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ABSTRACT. In this paper we introduce a new subclass of normalized analytic functions in the
open unit disc which is defined by the Al-Oboudi differential operator. A coefficient inequality,
extreme points and integral mean inequalities of a differential operator for this class are given.
We investigate various subordination results for the subclass of analytic functions and obtain suf-
ficient conditions for univalent close-to-starlikeness. We also discuss the boundedness properties
associated with partial sums of functions in the class. Several interesting connections with the
class of close-to-starlike and close-to-convex functions are also pointed out.
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1. I NTRODUCTION AND PRELIMINARIES

Let A denote the class of normalized functionsf defined by

(1.1) f(z) = z +
∞∑

k=2

akz
k

which are analytic in the open unit discU = {z ∈ C : |z| < 1}. Forf ∈ A, [1] has introduced
the following differential operator.

(1.2) D0f(z) = f(z)

(1.3) D1f(z) = (1− δ)f(z) + δzf ′(z) = Dδf(z), δ ≥ 0
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2 S.M. KHAIRNAR AND MEENA MORE

(1.4) Dnf(z) = Dδ(D
n−1f(z)), (n ∈ N).

Forf(z) given by (1.1), we notice from (1.3) and (1.4) that

(1.5) Dnf(z) = z +
∞∑

k=2

[1 + (k − 1)δ]nakz
k (n ∈ N0 = N ∪ {0}).

For δ = 1 we obtain the S̆alăgean operator [11].

Definition 1.1. A function f in A is said to be starlike of orderα (0 ≤ α < 1) in U , that is,
f ∈ S∗(α), if and only if

(1.6) Re

{
zf ′(z)

f(z)

}
> α (z ∈ U).

Definition 1.2. A function f in A is said to be convex of orderα (0 ≤ α < 1) in U , that is,
f ∈ K(α), if and only if

(1.7) Re

{
1 +

zf ′′(z)

f ′(z)

}
> α (z ∈ U).

Definition 1.3. A function f in A is said to be close-to-convex inU , of orderα, that is,f ∈
C(α), if and only if

(1.8) Re{f ′(z)} > α (z ∈ U).

Definition 1.4. A function f in A is said to be close-to-starlike of orderα (0 ≤ α < 1) in U ,
that is,f ∈ CS∗(α), if and only if

(1.9) Re

{
f(z)

z

}
> α (z ∈ U \ {0}).

We note that the classesS, S∗(0) = S∗, K(0) = K, C(0) = C, CS∗(0) = CS∗ are the well
known classes of univalent, starlike, convex, close-to-convex and close-to-starlike functions in
U , respectively. It is also clear that

(i) f ∈ K(α) if and only if zf ′ ∈ S∗(α);
(ii) K(α) ⊂ S∗(α) ⊂ C(α) ⊂ S.

Definition 1.5. For two functionsf andg analytic inU , we say that the functionf(z) is subor-
dinate tog(z) in U , and write

(1.10) f(z) ≺ g(z) (z ∈ U)

if there exists a Schwarz functionw(z), analytic inU with w(0) = 0 and|w(z)| < 1 such that

(1.11) f(z) = g(w(z)) (z ∈ U).

In particular, if the functiong is univalent inU , the above subordination is equivalent to

(1.12) f(0) = g(0), f(U) ⊂ g(U).

Littlewood [7] in 1925 has proved the following subordination theorem which we state as a
lemma.

Lemma 1.1. Letf andg be analytic in the unit disc, and supposeg ≺ f . Then for0 < p < ∞,

(1.13)
∫ 2π

0

|g(reiθ)|pdθ ≤
∫ 2π

0

|f(reiθ)|pdθ (0 ≤ r < 1, p > 0).

Strict inequality holds for0 < r < 1 unlessf is constant orw(z) = αz, |α| = 1.
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SUBCLASS OF ANALYTIC FUNCTIONS 3

Definition 1.6. Let n ∈ N∪{0} andλ ≥ 0. LetDn
λf denote the operator defined byDn

λ : A →
A such that

(1.14) Dn
λf(z) = (1− λ)Snf(z) + λRnf(z) z ∈ U,

whereSnf is the S̆alăgean differential operator andRnf is the Ruscheweyh differential operator
defined byRn : A → A such that

R0f(z) = f(z), R1f(z) = zf ′(z),

with recurrence relation given by

(1.15) (n + 1)Rn+1f(z) = z[Rnf(z)]′ + nRnf(z) (z ∈ U).

