A STABILITY VERSION OF HÖLDER'S INEQUALITY FOR 0

J. M. ALDAZ

Departamento de Matemáticas y Computación Universidad de La Rioja 26004 Logroño, La Rioja, Spain. EMail: jesus.munarrizaldaz@unirioja.es

Received:	21 October, 2007
Accepted:	23 March, 2008
Communicated by:	L. Losonczi
2000 AMS Sub. Class.:	26D15.
Key words:	Hölder's inequality, Reverse triangle inequality.
Abstract:	We use a refinement of Hölder's inequality for $1 to obtain the corresponding refinement when r \in (0, 1). This in turn allows us to sharpen the reverse triangle inequality on the nonnegative functions in L^r, for r \in (0, 1).$
Acknowledgements:	The author was partially supported by Grant MTM2006-13000-C03-03 of the D.G.I. of Spain.

Hölder's Inequality

vol. 9, iss. 2, art. 60, 2008				
Title Page				
Contents				
••	••			
•	►			
Page 1 of 7				
Go Back				
Full Screen				
Close				
ournal of inequalitie				

in pure and applied mathematics

By $||F||_t := (\int |F|^t)^{1/t}$ we do not mean to imply that this quantity is finite, nor do we assume that t > 0; in fact, in this note negative exponents are unavoidable.

It is well known that Hölder's inequality can be extended to the range 0 < r < 1, by an argument that essentially amounts to a clever rewriting of the case 1 ,cf. [2, pg. 191]. We denote the conjugate exponent of <math>r by s := r/(r-1), and the conjugate exponent of p by q := p/(p-1) (of course, to go from the range (0,1)to $(1,\infty)$ and viceversa, one sets r = 1/p). Hölder's inequality for 0 < r < 1tells us that if h and k are nonnegative functions in L^r and L^s respectively, then $\int hk \ge (\int h^r)^{1/r} (\int k^s)^{1/s}$. This entails that given functions $h, w \ge 0$ in L^r , the reverse triangle inequality $||h + w||_r \ge ||h||_r + ||w||_r$ holds. Nonnegativity is of course crucial.

Here we extend to the range (0, 1) the following stability version of Hölder's inequality, which appears in [1]:

Let 1 and let <math>q = p/(p-1) be its conjugate exponent. If $f \in L^p$, $g \in L^q$ are nonnegative functions with $||f||_p$, $||g||_q > 0$, and 1 , then

(1)
$$||f||_p ||g||_q \left(1 - \frac{1}{p} \left\| \frac{f^{p/2}}{\|f^{p/2}\|_2} - \frac{g^{q/2}}{\|g^{q/2}\|_2} \right\|_2^2 \right)_+$$

 $\leq ||fg||_1 \leq ||f||_p ||g||_q \left(1 - \frac{1}{q} \left\| \frac{f^{p/2}}{\|f^{p/2}\|_2} - \frac{g^{q/2}}{\|g^{q/2}\|_2} \right\|_2^2 \right),$

while if $2 \le p < \infty$, the terms 1/p and 1/q exchange their positions in the preceding inequalities.

Inequality (1) essentially states that $||fg||_1 \approx ||f||_p ||g||_q$ if and only if the angle between the L^2 vectors $f^{p/2}$ and $g^{q/2}$ is small (in this sense it is a stability result). To see that on the cone of nonnegative functions (1) extends the parallelogram identity,

rearrange the latter, for nonzero x and y in a real Hilbert space, as follows (cf. [1, formula (2.0.2)]):

(2)
$$(x,y) = \|x\| \|y\| \left(1 - \frac{1}{2} \left\|\frac{x}{\|x\|} - \frac{y}{\|y\|}\right\|^2\right).$$

Writing (2) as a two sided inequality, adequately replacing some of the Hilbert space norms by p and q norms, and the terms 1/2 by 1/p and 1/q, we see that (1) indeed generalizes (2). Note also that $||f^{p/2}||_2 = ||f||_p^{p/2}$. Save in the case where p = q = 2, the nonnegative functions $f \in L^p$ and $g \in L^q$ will in principle belong to different spaces, so to compare them L^2 is retained in (1) as the common measuring ground; to go from L^p and L^q into L^2 we use the Mazur map, which for nonnegative functions of norm 1 in L^p is simply $f \mapsto f^{p/2}$ (cf. [1] for more details).

