A STABILITY VERSION OF HÖLDER'S INEQUALITY FOR $0<p<1$

J. M. ALDAZ
Departamento de Matemáticas y Computación
Universidad de La Rioja
26004 Logroño, La Rioja, Spain.
jesus.munarrizaldaz@unirioja.es

Received 21 October, 2007; accepted 23 March, 2008
Communicated by L. Losonczi

Abstract. We use a refinement of Hölder's inequality for $1<p<\infty$ to obtain the corresponding refinement when $r \in(0,1)$. This in turn allows us to sharpen the reverse triangle inequality on the nonnegative functions in L^{r}, for $r \in(0,1)$.

Key words and phrases: Hölder's inequality, Reverse triangle inequality.

2000 Mathematics Subject Classification 26D15.

By $\|F\|_{t}:=\left(\int|F|^{t}\right)^{1 / t}$ we do not mean to imply that this quantity is finite, nor do we assume that $t>0$; in fact, in this note negative exponents are unavoidable.

It is well known that Hölder's inequality can be extended to the range $0<r<1$, by an argument that essentially amounts to a clever rewriting of the case $1<p<\infty$, cf. [2, pg. 191]. We denote the conjugate exponent of r by $s:=r /(r-1)$, and the conjugate exponent of p by $q:=p /(p-1)$ (of course, to go from the range $(0,1)$ to $(1, \infty)$ and viceversa, one sets $r=1 / p$). Hölder's inequality for $0<r<1$ tells us that if h and k are nonnegative functions in L^{r} and L^{s} respectively, then $\int h k \geq\left(\int h^{r}\right)^{1 / r}\left(\int k^{s}\right)^{1 / s}$. This entails that given functions $h, w \geq 0$ in L^{r}, the reverse triangle inequality $\|h+w\|_{r} \geq\|h\|_{r}+\|w\|_{r}$ holds. Nonnegativity is of course crucial.

Here we extend to the range $(0,1)$ the following stability version of Hölder's inequality, which appears in [1]:

Let $1<p<\infty$ and let $q=p /(p-1)$ be its conjugate exponent. If $f \in L^{p}, g \in L^{q}$ are nonnegative functions with $\|f\|_{p},\|g\|_{q}>0$, and $1<p \leq 2$, then

$$
\begin{align*}
\|f\|_{p}\|g\|_{q}\left(1-\frac{1}{p} \| \frac{f^{p / 2}}{\left\|f^{p / 2}\right\|_{2}}\right. & \left.-\frac{g^{q / 2}}{\left\|g^{q / 2}\right\|_{2}} \|_{2}^{2}\right)_{+} \tag{1}\\
& \leq\|f g\|_{1} \leq\|f\|_{p}\|g\|_{q}\left(1-\frac{1}{q}\left\|\frac{f^{p / 2}}{\left\|f^{p / 2}\right\|_{2}}-\frac{g^{q / 2}}{\left\|g^{q / 2}\right\|_{2}}\right\|_{2}^{2}\right)
\end{align*}
$$

while if $2 \leq p<\infty$, the terms $1 / p$ and $1 / q$ exchange their positions in the preceding inequalities.

Inequality (1) essentially states that $\|f g\|_{1} \approx\|f\|_{p}\|g\|_{q}$ if and only if the angle between the L^{2} vectors $f^{p / 2}$ and $g^{q / 2}$ is small (in this sense it is a stability result). To see that on the cone of nonnegative functions (1) extends the parallelogram identity, rearrange the latter, for nonzero x and y in a real Hilbert space, as follows (cf. [1] formula (2.0.2)]):

$$
\begin{equation*}
(x, y)=\|x\|\|y\|\left(1-\frac{1}{2}\left\|\frac{x}{\|x\|}-\frac{y}{\|y\|}\right\|^{2}\right) \tag{2}
\end{equation*}
$$

Writing (2) as a two sided inequality, adequately replacing some of the Hilbert space norms by p and q norms, and the terms $1 / 2$ by $1 / p$ and $1 / q$, we see that (1) indeed generalizes (2). Note also that $\left\|f^{p / 2}\right\|_{2}=\|f\|_{p}^{p / 2}$. Save in the case where $p=q=2$, the nonnegative functions $f \in L^{p}$ and $g \in L^{q}$ will in principle belong to different spaces, so to compare them L^{2} is retained in (1) as the common measuring ground; to go from L^{p} and L^{q} into L^{2} we use the Mazur map, which for nonnegative functions of norm 1 in L^{p} is simply $f \mapsto f^{p / 2}$ (cf. [1] for more details).

