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ABSTRACT. We consider a dynamic frictionless contact problem for an electro-viscoelastic
body with long-term memory and damage. The contact is modelled with normal compliance.
The adhesion of the contact surfaces is taken into account and modelled by a surface variable,
the bonding field. We derive variational formulation for the model which is formulated as a
system involving the displacement field, the electric potential field, the damage field and the
adhesion field. We prove the existence of a unique weak solution to the problem. The proof
is based on arguments of evolution equations with monotone operators, parabolic inequalities,
differential equations and fixed point.
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1. INTRODUCTION

The piezoelectric effect is the apparition of electric charges on surfaces of particular crystals
after deformation. Its reverse effect consists of the generation of stress and strain in crystals un-
der the action of the electric field on the boundary. Materials undergoing piezoelectric materials
effects are called piezoelectric materials, and their study requires techniques and results from
electromagnetic theory and continuum mechanics. Piezoelectric materials are used extensively
as switches and, actually, in many engineering systems in radioelectronics, electroacoustics and
measuring equipment. However, there are very few mathematical results concerning contact
problems involving piezoelectric materials and therefore there is a need to extend the results
on models for contact with deformable bodies which include coupling between mechanical
and electrical properties. General models for elastic materials with piezoelectric effects can
be found in[[12] 13, 14, 22, 23] and more recently(in[[1, 21]. The adhesive contact between
deformable bodies, when a glue is added to prevent relative motion of the surfaces, has also
recently received increased attention in the mathematical literature. Analysis of models for ad-
hesive contact can be found [n [3,4]6] 7, 16,17, 18] and recently in the monographs| [19, 20].
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2 SELMANI MOHAMED

The novelty in all these papers is the introduction of a surface internal variable, the bonding

field, denoted in this paper hy, which describes the pointwise fractional density of adhesion

of active bonds on the contact surface, and is sometimes referred to as the intensity of adhesion.

Following [6,[7], the bonding field satisfies the restrictibr o < 1. Whena = 1 at a point

of the contact surface, the adhesion is complete and all the bonds are activey wheall the

bonds are inactive, severed, and there is no adhesion, wken < 1 the adhesion is partial

and only a fractionv of the bonds is active. The importance of the paper lies in the coupling

of the electric effect and the mechanical damage of the material. We study a dynamic problem

of frictionless adhesive contact. We model the material with an electro-viscoelastic constitutive

law with long-term memory and damage. The contact is modelled with normal compliance. We

derive a variational formulation and prove the existence and uniqueness of the weak solution.
The paper is structured as follows. In Secf{ipn 2 we present notation and some preliminaries.

The model is described in Sectiph 3 where the variational formulation is given. In Sggtion 4,

we present our main result stated in Theofem 4.1 and its proof which is based on arguments of

evolution equations with monotone operators, parabolic inequalities, differential equations and

fixed points.

2. NOTATION AND PRELIMINARIES

In this short section, we present the notation we shall use and some preliminary material.
For more details, we refer the reader(to[[2, 5, 15]. We denot&pe space of second order
symmetric tensors of? (d = 2,3), while ” - 7 and|-| represent the inner product and the
Euclidean norm ors? andR?, respectively. Lef2 C R? be a bounded domain with a regular
boundaryl” and letr denote the unit outer normal ah We shall use the notation

H=L*Q)"= {u = (u;) [ u; € L*(Q) },
HYQ) = {u= (u) [ us € HYQ) },
H = {0 = (0ij) | 045 = 0ji € L*(Q) },

Hi={oceH/DwoecH},

wheree : H'(Q)? — ‘H and Div : H; — H are the deformation and divergence operators,
respectively, defined by

e(u) = (gi5(n)), &ij(u) = %(Ui,j +uji), Divo = (0ij;)

Here and below, the indicésand; run between to d, the summation convention over repeated
indices is used and the index that follows a comma indicates a partial derivative with respect to
the corresponding component of the independent variable. The sfadés(Q)?, H andH,

are real Hilbert spaces endowed with the canonical inner products given by

(u,v)H:/u'Vd:U Yu,v € H,

Q

(u,V)Hl(Q)d:/u-vdx+/Vu-Vvd:p Vu,v € H'(Q)?,
Q Q

where
Vv = (v;;) VveH Q)Y

(O’,T)H:/O'-le‘ Vo, 7 € H,
Q
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(0,7)3, = (0, 7)) + (Divo,DivT)y Vo, € H.

The associated norms on the spages* ()¢, H and’H; are denoted by, , gy s |l
and|-|,, respectively. Leti = Hz2(I')" and lety : H'(Q)? — Hy be the trace map. For every

elementv € H'(Q2)¢, we also use the notationto denote the tracev of v onT" and we denote
by v, andv, the normal and the tangential components @ the boundary' given by

(2.1) V,=V-U, V,=V—U,l.