Forf ∈ A given by (1.1)

(1.16) Rnf(z) = z +
∞∑

k=2

nCn+k−1akz
k (z ∈ U).

Notice thatDn
λ is a linear operator and forf ∈ A defined by (1.1), we have

(1.17) Dn
λf(z) = z +

∞∑
k=2

[(1− λ)kn + λ nCn+k−1]akz
k.

It is observed that forn = 0,

D0
λf(z) = (1− λ)S0f(z) + λR0f(z) = f(z) = S0f(z) = R0f(z),

and forn = 1

D1
λf(z) = (1− λ)S1f(z) + λR1f(z) = zf ′(z) = S1f(z) = R1f(z).

Definition 1.7. Let K(γ, µ, m, β) denote the subclass ofA consisting of functionsf which
satisfy the inequality

(1.18)

∣∣∣∣1γ
(

(1− µ)
Dmf

z
+ µ(Dmf)′ − 1

)∣∣∣∣ < β,

wherez ∈ U, γ ∈ C \ {0}, 0 < β ≤ 1, 0 ≤ µ ≤ 1, m ∈ N0 andDm is as defined in (1.5).

Remark 1. Forγ = 1, µ = 1, m = 0, we obtain the class of close-to-convex functions of order
(1− β). For the valuesγ = 1, µ = 0, m = 0, we obtain the class of close-to-starlike functions
of order(1− β).

Let

T (η, f) = (1− η)
f(z)

z
+ η f ′(z) (z ∈ U \ {0})

for η real andf ∈ A. Define

Tη := {f ∈ A : Re{T (η, f)} > 0}.

We note thatTη can be derived from the classK(γ, µ, m, β) by replacingµ by η andDmf by
f .
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4 S.M. KHAIRNAR AND MEENA MORE

2. COEFFICIENT I NEQUALITIES , GROWTH AND DISTORTION THEOREMS

Here we first give a sufficient condition forf ∈ A to belong to the classK(γ, µ, m, β).

Theorem 2.1.Letf(z) ∈ A satisfy

(2.1)
∞∑

k=2

(1 + (k − 1)µ)(1 + (k − 1)δ)m|ak| ≤ |γ|β,

whereγ ∈ C \ {0}, 0 < β ≤ 1, 0 ≤ µ ≤ 1, m ∈ N0, δ ≥ 0. Thenf(z) ∈ K(γ, µ, m, β).

Proof. Suppose that (2.1) is true forγ (γ ∈ C \ {0}), β (0 < β ≤ 1), µ (0 ≤ µ ≤ 1), m ∈ N0,
andδ (δ ≥ 0) for f(z) ∈ A.

Using (1.5) for|z| = 1, we have∣∣∣∣(1− µ)
Dmf

z
+ µ(Dmf)′ − 1

∣∣∣∣ ≤ ∞∑
k=2

(1 + (k − 1)µ)(1 + (k − 1)δ)m|ak|

≤ |γ|β.

Thus by Definition 1.7f(z) ∈ K(γ, µ, m, β).
Notice that the function given by

(2.2) f(z) = z +
∞∑

k=2

|γ|β
(1 + (k − 1)µ)(1 + (k − 1)δ)m

zk

belongs to the classK(γ, µ, m, β) and plays the role of extremal function for the result (2.1).
�

We denote byK̃(γ, µ, m, β) ⊆ K(γ, µ, m, β) the functions

f(z) = z +
∞∑

k=2

akz
k,

where the Taylor-Maclaurin coefficients satisfy inequality (2.1).
Next we state the growth and distortion theorems for the classK̃(γ, µ, m, β). The results

follow easily on applying Theorem 2.1, therefore, we omit the proof.

