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Abstract: In this paper we introduce a new subclass of normalized analytic functions in the
open unit disc which is defined by the Al-Oboudi differential operator. A coef-
ficient inequality, extreme points and integral mean inequalities of a differential
operator for this class are given. We investigate various subordination results
for the subclass of analytic functions and obtain sufficient conditions for univa-
lent close-to-starlikeness. We also discuss the boundedness properties associated
with partial sums of functions in the class. Several interesting connections with
the class of close-to-starlike and close-to-convex functions are also pointed out.
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1. Introduction and Preliminaries

Let A denote the class of normalized functiohdefined by
(1.1) flz)=z+ Z a2
k=2

which are analytic in the open unitdist= {z € C : |z| < 1}. For f € A, [1] has
introduced the following differential operator.

(12) D°f(z) = f(2)
(13) D'f(z) = (1= 0)f(2) + 02f'(z) = Dsf(z), 620
(1.4) D”f(z) = D(;(anlf(z)), (n S N).

For f(z) given by (L.1), we notice from {.3) and (L.4) that

(1.5) D" f _z+21+ "apz®  (n€Ny=NU{0}).

Ford = 1 we obtain the 8lagean operatoffl].

Definition 1.1. A functionf in A is said to be starlike of ordet (0 < a < 1) in
U, thatis, f € S*(«), if and only if

(1.6) Re{zj:éiz))} >a (zeU).
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Definition 1.2. A functionf in A is said to be convex of order (0 < a < 1) in U, ||\' M
thatis, f € K(«), if and only if .

&

P

J

2f"(2)
702) }>a (z € U).

Definition 1.3. A functionf in A is said to be close-to-convexin, of ordera, that
is, f € C(«), if and only if

a.7) Re {1 +
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Definition 1.4. A functionf in A is said to be close-to-starlike of order(0 < a < YO T0 155 AL 57, 2008

1)inU, thatis, f € CS*(«), if and only if

f(z) Title Page

(1.9) Re {7} > (z € U\{0}). Contents
We note that the classés S*(0) = S*, K(0) = K, C(0) = C, CS*(0) = C'S* are <« »
the well known classes of univalent, starlike, convex, close-to-convex and close-to-
starlike functions inJ, respectively. It is also clear that < >

(i) f € K(a)ifand onlyifzf’ € S*(): Page 4 of 22

(i) K(a) C S*(a) C C(a) C S. Go 2Edx
Definition 1.5. For two functionsf and g analytic in U, we say that the function Full Screen
f(z) is subordinate tg(z) in U, and write Close

1.10 < ceU
(1.10) Jz)=<9z) (=€) journal of inequalities
if there exists a Schwarz functiar( z), analytic inU with w(0) = 0 and |w(z)| < 1 in pure and applied
such that mathematics
(111) f(z) _ g(w(z)) (Z c U) issn: 1443-575k
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In particular, if the functiory is univalent inl/, the above subordination is equivalent
to

(1.12) f(0) =g(0),  F(U) Cy(U).

Littlewood [7] in 1925 has proved the following subordination theorem which we

state as a lemma.

Lemma 1.6. Let f and g be analytic in the unit disc, and suppoge< f. Then for
0 <p< oo,

2w 2m
(1.13) / lg(re®)[Pdo < / | f(re®)|Pdo 0<r<1,p>0).
0 0

Strict inequality holds fof) < » < 1 unlessf is constant orw(z) = az, |o| = 1.