Similarly, for a regular (say’!) tensor fields : O — S¢ we define its normal and tangential
components by

(2.2) o, =(ov) v, o,=o0v—o0,U,

and we recall that the following Green’s formula holds:

(2.3) (0,e(v))n + (Divo,v)g = /FO'V -vda Vv e H (Q)

(2.4) (D, Vé)u + (div D, 6) 120 = /FD voda Vo HY(Q)

Finally, for any real Hilbert spac&’, we use the classical notation for the spateg), T’; X)
andW*?(0,T; X), wherel < p < +oo andk > 1. We denote by’ (0, 7; X) andC*(0,T; X)
the space of continuous and continuously differentiable functions [fbgi to X, respectively,
with the norms

f = f(t
| ‘C(O,T;X) tg&%‘ )] x

Flovoro) = max [F(0]y + max |F0)]
respectively. Moreover, we use the dot above to indicate the derivative with respect to the time
variable and, for a real numberwe use-, to represent its positive part, thatis = max{0, r}.

For the convenience of the reader, we recall the following version of the classical theorem of
Cauchy-Lipschitz (see, e.g., [20, p. 48]).

Theorem 2.1. Assume thatX, |-| ) is a real Banach space aril > 0. Let F'(¢,-) : X — X
be an operator defined a.e. 40, T) satisfying the following conditions:

(1) There exists a constant > 0 such that
[F(t,z) — F(t,y)ly < Lrlr—yly Va,ye X, aete(0,T).
(2) There existy > 1 suchthat — F(t,z) € L*(0,T;X) Vze X.
Then for anyz, € X, there exists a unique functiane W ?(0, T; X') such that
x(t) = F(t,x(t)) ae.te (0,7),
z(0) = xo.

TheorenT Z2.]L will be used in Sectih 4 to prove the unique solvability of the intermediate
problem involving the bonding field. Moreover, X; and X, are real Hilbert spaces then
X1 x X, denotes the product Hilbert space endowed with the canonical inner pfedugt. x, -
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3. MECHANICAL AND VARIATIONAL FORMULATIONS

We describe the model for the process and present its variational formulation. The physical
setting is the following. An electro-viscoelastic body occupies a bounded ddmainR?
(d = 2,3) with outer Lipschitz surfac&'. The body is submitted to the action of body forces
of densityf, and volume electric charges of density It is also submitted to mechanical and
electric constraints on the boundary. We consider partitiohiingo three disjoint measurable
partsI'y, I'; andI's, on one hand, and into two measurable pagtaindI’,, on the other hand,
such thatneas (I'y) > 0, meas (I';) > 0 andI's C T'y. LetT > 0 and let[0, 7] be the time
interval of interest. The body is clamped &n x (0,7'), so the displacement field vanishes
there. A surface traction of densifyacts onl’y x (0,7") and a body force of densify acts in
2 x (0,7). We also assume that the electrical potential vanishds,on (0,7") and a surface
electric charge of density, is prescribed o', x (0, 7). The body is in adhesive contact with
an obstacle, or foundation, over the contact surfaceMoreover, the process is dynamic, and
thus the inertial terms are included in the equation of motion. We denaiely displacement
field, by o the stress tensor field and byu) the linearized strain tensor. We use an electro-
viscoelastic constitutive law with long-term memory given by

o = As(tt) + /Mt—s (s)) ds — E"E(p),

D = &c(u) + BE(y),

where A is a given nonlinear function)/ is the relaxation tensor, ar@ represents the elas-
ticity operator wheres is an internal variable describing the damage of the material caused by
elastic deformationsE(y) = —Vy is the electric field€ = (e;;;,) represents the third order
piezoelectric tensog* is its transposition and® denotes the electric permittivity tensor. The
inclusion used for the evolution of the damage field is

B—k OB+ 0ok (B) > S(e(n), B),
whereK denotes the set of admissible damage functions defined by
K={¢cH(Q)/0<£(<1 ae. inQ},

k is a positive coefficient)p denotes the subdifferential of the indicator functiop and.S
is a given constitutive function which describes the sources of the damage in the system. When
£ = 1 the material is undamaged, when= 0 the material is completely damaged, and for
0 < B < 1there is partial damage. General models of mechanical damage, which were derived
from thermodynamical considerations and the principle of virtual work, can be found in [8] and
[9] and references therein. The models describe the evolution of the material damage which
results from the excess tension or compression in the body as a result of applied forces and
tractions. Mathematical analysis of one-dimensional damage models can be found in [10].

To simplify the notation, we do not indicate explicitly the dependence of various functions
on the variablesx € Q U T andt € [0,7]. Then, the classical formulation of the mechanical
problem of electro-viscoelastic material, frictionless, adhesive contact may be stated as follows.