Theorem 2.2.Let the functionf(z) defined by (1.1) be in the class̃K(γ, µ, m, β). Then

(2.3) |z| − |γ|β
(1 + µ)(1 + δ)m

|z|2 ≤ |f(z)| ≤ |z|+ |γ|β
(1 + µ)(1 + δ)m

|z|2.

The equality in (2.3) is attained for the functionf(z) given by

(2.4) f(z) = z +
|γ|β

(1 + µ)(1 + δ)m
z2.

Theorem 2.3.Let the functionf(z) defined by (1.1) be in the class̃K(γ, µ, m, β). Then

(2.5) 1− 2|γ|β
(1 + µ)(1 + δ)m

|z| ≤ |f ′(z)| ≤ 1 +
2|γ|β

(1 + µ)(1 + δ)m
|z|.

The equality in (2.5) is attained for the functionf(z) given by (2.4).

In view of Remark 1, Theorem 2.2 and Theorem 2.3 would yield the corresponding distortion
properties for the class of close-to-convex and close-to-starlike functions.
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SUBCLASS OF ANALYTIC FUNCTIONS 5

3. EXTREME POINTS

Now we determine the extreme points of the classK̃(γ, µ, m, β).

Remark 2. Forγ ∈ C\{0}, 0 < β ≤ 1, 0 ≤ µ ≤ 1, m ∈ N0 andδ ≥ 0 the following functions
are in the class̃K(γ, µ, m, β)

f1(z) = z +
β|γ|

(1 + µ)(1 + δ)m
z2 (z ∈ U);

f2(z) = z +
β|γ|

(1 + 2µ)(1 + 2δ)m
z3 (z ∈ U);

f3(z) = z +
1

(1 + µ)(1 + δ)m
z2 +

(|γ|β − 1)

(1 + 2µ)(1 + 2δ)m
z3 (z ∈ U).

Theorem 3.1.Letf1(z) = z and

(3.1) fk(z) = z +
|γ|β

(1 + (k − 1)µ)(1 + (k − 1)δ)m
zk (k ≥ 2).

Thenf(z) ∈ K̃(γ, µ, m, β), if and only if it can be expressed in the form

(3.2) f(z) =
∞∑

k=1

λkfk(z)

whereλk ≥ 0 and
∑∞

k=1 λk = 1.

Proof. Suppose that

f(z) =
∞∑

k=1

λkfk(z)

= z +
∞∑

k=2

λk
|γ|β

(1 + (k − 1)µ)(1 + (k − 1)δ)m
zk.

Then
∞∑

k=2

(1 + (k − 1)µ)(1 + (k − 1)δ)m |γ|β
(1 + (k − 1)µ)(1 + (k − 1)δ)m

λk

= |γ|β
∞∑

k=2

λk

≤ |γ|β (1− λ1)

≤ |γ|β.

Thus, in view of Theorem 2.1,f(z) ∈ K̃(γ, µ, m, β).
Conversely, suppose thatf(z) ∈ K̃(γ, µ, m, β). Setting

λk =
(1 + (k − 1)µ)(1 + (k − 1)δ)m

|γ|β
ak and λ1 = 1−

∞∑
k=2

λk,

we obtain

f(z) =
∞∑

k=1

λkfk(z).

�
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6 S.M. KHAIRNAR AND MEENA MORE

Corollary 3.2. The extreme points of̃K(γ, µ, m, β) are the functionsf1(z) = z and

fk(z) = z +
|γ|β

(1 + (k − 1)µ)(1 + (k − 1)δ)m
zk (k = 2, 3, . . . ).

4. I NTEGRAL M EAN I NEQUALITIES FOR A DIFFERENTIAL OPERATOR

Theorem 4.1.Letf(z) ∈ K̃(γ, µ, m, β) and suppose that

(4.1)
∞∑

k=2

[(1− λ)kn + λ nCn+k−1]|ak| ≤
|γ|β[(1− λ)jn + λ nCn+j−1]

(1 + µ(j − 1))(1 + δ(j − 1))m
.

Also, let the function

(4.2) fj(z) = z +
|γ|β

(1 + µ(j − 1))(1 + δ(j − 1))m
zj (j ≥ 2).