Definition 1.7. Letn € NU {0} and A\ > 0. Let D} f denote the operator defined
by D} : A — A such that

(1.14) DUf(z) = (1— N)S"f(2) + AR"f(2) z €U,

whereS™ f is the Salagean differential operator art! f is the Ruscheweyh differ-
ential operator defined b®” : A — A such that

R'f(2) = f(2), R' f(2) = 2f'(2),
with recurrence relation given by
(1.15) (n+ 1R f(2) = 2[R"f(2)] + nR"f(2) (z € V).
For f € A given by (.1)

(1.16) =2z+ Z "C k12" (ze€U).
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Notice thatDY is a linear operator and foif € A defined by 1.1), we have

(1.17) Dif(z) =2+ Y [(1=NE"+ X "Cppppr]agz”.
k=2

It is observed that fon = 0,

DYf(2) = (1= NS (2) + AR f(2) = f(2) = S°f(2) = R"f(2),
and forn =1

Dif(z) = (1= N)S'f(2) + AR f(2) = 2f'(2) = S' f(2) = R' f(2).
Definition 1.8. Let K (v, u, m, 3) denote the subclass df consisting of functiong
which satisfy the inequality
1 D™ ,
- ((1 - M)—f +u(D™f) = 1) ‘ < B,
Y z
wherez e U,y € C\ {0},0< 5 <1,0< u<1,me NygandD™ is as defined in
(1.9.
Remarkl. Fory = 1, 4 = 1, m = 0, we obtain the class of close-to-convex

functions of ordef1 — 3). For the values = 1, ;. = 0, m = 0, we obtain the class
of close-to-starlike functions of ordét — j3).

Let
< /!
0.5 = (-0 4y ) ey
for n real andf € A. Define
T,:={f € A:Re{T(n, f)} > 0}.
We note thaff;, can be derived from the cla$s(, 1, m, 3) by replacingu by n and
D" fbyf.

(1.18)
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2. Coefficient Inequalities, Growth and Distortion Theorems

Here we first give a sufficient condition fgre A to belong to the clask (v, u, m, ).
Theorem 2.1.Let f(z) € A satisfy

(o)

(2.1) D (U (k= D)1+ (k= 1)8)"ax| < 415,
k=2
wherey € C\ {0},0 < 8 < 1,0 < pu <1, me Ny 0 > 0. Thenf(z) €
K (v, p,m, B).
Proof. Suppose that)( 1) is true fory (y € C\{0}),8 (0 < 5 <1),u (0 <p <1),

m € Ny, andd (d > 0) for f(z) € A.
Using (L.5) for |z| = 1, we have

=02 oy <1 < S G- 0+ - Do)l
< |v[B.

Thus by Definitionl.8 f(z) € K(v, u,m, 3).
Notice that the function given by

L B G
(2.2) f(z) —Z+; I+ (k= D)1+ (k—1oym ~

belongs to the clask (v, u, m, 3) and plays the role of extremal function for the
result ¢.1). ]
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We denote by (v, s, m, 3) C K (v, 1, m, 3) the functions

f(Z) =z+ Zakzk7
k=2

where the Taylor-Maclaurin coefficients satisfy inequalityl).
Next we state the growth and distortion theorems for the di&ss i, m, 3). The
results follow easily on applying Theoreml, therefore, we omit the proof.

Theorem 2.2. Let the functionf(z) defined by 1.1) be in the class< (v, i, m, ).
Then

23) |2l -

dls V1B 22
(14 p)(1+90) (14 p)(1+ )™

The equality in £.3) is attained for the functiorf(z) given by

178 52
T+rpi+om =

Sl < 1f) < el +

(2.4)

flz) =
Theorem 2.3. Let the functionf(z) defined by 1.1) be in the class< (v, i, m, 3).
Then

2||8 2|8
(1+ p)(1+0) (I+p)(1+9)m

The equality in £.5) is attained for the functiorf(z) given by ¢.4).

(25 1 || < |f () < 1+

2.

In view of Remarkl, Theoren?.2and Theoren2.3would yield the correspond-
ing distortion properties for the class of close-to-convex and close-to-starlike func-
tions.
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3. Extreme Points

Now we determine the extreme points of the cl&ags, i, m, ).

Remark2. Fory € C\{0},0 <3 <1,0 < <1,m e Nyandi > 0 the following
functions are in the class (v, u, m, 3)

f(z) =2+ (Hﬁ(?%)mz? (z € U);

L) =2+ a7 Q,fjl(?u syt (€U

fal#) =24 (1+u)(11+5)mz2Jr (1 +<|27/J)‘11_j)25)m @ (zel),
Theorem 3.1. Let f;(z) = = and
@1 fu(z) =2+ s £ (k> 2).

