logarithmic mean, *Amer. Math. Monthly*, **81**(8) (1974), 879–883.
- [5] E. NEUMAN AND Zs. PÁLES, On comparison of Stolarsky and Gini means, J. Math. Anal. Appl., 278 (2003), 274–285.
- [6] K.B. STOLARSKY, Generalizations of the logarithmic mean, *Math. Mag.*, 48 (1975), 87–92.
- [7] FENG QI, Generalized weighted mean values with two parameters, *Proc. Roy. Soc. London Ser. A*, **454** (1998), No. 1978, 2723–2732.
- [8] A. WITKOWSKI, Monotonicity of generalized extended mean values, *Colloq. Math.*, 99(2) (2004), 203–206. *RGMIA Research Report Collection*, 7(1) (2004), Art. 12. [ONLINE: http://rgmia.vu.edu.au/v7n1.html].
- [9] A. WITKOWSKI, Weighted extended mean values, *Colloq. Math.*, 100(1) (2004), 111–117. RGMIA Research Report Collection, 7(1) (2004), Art. 6. [ONLINE: http://rgmia.vu.edu.au/v7n1.html].

J. Ineq. Pure and Appl. Math. 7(2) Art. 73, 2006 http://jipam.vu.edu.au