If there exists an analytic functionw(z) given by

w(z)j−1 =
(1 + µ(j − 1))(1 + δ(j − 1))m

|γ|β[(1− λ)jn + λ nCn+j−1]

∞∑
k=2

[(1− λ)kn + λ nCn+k−1]akz
k−1,

then forz = reiθ with 0 < r < 1,∫ 2π

0

|Dn
λf(z)|pdθ ≤

∫ 2π

0

|Dn
λfj(z)|pdθ (0 ≤ λ ≤ 1, p > 0)

for the differential operator defined in (1.17).

Proof. By Definition 1.6 and by virtue of relation (1.17), we have

(4.3) Dn
λf(z) = z +

∞∑
k=2

[(1− λ)kn + λ nCn+k−1]akz
k.

Likewise,

(4.4) Dn
λfj(z) = z +

|γ|β[(1− λ)jn + λ nCn+j−1]

(1 + µ(j − 1))(1 + δ(j − 1))m
zj.

For z = reiθ, 0 < r < 1, we need to show that

(4.5)
∫ 2π

0

∣∣∣∣∣1 +
∞∑

k=2

[(1− λ)kn + λ nCn+k−1]akz
k−1

∣∣∣∣∣
p

dθ

≤
∫ 2π

0

∣∣∣∣1 +
|γ|β[(1− λ)jn + λ nCn+j−1]

(1 + µ(j − 1))(1 + δ(j − 1))m
zj−1

∣∣∣∣ dθ (p > 0).

By applying Littlewood’s subordination theorem, it would be sufficient to show that

(4.6) 1 +
∞∑

k=2

[(1− λ)kn + λ nCn+k−1]akz
k−1 ≺ 1 +

|γ|β[(1− λ)jn + λ nCn+j−1]

(1 + µ(j − 1))(1 + δ(j − 1))m
zj−1.

Set

1 +
∞∑

k=2

[(1− λ)kn + λ nCn+k−1]akz
k−1 = 1 +

|γ|β[(1− λ)jn + λ nCn+j−1]

(1 + µ(j − 1))(1 + δ(j − 1))m
w(z)j−1.
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SUBCLASS OF ANALYTIC FUNCTIONS 7

We note that

(4.7) (w(z))j−1 =
(1 + µ(j − 1))(1 + δ(j − 1))m

|γ|β[(1− λ)jn + λ nCn+j−1]

∞∑
k=2

[(1− λ)kn + λ nCn+k−1]akz
k−1,

andw(0) = 0. Moreover, we prove that the analytic functionw(z) satisfies|w(z)| < 1, z ∈ U

|w(z)|j−1 ≤

∣∣∣∣∣(1 + µ(j − 1))(1 + δ(j − 1))m

|γ|β[(1− λ)jn + λ nCn+j−1]

∞∑
k=2

[(1− λ)kn + λ nCn+k−1]akz
k−1

∣∣∣∣∣
≤ (1 + µ(j − 1))(1 + δ(j − 1))m

|γ|β[(1− λ)jn + λ nCn+j−1]

∞∑
k=2

[(1− λ)kn + λ nCn+k−1]|ak||z|k−1

≤ |z|(1 + µ(j − 1))(1 + δ(j − 1))m

|γ|β[(1− λ)jn + λ nCn+j−1]

∞∑
k=2

[(1− λ)kn + λ nCn+k−1]|ak|

≤ |z| < 1 by hypothesis (4.1).

This completes the proof of Theorem 4.1. �

As a particular case of Theorem 4.1, we can derive the following result whenn = 0. That is,
for D0

λf(z) = f(z).

Corollary 4.2. Letf(z) ∈ K̃(γ, µ, m, β) be given by (1.1), then forz = reiθ (0 < r < 1)∫ 2π

0

|f(reiθ)|pdθ ≤
∫ 2π

0

|fj(re
iθ)|pdθ (p > 0),

where

fj(z) = z +
|γ|β

(1 + µ(j − 1))(1 + δ(j − 1))m
zj (j ≥ 2).

We conclude this section by observing that by specializing the parameters in Theorem 4.1,
several integral mean inequalities can be deduced forSnf(z), Rnf(z), the class of close-to-
convex functions and the class of close-to-starlike functions as mentioned in Remark 1.