Problem P. Find a displacement fieldi : Qx[0,7] — R?, a stress field : 2x[0,7] — S%, an
electric potential fieldy : © x [0, 7] — R, an electric displacement field : Q x [0, T] — R,
a damage fields : Q2 x [0,7] — R and a bonding fieldx : T'; x [0, 7] — R such that

(3.1) o =As(a) + G(e(u), fB) + /Ot M(t — s)e(u(s)) ds +E*VpinQ x (0,7,

(3.2) D =€e¢(u) — BVy inQx(0,7),
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(3.3) B—kNAB+00k(8) 3 8(e(u),8) inQx(0,T),
(3.4) pi=Divo+f, INQx(0,T),

(3.5) divD =g inQx(0,T),

(3.6) u=0 onlx(0T)),

(3.7) ov =f onTyx(0,T),

(3.8) —0, = p,(w,) = 1R, (u,)  on Tyx (0,7),
(3.9) ~0, = pr(@)R.(u;) on s x(0,7),
(310)  a=—(a(w(Ru(w) +7 Ro(u)*) =), on Iy x (0,7),
(3.11) g—f =0onTy x (0,7),

(3.12) p=0 onT, x (0,T),

(3.13) D-v=¢ onl,x(0,7T),

(3.14) u(0) = g, (0) = vo, 3(0) = By N,
(3.15) a(0) = ag onTs.

First, (3.1) and (3]2) represent the electro-viscoelastic constitutive law with long term-memory
and damage, the evolution of the damage field is governed by the inclusion of parabolic type
given by the relatior] (3]3), whergis the mechanical source of the damage, @pg is the sub-
differential of the indicator function of the admissible damage function&'séiquations|(3}4)
and [3.5) represent the equation of motion for the stress field and the equilibrium equation for
the electric-displacement field while (B.6) apd [3.7) are the displacement and traction boundary
condition, respectively. Conditiof (3.8) represents the normal compliance condition with adhe-
sion wherey, is a given adhesion coefficient apgis a given positive function which will be
described below. In this condition the interpenetrability between the body and the foundation is
allowed, that isu, can be positive o's. The contribution of the adhesive to the normal trac-
tion is represented by the terpa’R , (u, ), the adhesive traction is tensile and is proportional,
with proportionality coefficienty,, to the square of the intensity of adhesion and to the normal
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displacement, but only as long as it does not exceed the bond Iéngfthe maximal tensile
traction is, L. R, is the truncation operator defined by

L ifs<-—L,
R,(s)=<¢ —s if —L<s5<0,
0 ifs>0.

Here L > 0 is the characteristic length of the bond, beyond which it does not offer any
additional traction. The introduction of the operafgy, together with the operatd®., defined
below, is motivated by mathematical arguments but it is not restrictive from the physical point
of view, since no restriction on the size of the paramétés made in what follows. Condition
(3.9) represents the adhesive contact condition on the tangential plane, inpwltigch given
function andR., is the truncation operator given by

R \% if lv| < L,
M=y Ly i s L

v

This condition shows that the shear on the contact surface depends on the bonding field and
on the tangential displacement, but only as long as it does not exceed the bond/lefigté
frictional tangential traction is assumed to be much smaller than the adhesive one and, therefore,
omitted.

Next, the equatiorf (3.10) is an ordinary differential equation which describes the evolution
of the bonding field and it has already been used in [3], see [alsa [19, 20] for more details.
Here, besides,, two new adhesion coefficients are involved,ands,. Notice that in this
model, once debonding occurs bonding cannot be re-established since, frdm¢3:10),The
relation ) represents a homogeneous Neumann boundary condition %@h@r@resents
the normal derivative of. (3.12) and[(3.13) represent the electric boundary conditipns.] (3.14)
represents the initial displacement field, the initial velocity and the initial damage field. Finally
(3.19) represents the initial condition in whiel is the given initial bonding field. To obtain
the variational formulation of the problenis (8.1)[— (3.15), we introduce for the bonding field
the set

Z={6€L>(0,T;L*(T3)) /0<6(t) <1Vt [0,T],ae. o},
and for the displacement field we need the closed subspadé(6f)? defined by
V={veH' Q)" /v=00nI}.

Sincemeas (I'1) > 0, Korn’s inequality holds and there exists a constapt> 0, that depends
only on2 andI';, such that

’8(v>’H Z Ck ’V|H1(Q)d Vv eV.

A proof of Korn’s inequality may be found in [15, p. 79]. On the sp&cee consider the inner
product and the associated norm given by

(3.16) (u,v)y = (e(u),e(V)n, |v]y =le(v)|, Yu,veV.