Next we extend inequality (1) to the range 0 < r < 1, keeping the role of L^2 . Unlike the case of Hölder's inequality for $1 , here we assume that <math>hk \in L^1$. In exchange, we do not need to suppose a priori that $h \in L^r$; this will be part of the conclusion.

Theorem 1. Let 0 < r < 1, and let s = s/(s-1) be its conjugate exponent. If $k \in L^{s}$, $hk \in L^{1}$, $||h||_{r}$, $||k||_{s} > 0$, and 1/2 < r < 1, then

(3a)
$$||hk||_1 \left(1 - r \left\|\frac{h^{1/2}k^{1/2}}{\|h^{1/2}k^{1/2}\|_2} - \frac{k^{s/2}}{\|k^{s/2}\|_2}\right\|_2^2\right)_+^{\frac{1}{r}}$$

(3b)
$$\leq \|h\|_{r} \|k\|_{s} \leq \|hk\|_{1} \left(1 - (1 - r) \left\|\frac{h^{1/2}k^{1/2}}{\|h^{1/2}k^{1/2}\|_{2}} - \frac{k^{s/2}}{\|k^{s/2}\|_{2}}\right\|_{2}^{2}\right)^{\frac{1}{r}},$$

while if $0 < r \le 1/2$, the terms r and 1 - r exchange their positions in the preceding inequalities.

mathematics issn: 1443-5756 *Proof.* Suppose $1/2 \le r < 1$. Set p = 1/r and use q and s to denote the conjugate exponents of p and r respectively. Since $1 , we can apply (1) to the functions <math>f := h^r k^r$ and $g = k^{-r}$, which belong to L^p and L^q respectively: $\int f^p = \int hk < \infty$ and $\int g^q = \int k^s < \infty$. Now the inequalities (3) immediately follow. If $0 < r \le 1/2$, then $2 \le p < \infty$, so just interchange the terms 1/p and 1/q in (1).

Note that from (3b), together with the hypothesis $||h||_r ||k||_s > 0$, we get

(4)
$$0 < 1 - (1 - r) \left\| \frac{h^{1/2} k^{1/2}}{\|h^{1/2} k^{1/2}\|_2} - \frac{k^{s/2}}{\|k^{s/2}\|_2} \right\|_2^2$$

for all $r \in [1/2, 1)$ (for $r \in (1/2, 1)$ this already follows from $\left\|\frac{x}{\|x\|_2} - \frac{y}{\|y\|_2}\right\|_2^2 \leq 2$, which is immediate from (2) when $x, y \geq 0$). The analogous result, with r instead of 1 - r, holds when $0 < r \leq 1/2$. Thus, (3b) can be rewritten as

(5)
$$||h||_{r}||k||_{s}\left(1-(1-r)\left\|\frac{h^{1/2}k^{1/2}}{\|h^{1/2}k^{1/2}\|_{2}}-\frac{k^{s/2}}{\|k^{s/2}\|_{2}}\right\|_{2}^{2}\right)^{-\frac{1}{r}} \leq \|hk\|_{1}$$

when $1/2 \le r < 1$, while if $0 < r \le 1/2$, the same formula holds but with r replacing 1 - r.

Now we are ready to obtain a sharpening of the reverse triangle inequality for nonnegative functions.

journal of inequalities in pure and applied mathematics

Theorem 2. Let 0 < r < 1. Given nonnegative functions $h, w \in L^r$ with $||h||_r, ||w||_r > 0$, set $k := (h+w)^{r-1}/||(h+w)^{r-1}||_s$. Then, if $1/2 \le r < 1$, we have

(6)
$$||h+w||_r \ge ||h||_r \left(1-(1-r)\left\|\frac{h^{1/2}k^{1/2}}{\|h^{1/2}k^{1/2}\|_2}-k^{s/2}\right\|_2^2\right)^{-\frac{1}{r}} + ||w||_r \left(1-(1-r)\left\|\frac{w^{1/2}k^{1/2}}{\|w^{1/2}k^{1/2}\|_2}-k^{s/2}\right\|_2^2\right)^{-\frac{1}{r}},$$

while if $0 < r \le 1/2$, the same inequality holds but with 1 - r replaced by r.