14+ (k—Dp)(1+ (kE—1)0)m
Thenf(z) € K (v, u, m, 3), if and only if it can be expressed in the form

(3-2) F(2) =) Mfil2)

where), > 0and) 7, Ay = 1.

Proof. Suppose that

= B > e K
FE) = D e =24 M e
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Then

Mg

m s
m+ k= D) G Ty (U (e = Do)

=118 M
k=2
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Eonl
I|
v

Thus, in view of Theoren. 1, f(2) € K (v, u,m, 3).
Conversely, suppose thatz) € K (v, u, m, 3). Setting

Title Page
(14 (k= Dp)(1 + (k—1)6)™ > Contents
A = and \; =1— A
k |7|ﬁ Qg 1 Z k> « b
we obtain N < 4
z) = Z/\kfk(z) Page 10 of 22
= Go Back
]
~ Full Screen
Corollary 3.2. The extreme points df (v, , m, 3) are the functiong;(z) = z and
Close
_ dls; k _
fk(Z) =z+ (1 + (k’ _ 1)[0(1 + (k’ _ 1)(5)m z (k =2,3,... ) ]:OUl'nGl of inequo!ifies
in pure and applied
mathematics
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4. Integral Mean Inequalities for a Differential Operator

Theorem 4.1.Let f(z) € K (v, u, m, 3) and suppose that

- n oy n [YIBI(L = A)j"™ + A" Cryji]
@D D M=V "Crncillal < 0 s Dy
Also, let the function
42 i) = 16 )

. - z
(I+p(i—1))A+6(G —1)m
If there exists an analytic functian(z) given by

w(z)y ! (L+pu(G— 1)L +6( — 1)

= 1= NE + X "Crppr)arz™

— IBIA = A+ A mCgj]

then forz = re® with0 < r < 1,

k=2

2m 2m
| ipssepde< [ ipisere ©0<a<ip>0)
0 0

for the differential operator defined il (17).
Proof. By Definition 1.7 and by virtue of relationi.17), we have

(4.3) Dif(z) =2+ [(1=Nk"+ X "Crpppr)agz”.

k=2
Likewise,

YIBI(L = A" + A "Cryja]

(4.4) DY fi(2) =z + (L+p(— D))+ — 1)~
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Forz =re? 0 < r < 1, we need to show that

(4.5) /

p

1+Z (1= NE" + X "Chpp]arz*"t| db

k=2
Ivlﬁ[(l - )jn+)‘ nCanl] j—1

Sﬂ: L+ (G — 1)+ 90 — )"

By applying Littlewood’s subordination theorem, it would be sufficient to show that

1+

dd (p>0).

(4.6) 14> [(1=NE" + X "Crppa]arz®™
VB[ = A)j" + X "Chrij] -1

S G ) 10— )

Set

YIBI(L = A)j" + A "Crgj]

1) [(1=NE" X "Crapi]arz ™ = 1+(1 G A5G )

w(z)’

We note that

@7) (w(=))"!

A +p@-1))A 460G —1)"
 IBIA = A+ A Crgyi] Z

NE" + X "Crip1)arz
P

andw(0) = 0. Moreover, we prove that the analytic functienz) satisfieqw(z)| <
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1,zeU

e}

j—1 (I+p(G—1)0+0(G—1))
S R AN (VI +A<%ﬂ]§:

(1+ (= 1)1+ — 1)"
= AIBI0 = A"+ A "Cy i Z;

(1 + u( ))(1 + 5 j — 1 n S.M. Khairnar and Meena More
- | | |7’6[( ) ‘|’ /\ Cn+] 1 Z k + >\ Cn+k 1] |ak| vol. 10, iss. 2, art. 57, 2009

kn+>\ Cn+k 1]akzk !

k=2

NE" + X "Cppmi]|ar|2F!
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k=2
< |z| <1 by hypothesis4.1).