Next we extend inequality $\sqrt{1})$ to the range $0<r<1$, keeping the role of L^{2}. Unlike the case of Hölder's inequality for $1<p<\infty$, here we assume that $h k \in L^{1}$. In exchange, we do not need to suppose a priori that $h \in L^{r}$; this will be part of the conclusion.

Theorem 1. Let $0<r<1$, and let $s=s /(s-1)$ be its conjugate exponent. If $k \in L^{s}$, $h k \in L^{1},\|h\|_{r},\|k\|_{s}>0$, and $1 / 2 \leq r<1$, then

$$
\begin{align*}
& \|h k\|_{1}\left(1-r\left\|\frac{h^{1 / 2} k^{1 / 2}}{\left\|h^{1 / 2} k^{1 / 2}\right\|_{2}}-\frac{k^{s / 2}}{\left\|k^{s / 2}\right\|_{2}}\right\|_{2}^{2}\right)_{+}^{\frac{1}{r}} \tag{3a}\\
& \leq\|h\|_{r}\|k\|_{s} \leq\|h k\|_{1}\left(1-(1-r)\left\|\frac{h^{1 / 2} k^{1 / 2}}{\left\|h^{1 / 2} k^{1 / 2}\right\|_{2}}-\frac{k^{s / 2}}{\left\|k^{s / 2}\right\|_{2}}\right\|_{2}^{2}\right)^{\frac{1}{r}}
\end{align*}
$$

while if $0<r \leq 1 / 2$, the terms r and $1-r$ exchange their positions in the preceding inequalities.

Proof. Suppose $1 / 2 \leq r<1$. Set $p=1 / r$ and use q and s to denote the conjugate exponents of p and r respectively. Since $1<p \leq 2$, we can apply (1) to the functions $f:=h^{r} k^{r}$ and $g=k^{-r}$, which belong to L^{p} and L^{q} respectively: $\int f^{p}=\int h k<\infty$ and $\int g^{q}=\int k^{s}<\infty$. Now the inequalities (3) immediately follow. If $0<r \leq 1 / 2$, then $2 \leq p<\infty$, so just interchange the terms $1 / p$ and $1 / q$ in (1).

Note that from (3b), together with the hypothesis $\|h\|_{r}\|k\|_{s}>0$, we get

$$
\begin{equation*}
0<1-(1-r)\left\|\frac{h^{1 / 2} k^{1 / 2}}{\left\|h^{1 / 2} k^{1 / 2}\right\|_{2}}-\frac{k^{s / 2}}{\left\|k^{s / 2}\right\|_{2}}\right\|_{2}^{2} \tag{4}
\end{equation*}
$$

for all $r \in[1 / 2,1)$ (for $r \in(1 / 2,1)$ this already follows from $\left\|\frac{x}{\|x\|_{2}}-\frac{y}{\|y\|_{2}}\right\|_{2}^{2} \leq 2$, which is immediate from (2) when $x, y \geq 0$). The analogous result, with r instead of $1-r$, holds when $0<r \leq 1 / 2$. Thus, 3b) can be rewritten as

$$
\begin{equation*}
\|h\|_{r}\|k\|_{s}\left(1-(1-r)\left\|\frac{h^{1 / 2} k^{1 / 2}}{\left\|h^{1 / 2} k^{1 / 2}\right\|_{2}}-\frac{k^{s / 2}}{\left\|k^{s / 2}\right\|_{2}}\right\|_{2}^{2}\right)^{-\frac{1}{r}} \leq\|h k\|_{1} \tag{5}
\end{equation*}
$$

when $1 / 2 \leq r<1$, while if $0<r \leq 1 / 2$, the same formula holds but with r replacing $1-r$.
Now we are ready to obtain a sharpening of the reverse triangle inequality for nonnegative functions.

Theorem 2. Let $0<r<1$. Given nonnegative functions h, $w \in L^{r}$ with $\|h\|_{r},\|w\|_{r}>0$, set $k:=(h+w)^{r-1} /\left\|(h+w)^{r-1}\right\|_{s}$. Then, if $1 / 2 \leq r<1$, we have

$$
\begin{align*}
\|h+w\|_{r} \geq\|h\|_{r}(1-(1-r) \| & \left.\frac{h^{1 / 2} k^{1 / 2}}{\left\|h^{1 / 2} k^{1 / 2}\right\|_{2}}-k^{s / 2} \|_{2}^{2}\right)^{-\frac{1}{r}} \tag{6}\\
& +\|w\|_{r}\left(1-(1-r)\left\|\frac{w^{1 / 2} k^{1 / 2}}{\left\|w^{1 / 2} k^{1 / 2}\right\|_{2}}-k^{s / 2}\right\|_{2}^{2}\right)^{-\frac{1}{r}}
\end{align*}
$$