Proof. Suppose $1/2 \le r < 1$, and note that k is a unit vector in L^s . Hence, so is $k^{s/2}$ in L^2 . By the nonnegativity of h and w we have

(7)
$$\|h+w\|_r = \int \frac{(h+w)^{r-1}}{\|(h+w)^{r-1}\|_s} (h+w) = \int hk + \int wk$$

Since the left hand side of the preceding equality is finite, so are both integrals on the right hand side, and now the result follows by applying (4). If $0 < r \le 1/2$, we argue in the same way, but with r replacing 1 - r in (4).

Let us write $\theta(x, y) := \left\| \frac{x}{\|x\|} - \frac{y}{\|y\|} \right\|$. To conclude, we make some comments on the size of $\theta(h^{1/2}k^{1/2}, k^{s/2})$, which also apply to $\theta(w^{1/2}k^{1/2}, k^{s/2})$. On a real Hilbert space, $\theta(x, y)$ is comparable to the angle between the vectors x and y. In particular, $\theta(h^{1/2}k^{1/2}, k^{s/2})$ is zero if and only if there exists a t > 0 such that h = tw, in which case $\|h + w\|_r = \|h\|_r + \|w\|_r$. Under any other circumstance, the inequality given by (6) is strictly better that the standard reverse triangle inequality.

in pure and applied mathematics

On the other hand, if we ask how small

$$\left(1 - (1 - r) \left\|\frac{h^{1/2}k^{1/2}}{\|h^{1/2}k^{1/2}\|_2} - k^{s/2}\right\|_2^2\right)^{\frac{1}{r}}$$

can be for $r \in [1/2, 1)$, the obvious bound $\theta(h^{1/2}k^{1/2}, k^{s/2}) \leq \sqrt{2}$ is informative when r is close to 1, but useless if r = 1/2. The analogous remark holds for

$$\left(1 - r \left\|\frac{h^{1/2}k^{1/2}}{\|h^{1/2}k^{1/2}\|_2} - k^{s/2}\right\|_2^2\right)^{\frac{1}{2}}$$

when $0 < r \le 1/2$. However, nontrivial bounds also hold near 1/2, since for every $r \in (0,1)$, $||h+w||_r \le 2^{1/r-1} (||h||_r + ||w||_r)$ (see for instance Exercise 13.25 a), [2, pg. 199]). Thus, $\theta(h^{1/2}k^{1/2}, k^{s/2})$ and $\theta(w^{1/2}k^{1/2}, k^{s/2})$ cannot be simultaneously large. More precisely, if $1/2 \le r < 1$, then either

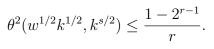
$$\theta^2(h^{1/2}k^{1/2},k^{s/2}) \le \frac{1-2^{r-1}}{1-r}$$

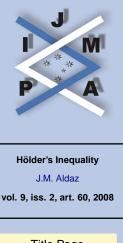
or

$$\theta^2(w^{1/2}k^{1/2},k^{s/2}) \le \frac{1-2^{r-1}}{1-r},$$

while if $0 < r \le 1/2$, then either

$$\theta^2(h^{1/2}k^{1/2},k^{s/2}) \le \frac{1-2^{r-1}}{r}$$





in pure and applied mathematics

References

- [1] J.M. ALDAZ, A stability version of Hölder's inequality, J. Math. Anal. Applics., to appear. doi:10.1016/j.jmaa.2008.01.104. [ONLINE: http:// arxiv.org/abs/0710.2307].
- [2] E. HEWITT AND K. STROMBERG, Real and Abstract Analysis. A Modern Treatment of the Theory of Functions of a Real Variable. Second printing corrected, Springer-Verlag, New York-Berlin, 1969.

J.M. Aldaz					
vol. 9, iss. 2, art. 60, 2008					
Т	Title Page				
Contents					
44		••			
•					
Pa	Page 7 of 7				
(Go Back				
Fu	Full Screen				
Close					
		<mark>qualitie:</mark> applied			

mathematics