It follows that ||, o). and|-|;, are equivalent norms oif and thereforgV’ |-|,,) is a real
Hilbert space. Moreover, by the Sobolev trace Theorem |nd](3.16), there exists a constant
Cy > 0, depending only o2, I'y andI'; such that

(3.17) Vlr2ye < Colvly Vv eV.
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We also introduce the spaces

W={pecH(Q)/¢p=00nT,},
W={D=(D)/Di € L*(), divD € L*(Q)},

wherediv D = (D, ;). The space$l” and WV are real Hilbert spaces with the inner products
given by

(p.ow = [ Ve Vo,
Q
(D,E)W:/D-de—i—/divD-divde.
0 0

The associated norms will be denoted |By, and|-|,,, respectively. Notice also that, since
meas(I',) > 0, the following Friedrichs-Poincaré inequality holds:

(3.18) IVoly 2 Crldlmq VYoeW,

whereCr > 0 is a constant which depends only @randT’,,. In the study of the mechanical
problems|(3.]1) {(3.15), we assume that the viscosity function x S¢ — S¢ satisfies

((a) There exists constan&*, C;' > 0 such that
A(x,e)| < C{le| +C5 Vee S ae.x €.

(b) There exists a constant, > 0 Such that
(3.19) (A(x,e1) — A(x,£2)) - (e1 — £2) > maler — &
Ve, 60 € 954, aex € Q.

(c) The mappingc — A(x, ¢) is Lebesgue measurable frfor anye € S<.

| (d) The mapping — A(x,¢) is continuous orb“, a.e.x € Q.
The elasticity Operataf : 2 x S? x R — S¢ satisfies

(a) There exists a constant; > 0 Such that
G(x, 61, 1) = G(x, €9, 00)| < Lg(ler — &a| + o — aal)

Vei, 60 € Sd, Vai,as € Ra.e.x € .

3.20
(3.20) (b) The mappingk — G(x,,«) is Lebesgue measurable on

for anye € S% anda € R.

[ (¢) The mappingx — G(x,0,0) belongs toH.

The damage source functigh:  x S¢ x R — R satisfies

( (a) There exists a constaft > 0 such that

1S(x,1,01) = S(x, 62, 02)| < Ls(ler — 2] + |an — )

(321) v€1,€2 € Sd, Vozl, Qo € Ra.e.x €.
(b) Foranye € S?anda € R, x — S(x,¢, @) is Lebesgue measurable fin

(¢) The mappingc — S(x,0,0) belongs taL?(£2).
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The electric permittivity operataB = (b;;) : 2 x R? — R? satisfies
( () B(x,E) = (b;;(x)E;) VE = (F;) € R%, a.ex € Q.

S e < 4.7 <d.
(3.22) (b)  bij =bji, bjj e L*(Q), 1<, j5<d
(¢c) There exists a constantz > 0 such that
BE.E>mg|E|> VE=(E)eR% ae.inQ.

The piezoelectric operatdr: Q x S¢ — R? satisfies
(a) E(x,7)=(eijr (X)) Y7 =(7;) € S a.ex e .
(b) eijp =ea; € L2(Q), 1<, j5,k<d
The normal compliance functign, : I's x R — R, satisfies

(3.23)

(a) There exists a constant, > 0 such that
Ipu(x,71) — pu(x,72)| < Ly, |r1 — o] Vry, 72 € R, a.e.x € T's.

(3.24) (b) The mappingc — p,(x,r) is measurable of, for anyr € R.

(¢) pu(x,7)=0forallr <0, a.ex el

The tangential contact functign : I'; x R — R, satisfies

( (a) There exists a constait. > 0 such that
|pr(x,d1) — pr(x,d2)| < Ly |dy — ds| Vdi,ds € R, a.e.x € Ts.

(3.25) (b) There existsV/, > 0 such that|p,(x,d)| < M, Vd € R,a.e.x € T's.

(¢) The mappingk — p.(x, d) is measurable oh;, for anyd € R.

L (d) The mapping — p,(x,0) € L*(T'3).
The relaxation tensal/ satisfies

(3.26) M e C(0,T;H).

We suppose that the mass density satisfies

(3.27) p € L>(Q), there existg* > 0 such thap(x) > p*a.e x € Q.

We also suppose that the body forces and surface tractions have the regularity
(328) fO S L2(07T7 H)7 f2 S L2<07T7 LZ(F2)d>7

(3.29) @ € C(0,T; L*(Q)), ¢o € C(0,T; L*(Ty)).

(3.30) @(t)=00nT3 Vtel0,T].

Note that we need to impose assumptjon (8.30) for physical reasons. Indeed the foundation is
assumed to be insulator and therefore the electric charges (which are prescribed dry)
have to vanish on the potential contact surface. The adhesion coefficients satisfy

(3.31) Yo, € L(T3), e, € L*(T3), 7,760 >0 a.e. onls.
The initial displacement field satisfies
(3.32) u eV, voeH,
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the initial bonding field satisfies

(3.33) ap € L*(T3), 0<ap<1lae. onls,
and the initial damage field satisfies

(3.34) B € K.