while if $0<r \leq 1 / 2$, the same inequality holds but with $1-r$ replaced by r.
Proof. Suppose $1 / 2 \leq r<1$, and note that k is a unit vector in L^{s}. Hence, so is $k^{s / 2}$ in L^{2}. By the nonnegativity of h and w we have

$$
\begin{equation*}
\|h+w\|_{r}=\int \frac{(h+w)^{r-1}}{\left\|(h+w)^{r-1}\right\|_{s}}(h+w)=\int h k+\int w k . \tag{7}
\end{equation*}
$$

Since the left hand side of the preceding equality is finite, so are both integrals on the right hand side, and now the result follows by applying (4). If $0<r \leq 1 / 2$, we argue in the same way, but with r replacing $1-r$ in (4).

Let us write $\theta(x, y):=\left\|\frac{x}{\|x\|}-\frac{y}{\|y\| \|}\right\|$. To conclude, we make some comments on the size of $\theta\left(h^{1 / 2} k^{1 / 2}, k^{s / 2}\right)$, which also apply to $\theta\left(w^{1 / 2} k^{1 / 2}, k^{s / 2}\right)$. On a real Hilbert space, $\theta(x, y)$ is comparable to the angle between the vectors x and y. In particular, $\theta\left(h^{1 / 2} k^{1 / 2}, k^{s / 2}\right)$ is zero if and only if there exists a $t>0$ such that $h=t w$, in which case $\|h+w\|_{r}=\|h\|_{r}+\|w\|_{r}$. Under any other circumstance, the inequality given by (6) is strictly better that the standard reverse triangle inequality.

On the other hand, if we ask how small

$$
\left(1-(1-r)\left\|\frac{h^{1 / 2} k^{1 / 2}}{\left\|h^{1 / 2} k^{1 / 2}\right\|_{2}}-k^{s / 2}\right\|_{2}^{2}\right)^{\frac{1}{r}}
$$

can be for $r \in[1 / 2,1)$, the obvious bound $\theta\left(h^{1 / 2} k^{1 / 2}, k^{s / 2}\right) \leq \sqrt{2}$ is informative when r is close to 1 , but useless if $r=1 / 2$. The analogous remark holds for

$$
\left(1-r\left\|\frac{h^{1 / 2} k^{1 / 2}}{\left\|h^{1 / 2} k^{1 / 2}\right\|_{2}}-k^{s / 2}\right\|_{2}^{2}\right)^{\frac{1}{r}}
$$

when $0<r \leq 1 / 2$. However, nontrivial bounds also hold near $1 / 2$, since for every $r \in$ $(0,1),\|h+w\|_{r} \leq 2^{1 / r-1}\left(\|h\|_{r}+\|w\|_{r}\right)$ (see for instance Exercise 13.25 a), [2, pg. 199]). Thus, $\theta\left(h^{1 / 2} k^{1 / 2}, k^{s / 2}\right)$ and $\theta\left(w^{1 / 2} k^{1 / 2}, k^{s / 2}\right)$ cannot be simultaneously large. More precisely, if $1 / 2 \leq r<1$, then either

$$
\theta^{2}\left(h^{1 / 2} k^{1 / 2}, k^{s / 2}\right) \leq \frac{1-2^{r-1}}{1-r}
$$

or

$$
\theta^{2}\left(w^{1 / 2} k^{1 / 2}, k^{s / 2}\right) \leq \frac{1-2^{r-1}}{1-r}
$$

while if $0<r \leq 1 / 2$, then either

$$
\theta^{2}\left(h^{1 / 2} k^{1 / 2}, k^{s / 2}\right) \leq \frac{1-2^{r-1}}{r}
$$

or

$$
\theta^{2}\left(w^{1 / 2} k^{1 / 2}, k^{s / 2}\right) \leq \frac{1-2^{r-1}}{r}
$$

References

[1] J.M. ALDAZ, A stability version of Hölder's inequality, J. Math. Anal. Applics., to appear. doi:10.1016/j.jmaa.2008.01.104. [ONLINE: http://arxiv.org/abs/0710.2307].
[2] E. HEWITT and K. STROMBERG, Real and Abstract Analysis. A Modern Treatment of the Theory of Functions of a Real Variable. Second printing corrected, Springer-Verlag, New YorkBerlin, 1969.