. Title Page
This completes the proof of Theoreinl. O

. . . Contents

As a patrticular case of Theoreil, we can derive the following result when
n = 0. Thatis, forD} f(z) = f(2). « 44
Corollary 4.2. Let f(z) € K (v, u, m, §) be given by .1), then forz = re® (0 < < >
r<1) , . Page 13 of 22

| 1swenras < [ ipeenras o> o) —
0 0
where Full Screen
fi(z) =2+ . ol . 7 (j=2). Close
(L+p(—1)A+60G —1)™ -

We conclude this section by observing that by specializing the parameters in The- = journal of inequalities
orem4.1, several integral mean inequalities can be deducedfgi(z), R™f(z), in pure and applied
the class of close-to-convex functions and the class of close-to-starlike functions as = mathematics
mentioned in Remark. =
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5. Subordination Results for the Classi'(, f)
In proving the main subordination results we need the following lemma d&; o [
132].

Lemma 5.1. Let ¢ be univalent in/ and § and ¢ be analytic in a domairD con-
taining ¢(U ), with ¢(w) # 0, whenw € ¢(U). Set

Q(z) = z¢'(z) - ola(2)],  h(z) =0[q(2)] + Q(2)
and suppose that either:
() Q is starlike or

(i) his convex.
In addition, assume that

(i) Re (ch( Z>)) Re (¢<q( 5 +:%5) >0
If Pis analytic inU, with P(0) = ¢(0), P(U) C D and
0[P (2)] = 2P'(2) - o[P(2)] < 0la(2)] + 2q'(2)0la(2)] = h(2)
thenP < ¢, andq is the best dominant.

Lemmab.2.Letge H={f € A: f(2) =1+bz+byz*+---} be univalent and
satisfy the following conditions;(z) is convex and

(5.1) Re { (1 + 1) + Zq”(z)} >0
" 7 (2)

forn#0andallzeU.ForP e HinU if

(5.2) P(z) +nzP'(z) < q(2) +n2d (2),

thenP < ¢ andgq is the best dominant.
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Proof. Forn # 0 a real number, we defirlkand¢ by
(5.3) O(w) :=w, ¢(w):=n, D={w: w0}

in Lemmab. 1. Then the functions

Q(2) = 24 (2)9(q(2)) =
h(z) = 0(q(2)) + Q(2)

Using (6.1), we notice that)(z) is starlike inU andRe <M> >0forall ze U

Q(=)
andn # 0.
Thus the hypotheses of Lemraal are satisfied. Therefore, frora.() it follows
that P < g andgq is the best dominant. H

nzq'(z)
=q(z

) + 124 (2).

Theorem 5.3. Letq € H be univalent and satisfy the conditioin {) in Lemmab. 2.
For D™ f if
(5.4) T(n, D™ f) < q(2) +n2d'(2),
then 22L) f(z) =< ¢(z) andq(z) is the best dominant.
Proof. SubstitutingP(z) = Z“/& whereP(0) = 1, we have
P(z )+772P’( )=T(n,D"[).
Thus using §.4) and Lemm&b.2, we get the required result. O

Corollary 5.4. Letq € H be univalent and satisfy the conditioris 1) in Lemma
52 For fe A if T f) < q(z) +nzd(z), then@ < ¢q(z) and q is the best
dominant.

Proof. By substitutingn = 0 in Theorem5.3we obtain Corollarys.4. O
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Corollary 5.5. Letq € H be univalent and convex foralle U. For P € Hin U

if
(5.5) P(z) + 2P'(2) < q(2) + 24'(2),
thenP < ¢, andq is the best dominant.
Proof. Taken = 1 in Lemmab.2
Corollary 5.6. Letg € S be convex. Foif € A if
'(2) < q(2) + 2¢'(2),
then@ < ¢(z) andq is the best dominant.
Proof. Taken = 1 in Corollary5.4.