We define the bilinear form : H'(Q) x H'(Q2) — R by

(3.35) a(&, @) = k/QV§ -V dz.

We will use a modified inner product did = L?(Q2)4, given by
((u,V))H = (pu7 V)H Vu,V € H7
that is, it is weighted wittp, and we let|-|| ,, be the associated norm, i.e.,
Vil = (pv,v) Vv eH

It follows from assumptior (3.27) thdt||, and|-|,, are equivalent norms oH, and the inclu-
sion mapping of V, |-|,,) into (H, ||-|| ;) is continuous and dense. We denotelbythe dual of
V. ldentifying H with its own dual, we can write the Gelfand triple

VCHcCV.
Using the notatiorf-, ), .- to represent the duality pairing betwegnandV’, we have
(W, V)yroy = (0, v)g Yue HVveV.

Finally, we denote by:|,» the norm on//". Assumption|(3.28) allows us, for a.e< (0,7), to
definef(t) € V' by

(3.36) (f(1), V) oy = / fo(t) - vdx +/ f(t)-vda VYveV.
Q )
We denote by, : [0,7] — W the function defined by

(337)  (qlt).d)w = /ﬂ wlt) - ¢ di — / b(t)-¢da Ve W, te0,T).

Iy

Next, we denote by : L>°(I';) x V' x V — R the adhesion functional defined by

(338) (o uv) = / pulw)uy da+ / (1 a2R (1) vy + pr ()R, (u,) - v,) da.

Keeping in mind|[(3.24) { (3.25), we observe that the integfals [(3.38) are well defined and we
note that conditions (3.28) £ (3]29) imply

(3.39) feL?0,T;V), qeC0,T;W).

Using standard arguments we obtain the variational formulation of the mechanical problem

@1 -[EB.15).
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Problem PV. Find a displacement field : [0, 7] — V, an electric potential field : [0, 7] —
W, a damage field : [0, 7] — H'(Q) and a bonding fieldy : [0, 7] — L>(T'3) such that

(3.40) (i1, V) + (Ac(0(t)), (v))r
T (G(e(u(®), A1) (/JWt—s )M&dﬂ)

+(EVe(t),e(v))n + jlalt), u(t), v)
= (£(t),v )V’xv Vv eV,te(0,T),

H

(3.41) p() € Kforallte 0.7, (5(0).€~6(1)) ,  +a(3(0).€ = B(1)

> (S(e(u(t)), B(t), & = B(t))12@) V€ € K,
(3.42) (BV(P(t)a V¢)H - (55(u(t))7 V(b)H = (q<t)7 ¢)W VoeW,te (O>T) )
(3.43) (1) = — () [ (Ru(ua(®) + 7 R ()] — ), aede(0,7),

(3.44) a(0) =u,, @(0) =vo, A0)=f, a(0)=as.

We notice that the variational probleml” is formulated in terms of a displacement field, an
electrical potential field, a damage field and a bonding field. The existence of the unique so-
lution of problemPV is stated and proved in the next section. To this end, we consider the
following remark which is used in different places of the paper.

Remark 1. We note that, in the probler® and in the problen”V we do not need to impose
explicitly the restriction) < o < 1. Indeed, equation$ (3.43) guarantee that, t) < ay(x)
and, therefore, assumptidn (3.33) shows that, ¢) < 1 fort > 0, a.e.x € I's. On the other
hand, ifa(x, t)) = 0 at timet, then it follows from [(3.4B) that(x, t) = 0 for all ¢ > t, and
therefore,a(x,t) = 0 for all t > ¢y, a.e.x € I's. We conclude tha(D < a(x,t) < 1 for all
te0,7],a.exel}.

4. AN EXISTENCE AND UNIQUENESS RESULT

Now, we propose our existence and uniqueness result.

Theorem 4.1. Assume thaf (3.19) { (3134) hold. Then there exists a unique solutign3, o'}
to problem PV. Moreover, the solution satisfies

(4.1) ue HY0,T;V)NCY0,T; H), e L*0,T;V'),
(4.2) p e C0,T;W),

(4.3) B e Wh2(0,T; L*(Q)) N L*(0, T; H' (%)),
(4.4) a € W0, T; L*(T's)) N Z.
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The functionsu,p, 0, D,3 and o which satisfy [(3.]1) —[(3]2) and (3.40) |- (3]44) are called
weak solutions of the contact problef We conclude that, under the assumptigns (3.19) —
(3.34), the mechanical problern (B.1)[— (3.15) has a unique weak solution satigfyihg (4.1) —
(4.4). The regularity of the weak solution is given py {4.1) —|(4.4) and, in term of stresses,

(4.5) o€ L*(0,T;H), Divoe L*0,T;V),

(4.6) D € C(0,T; W).