5. SUBORDINATION RESULTS FOR THE CLASS T (η, f)

In proving the main subordination results we need the following lemma due to [8, p. 132].

Lemma 5.1. Let q be univalent inU andθ andφ be analytic in a domainD containingq(U),
with φ(w) 6= 0, whenw ∈ q(U). Set

Q(z) = zq′(z) · φ[q(z)], h(z) = θ[q(z)] + Q(z)

and suppose that either:

(i) Q is starlike or
(ii) h is convex.

In addition, assume that
(iii) Re

(
zh′(z)
Q(z)

)
= Re

(
θ′(q(z))
φ(q(z))

+ z Q′(z)
Q(z)

)
> 0.

If P is analytic inU , with P (0) = q(0), P (U) ⊂ D and

θ[P (z)] = zP ′(z) · φ[P (z)] ≺ θ[q(z)] + zq′(z)φ[q(z)] = h(z)

thenP ≺ q, andq is the best dominant.
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8 S.M. KHAIRNAR AND MEENA MORE

Lemma 5.2. Let q ∈ H = {f ∈ A : f(z) = 1 + b1z + b2z
2 + · · · } be univalent and satisfy the

following conditions:q(z) is convex and

(5.1) Re

{(
1

η
+ 1

)
+

zq′′(z)

q′(z)

}
> 0

for η 6= 0 and all z ∈ U . For P ∈ H in U if

(5.2) P (z) + ηzP ′(z) ≺ q(z) + ηzq′(z),

thenP ≺ q andq is the best dominant.

Proof. Forη 6= 0 a real number, we defineθ andφ by

(5.3) θ(w) := w, φ(w) := η, D = {w : w 6= 0}
in Lemma 5.1. Then the functions

Q(z) = zq′(z)φ(q(z)) = ηzq′(z)

h(z) = θ(q(z)) + Q(z) = q(z) + ηzq′(z).

Using (5.1), we notice thatQ(z) is starlike inU andRe
(

zh′(z)
Q(z)

)
> 0 for all z ∈ U andη 6= 0.

Thus the hypotheses of Lemma 5.1 are satisfied. Therefore, from (5.2) it follows thatP ≺ q
andq is the best dominant. �

Theorem 5.3. Let q ∈ H be univalent and satisfy the condition (5.1) in Lemma 5.2. ForDmf
if

(5.4) T (η, Dmf) ≺ q(z) + ηzq′(z),

then Dmf(z)
z

≺ q(z) andq(z) is the best dominant.

Proof. SubstitutingP (z) = Dmf(z)
z

, whereP (0) = 1, we have

P (z) + ηzP ′(z) = T (η, Dmf).

Thus using (5.4) and Lemma 5.2, we get the required result. �

Corollary 5.4. Let q ∈ H be univalent and satisfy the conditions (5.1) in Lemma 5.2. For
f ∈ A, if T (η, f) ≺ q(z) + ηzq′(z), thenf(z)

z
≺ q(z) andq is the best dominant.

Proof. By substitutingm = 0 in Theorem 5.3 we obtain Corollary 5.4. �

Corollary 5.5. Let q ∈ H be univalent and convex for allz ∈ U . For P ∈ H in U if

(5.5) P (z) + zP ′(z) ≺ q(z) + zq′(z),

thenP ≺ q, andq is the best dominant.

Proof. Takeη = 1 in Lemma 5.2. �

Corollary 5.6. Let q ∈ S be convex. Forf ∈ A if

f ′(z) ≺ q(z) + zq′(z),

then f(z)
z
≺ q(z) andq is the best dominant.

Proof. Takeη = 1 in Corollary 5.4. �

Corollary 5.7. Let q ∈ S satisfy

T (η, f) ≺ 1 + 2(η − α− ηα)z − (1− 2α)z2

(1− z)2

wheref ∈ A. Thenf(z)
z
∈ CS∗(α) andq is the best dominant.
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SUBCLASS OF ANALYTIC FUNCTIONS 9

Proof. Takeq(z) = 1+(1−2α)z
1−z

in Corollary 5.4. Then it follows that

f(z)

z
≺ 1 + (1− 2α)z

1− z
,

which is equivalent toRe
{

f(z)
z

}
> α. Therefore

f(z)

z
∈ CS∗(α).