Corollary 5.7. Letg € S satisfy

14+2(n—a—na)z — (1 —2a)z?
T(n, f) < 1—2)

wheref € A. Then@ € C'S*(«) andgq is the best dominant.

Proof. Takeq(z) = 1=22 in Corollary5.4. Then it follows that

f(2) - 14+ (1—2a)z
z 11—z

?

z

which is equivalent t&Re {f(z)} > «. Therefore

%Z) € CS*(a).
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Corollary 5.8. Letg € S satisfy

, 1+2(1 —2a)z — (1 —2a)2?
fi(z) < TEE :

wheref € A. Then@ € C'S*(«) andgq is the best dominant.

Proof. Substituting; = 1 in Corollary5.7, we get the desired result. O
Subclass Of Analytic Functions
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6. Partial Sums

In line with the earlier works of Silvermarip] and Silvia [L3] on the partial sums
of analytic functions, we investigate in this section the partial sums of functions in
the classik (v, u, m, 3). We obtain sharp lower bounds for the ratios of the real part

of f(z) to fn(z) and f'(z) to fx(2).

Theorem 6.1.Let f(z) of the form (.. 1) belong toK (v, i, m, 5) andh(N+1, v, i, m, 3) Subclass Of Analytic Functions
> 1. Then S.M. Khairnar and Meena More
vol. 10, iss. 2, art. 57, 2009
1) 1 e
6.1 Re >1—
©- <fN(Z) ~ (N +1,79,4,m,p)
Title Page
and
Contents
(6 2) Re fN(Z) > h(N+1777u7m76)
| 7)) = RN L s )+ 1 “« »
where < >
14+ (k-1 1+ (k—1)0)™ Page 18 of 22
(6.3) (1, m, ) = S B DL (B = o)™

718

The result is sharp for every’, with extremal functions given by

6.4)  f(z)=z2+ ! A4 (N eN\ {1}).

h(N +1,v, 1, m,3)

Proof. To prove (.1), it is sufficient to show that

f(z) 1 1+2
h(N + 1,7, 1, m, 3) {j}v(z) - (1_ h(N+1,%N7m75))] EEE
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By the subordination property. (11), we can write

1+ >0, apzht ( 1 >
h(N +1,~, u,m, k=2 —(1—
( T 6) 1+ 2522 CLka_l h<N+ 1)7aﬂ7m7ﬁ)
1T+ w(z)
S l—w(z)

Notice thatw(0) = 0 and

|U}(Z)| < h(N + 1777”7m7ﬁ) ZZO:N+1 ‘ak|
S 2- 2ZkN:2 ‘ak’ - h(N + 1?77Mam76) ZZO:NJA ’ak‘
lw(z)| < 1ifand only if

N 00
D larl + AN + 1y, mm, 8) Y Ja] < 1.
k=2 k=N+1

In view of (2.1), we can equivalently show that
N
Z(h(kv s My 1, ﬁ) - 1)|a’k|

k=2

+ Z ((h(k)a’%:uaﬂ%ﬁ) - h<N+ 1777M7m7ﬁ))’a’k| Z 0.

k=N+1

The above inequality holds becausg:, v, 1, m, 3) is a non-decreasing sequence.

This completes the proof of5(1). Finally, it is observed that equality ir6 (1) is
attained for the function given by (4) whenz = re*"/V asr — 1-. The proof of
(6.2) is similar to that of §.1), and is hence omitted. O
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Using a similar method, we can prove the following theorem.

Theorem 6.2. Let f(z) of the form (..1) belong to K (~, u, m,3), and h(N +
Ly, u,m,3) > N + 1. Then

f'(2) N+1
fe <fjv(z>> =1 h(N + 1,7, p,m,3)

and

e (B0)) 5 O L
f(2) ) - N+1+h(N+1,7,u,m,3)

whereh(N + 1,v, u, m, 3) is given by ¢.3). The result is sharp for every, with
extremal functions given by ().
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