Indeed, it follows from[(3.40) and (3.42) thati = Div o(t) + £,(t), div D = go(t) for all
t € [0,T]. Therefore the regularity (4.1) and (#.2) fandy, combined with|(3.19) - (3.29)
implies [4.%) and[(4]6).

The proof of Theorer 4]1 is carried out in several steps that we prove in what follows. Ev-
erywhere in this section we suppose that the assumptions of Thgorem 4.1 hold, and we assume
thatC is a generic positive constant which dependsoi',I's, p,, p-, V., 7> and L and may
change from place to place. Lgtc L*(0,7;V’) be given, in the first step we consider the
following variational problem.

Problem PV,,. Find a displacement field,, : [0, 7] — V" such that

(47) (ﬁﬂ(t)v V)V/><V + (A&(iln(t)), 5(V))H + (77(75)7 V)V/XV
=(f(t),v)yyy VveVaete(0,T),

(4.8) u,(0) =ug, ,(0)=vo.

To solve problemPV,,, we apply an abstract existence and uniqgueness result which we recall
now, for the convenience of the reader. Létand H denote real Hilbert spaces such that
is dense inH and the inclusion map is continuoud, is identified with its dual and with a
subspace of the dudl’ of V, i.e.,V ¢ H c V', and we say that the inclusions above define a
Gelfand triple. The notationis|,, , |-|,» and (-, -),~..,- represent the norms dr and onV" and
the duality pairing between them, respectively. The following abstract result may be found in
[20, p. 48].

Theorem 4.2.LetV, H be as above, and let : V — V' be a hemicontinuous and monotone
operator which satisfies

(4.9) (AV,V)pr oy 2wV +X W eV,

(4.10) |Av|, < C(Jv|, +1) VveV,

for some constants > 0, C > 0 and ) € R. Then, giveni, € H andf € L*(0,T;V"), there
exists a unique function which satisfies

ue 20, 7;V)YNC0,T:H), ueL*0,T;V),
u(t) + Au(t) =1f(t) aete(0,7),
u(0) = uo.
We apply it to problemPV;,.

Lemma 4.3. There exists a unique solution to probldni,, and it has its regularity expressed

in (4.7).
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Proof. We define the operatot : V' — V' by
(4.11) (A, V) = (Ae(u),e(v))y Yu,v €V,
Using (4.11),[(3.19) and (3.1L6) it follows that

|Au — Av|,» < |Ae(u) — Ae(v)],, Yu,v eV,

and keeping in mind the Krasnoselski Theorem (see for instance [11, p. 60]), we deduce that

A:V — V'is a continuous operator. Now, Hy (4}11), (3.19) dnd (3.16) we find

(4.12) (Au—Av,u—v)y , >malu—v,, Yuvev,

i.e., thatd : V — V' is a monotone operator. Choosing= 0y in ) we obtain
(Au,u)y . > Mg |u|%/ — [AOv |y [u]y,

1 2 1 2
> — —— A0y} V¥ V
> gmalul} = g A0 Vue .

7|A0V|2 /

which implies thatA satisfies conditio9) withh = %A and )\ = VR Moreover, by
(4.17) and[(3.19) we find
|Aul,s < |As(u)l,, < O ), +C5' YueV.

This inequality and[(3.16) imply that satisfies condition (4.10). Finally, we recall that by
(3.28) and|(3.32) we have— n € L*(0,T; V") andv, € H.

It follows now from Theorem 4]2 that there exists a unique functipwhich satisfies

(4.13) v, € L*(0,T;V)NC(0,T; H), v, € L*0,T;V"),
(4.14) v, (t) + Av,(t) +n(t) =£(t) aete(0,7),
(4.15) v,(0) = vo.

Letu, : [0,7] — V be the function defined by

(4.16) u,(t) = /t v,(s)ds+uy Vte[0,T].

It follows from (4.11) and[(4.13) { (4.16) that, is a unique solution of the variational
problemPV; and it satisfies the regularity expressed in|(4.1). O

In the second step, lete L*(0,T; V"), we use the displacement fielg obtained in Lemma
[4.3 and we consider the following variational problem.

Problem QV, . Find the electric potential fielg, : [0, 7] — W such that
(4.17)  (BVgy(t),Vo)u — (Ee(uy(t)), Vo) = (q(t), d)w Yo e W, 1€ (0,T).
We have the following result.

Lemma 4.4. QV}, has a unique solutiop, which satisfies the regularity (4.2).
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Proof. We define a bilinear forma(-,-) : W x W — R such that

(4.18) b, 9) = (BVe,V)u Ve, € W.