�

Corollary 5.8. Let q ∈ S satisfy

f ′(z) ≺ 1 + 2(1− 2α)z − (1− 2α)z2

(1− z)2
,

wheref ∈ A. Thenf(z)
z
∈ CS∗(α) andq is the best dominant.

Proof. Substitutingη = 1 in Corollary 5.7, we get the desired result. �

Corollary 5.9. Let q ∈ S satisfy

f ′(z) ≺ 1 + 2z − z2

(1− z)2
,

wheref ∈ A. Thenf(z) ∈ CS∗ andq is the best dominant.

Proof. Takeα = 0 in Corollary 5.8. �

6. PARTIAL SUMS

In line with the earlier works of Silverman [12] and Silvia [13] on the partial sums of analytic
functions, we investigate in this section the partial sums of functions in the classK(γ, µ, m, β).
We obtain sharp lower bounds for the ratios of the real part off(z) to fN(z) andf ′(z) to f ′N(z).

Theorem 6.1.Letf(z) of the form (1.1) belong toK(γ, µ, m, β) andh(N +1, γ, µ,m, β) ≥ 1.
Then

(6.1) Re

(
f(z)

fN(z)

)
≥ 1− 1

h(N + 1, γ, µ,m, β)

and

(6.2) Re

(
fN(z)

f(z)

)
≥ h(N + 1, γ, µ,m, β)

h(N + 1, γ, µ,m, β) + 1
,

where

(6.3) h(k, γ, µ,m, β) =
(1 + (k − 1)µ)(1 + (k − 1)δ)m

|γ|β
.

The result is sharp for everyN , with extremal functions given by

(6.4) f(z) = z +
1

h(N + 1, γ, µ,m, β)
zN+1 (N ∈ N \ {1}).
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Proof. To prove (6.1), it is sufficient to show that

h(N + 1, γ, µ,m, β)

[
f(z)

fN(z)
−

(
1− 1

h(N + 1, γ, µ,m, β)

)]
≺ 1 + z

1− z
(z ∈ U).

By the subordination property (1.11), we can write

h(N + 1, γ, µ,m, β)

[
1 +

∑∞
k=2 akz

k−1

1 +
∑N

k=2 akzk−1
−

(
1− 1

h(N + 1, γ, µ,m, β)

)]
=

1 + w(z)

1− w(z)
.

Notice thatw(0) = 0 and

|w(z)| ≤
h(N + 1, γ, µ,m, β)

∑∞
k=N+1 |ak|

2− 2
∑N

k=2 |ak| − h(N + 1, γ, µ,m, β)
∑∞

k=N+1 |ak|

|w(z)| < 1 if and only if

N∑
k=2

|ak|+ h(N + 1, γ, µ,m, β)
∞∑

k=N+1

|ak| ≤ 1.

In view of (2.1), we can equivalently show that

N∑
k=2

(h(k, γ, µ,m, β)− 1)|ak|+
∞∑

k=N+1

((h(k, γ, µ,m, β)− h(N + 1, γ, µ,m, β))|ak| ≥ 0.

The above inequality holds becauseh(k, γ, µ,m, β) is a non-decreasing sequence. This com-
pletes the proof of (6.1). Finally, it is observed that equality in (6.1) is attained for the function
given by (6.4) whenz = re2πi/N asr → 1−. The proof of (6.2) is similar to that of (6.1), and is
hence omitted. �

Using a similar method, we can prove the following theorem.

Theorem 6.2. Let f(z) of the form (1.1) belong toK(γ, µ, m, β), andh(N + 1, γ, µ,m, β) ≥
N + 1. Then

Re

(
f ′(z)

f ′N(z)

)
≥ 1− N + 1

h(N + 1, γ, µ,m, β)

and

Re

(
f ′N(z)

f ′(z)

)
≥ h(N + 1, γ, µ,m, β)

N + 1 + h(N + 1, γ, µ,m, β)
,

whereh(N + 1, γ, µ,m, β) is given by (6.3). The result is sharp for everyN , with extremal
functions given by (6.4).
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