We use[(4.18)] (3.18) and (3]22) to show that the bilinear foisrcontinuous, symmetric and
coercive onl//, moreover using the Riesz Representation Theorem we may define an element
¢y : [0,T] — W such that

(0 (), Q)w = (a(t), P)w + (Ee(uy (1), V) Vo e W, t € (0,T).
We apply the Lax-Milgram Theorem to deduce that there exists a unique elemignte W
such that

(4.19) b(oy(t), ) = (g, (t), P)w Vo € W.
We conclude thap,(t) is a solution ofQV},. Lett,, ¢, € [0, T, it follows from (4.17) that

o (t1) — Qpn(t2)|w <C (|u77(t1) - un(tQ)lv + |q(t1) — Q(t2)|W) )
and the previous inequality, the regularitywfandg imply thaty, € C(0,T;W). O

In the third step, we le# € L*(0,T; L*(Q2)) be given and consider the following variational
problem for the damage field.

Problem PV,. Find a damage field, : [0, 7] — H'(2) such that

(4.20) Bo(t) € K, (B4(t),€ — Ba(t)) 120y + a(Ba(t), € — Ba(t))
> (Q(t),f - 69(t))L2(Q) Ve Kaete (O,T),

(4.21) 3(0) = Bo.
To solve PV}, we recall the following standard result for parabolic variational inequalities
(see, e.g./[120, p. 47)).

Theorem 4.5.LetV ¢ H C V' be a Gelfand triple. LefC be a nonempty closed, and convex
set of V. Assume that(-,-) : V x V' — R is a continuous and symmetric bilinear form such
that for some constants> 0 andc,

a(v,v) +co vl > Clofs Yo eV

Then, for every,, € K and f € L?(0,T; H), there exists a unique functione H*(0,7; H) N
L?(0,T;V) such thatu(0) = ug, u(t) € K forall t € [0, 7], and for almost alk € (0,7,
(i(t),v = u(t))yr oy + alu(t), v —u(t)) = (f(t).v —u(t)y Y€ K.
We apply this theorem to problemV,.
Lemma 4.6. ProblemPVj has a unique solutiop¥, such that
(4.22) By € H'(0,T; L*(Q)) N L*(0,T; H*(2)).
Proof. The inclusion mapping ole Nl ) into (LZ(Q), |'|L2(9)> is continuous and its

range is dense. We denote b (€2))" the dual space off!(2) and, identifying the dual of
L*(Q2) with itself, we can write the Gelfand triple

HY(Q) c L*(Q) c (HY(Q))".
We use the notatioft, ) ;1 (q)y « i1 () t0 represent the duality pairing betwegh ' (Q2))" and
H'(Q). We have

(8, qyy xary = (3,82 VB € LA(Q),€ € HY(Q),
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and we note thaf is a closed convex set iff}(2). Then, using the definitiorj (3.85) of the
bilinear forma, and the fact thaty, € K in (3.34), it is easy to see that Lemral4.6 is a
straightforward consequence of Theofen) 4.5. O

In the fourth step, we use the displacement figjcbbtained in Lemmf 4|3 and we consider
the following initial-value problem.

Problem PV ,,. Find the adhesion field,, : [0, 7] — L*(T'3) such that for a.et € (0,7)
(4.23) an(t) = - (an(t) ['YV(R I/(unl/(t)))2 +r ‘RT(um—(t))ﬂ - Ea)+ )

(4.24) ay(0) = ap.
We have the following result.
Lemma 4.7. There exists a unique solutien, € W>°(0,T; L*(T'3)) N Z to ProblemPV,,.

Proof. For simplicity, we suppress the dependence of various functions; pand note that
the equalities and inequalities below are valid a.eI'9nConsider the mapping;, : [0, 7] x
L3(T'3) — L3(T'3) defined by

Fy(t,a) = — (a [1(R o (ug () + 7 R (wy (0)7] = a) .,

forallt € [0,7] anda € L*(T'3). It follows from the properties of the truncation operators

R, andR; that F}, is Lipschitz continuous with respect to the second argument. Moreover, for
all « € L*(I';), the mapping — F, (¢, «) belongs toL>(0,T’; L*(T';)). Thus using a version

of the Cauchy-Lipschitz Theorem given in Theorem 2.1, we deduce that there exists a unique
functiona,, € W'*°(0,T; L*(T'5)) solution which satisfie$ (4.23}- (4]24). Also, the arguments
used in Remark|1 show that< «,(t) < 1forall t € [0,7], a.e. onl's. Therefore, from the
definition of the set/, we find thato,, € Z, which concludes the proof of the lemma. [

Finally as a consequence of these results and using the properties of the ogertduer
operator€, the functionalj and the functiort, for t € [0, 7], we consider the operator

A:L¥0,T;V' x L3(Q)) — L0, T; V' x L*(Q))

which maps every elemefy, §) € L(0,T; V' x L?*(Q2)) to the elemenh (n, §) € L?(0,T; V' x
L?(Q)) defined by

(4.25) A, 0)(t) = (A'(n,0)(1), A*(n, 0)(1) € V' x L*(€0),
defined by the equalities
(4.26) (A'(1,0)(1), V)yr = (G(e(uy(1)), B (1)), €(V))3 + (E7Vipy(t), e(V))y,

— s)e(u,(s))ds, e(v (ap(t),uy(t),v) Vv \
+(Aﬂﬂt Je(uy(5)) 6(0H+ﬂ () uy(1),v) W eV
4.27) A2 (,0)(t) = S(e(uy (1)), Bolt)).

Here, for every(n,0) € L*(0,T; V' x L*(Q)), u,, ¢, B9 andaw, represent the displacement
field, the potential electric field, the damage field and the bonding field obtained in Lemmas
[4.3,[4.4[ 4.6 and 4.7 respectively. We have the following result.

Lemma 4.8. The operatorA has a unique fixed poirfty*, 0*) € L*(0,7;V" x L*(Q)) such
that A(n*,0%) = (n*, 6*).
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Proof. Let (1, 0) € L*(0, T; V' x L2(Q)) and(n1,61), (2,02) € L*(0,T; V' x L*(Q2)). We use
the notationu,, = w;, u,, = v,, = v;, ¥, = @;, By, = B anda,, = o; fori = 1,2. Using

(3.20), (3.28), |'(3_Z4)[_(3_251_(3'126) the definition/f, R, and Remark]1, we have
(4.28) | A (n1,01)(t) — AL (2,05) (1) 7 v
< [G(=(wi(1)), Br (1) — Gle(ua(t)), Ba(t))]3,
[ = )ets) — wa) s + V(1) — € Va0,
+ C [pu (i (1)) = Ptz (8) |72z,
+ C' 03 (t) Ry (g () — 03 () Ry (1))

|L2(I‘3)
+ C [pr(a1 (£) R (e (£) = pr(@a(t)) R (Wir (0) 72y

<c (|u1<t> w0} + [ huas) — ualo)ff ds 4150 — B0

+le1(t) — 2ty + lon(t) — aa(®) 2 r,, )

Recall thatv,,, andu,,; denote the normal and the tangential component of the funatjon
respectively. By a similar argument, frofn (4.27) and (B.21) it follows that

(4.29)  |A%(n1,01)(t) — A?(ma,05) (¢ \Lz <C <|u1( ) —wa ()] + (1) — 52(75)@2(9)) :

Therefore,
(4.30) [A(m1,01)(t) — A(772a92)(t)|%/’><L2(Q)

< 0<(|u1<t> w0 + [ )~ wl) ds + o) - (0l

+ [61(t) — ﬁQ(t)ﬁ;z(Q) + aa(t) - 0‘2(t>|2m(r3) )
Moreover, from[(4.]7) we obtain

(Vl — V27V1 — VQ)V/XV + (Ag(Vl) — A€(V2), €<V1 — Vg))H
+ (= M2, Vi — Va)yr .y = 0.

We integrate this equality with respect to time, use the initial conditiaig) = v2(0) = v
and condition[(3.19) to find

- / vi(s) = va(s)|3 ds < — / (11 (5) — 1a(8), V1(5) — va(8))y v ds,

forall t € [0, 7). Then, using the inequali8ub < nj—i\ + m_4b* we obtain

(4.31) /0 Vi(s) — va(s)[5 ds < C/O In(s) — na(s)[50 ds ¥t €0,T].

On the other hand, from the Cauchy probl¢m (4.23) — (4.24) we can write

a;(t) = ag —/O (e (s) { (R (uin(9)}? + 7 R (ir (s))]*] — €a), ds,
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and then
a1 (t) — a2(O) |2, < C /O |1 () [Ry (ur, (5))]* — aa(s) [Ru<uQu(s))]2|L2(F3) ds

t
+qummmmﬂmFﬂM@mmm@wmﬁms
Using the definition of?, andR.. and writinga; = a; — as + s, we get

(4.32) jaa (£) = ca(B)] 2 ry)

t t
<C (/0 a1 (s) — aa(8)]p2(ry) ds +/0 ui(s) — ()| 2py)a ds) .

Next, we apply Gronwall’s inequality to deduce

t
(1) = 02Ol < C [ ) = (o) gyt

and from the relatior (3.17) we obtain

(4.33) MN%wmm%méOéhM$—m@@%-
We use now[(4.17)[ (3.22], (3]23) and (3.18) to find
(4.34) o1(t) — o ()7, < Cluy(t) — us(8)[? .

From [4.20) we deduce that
(51 - 52, B — 52)L2(Q) +a(By — B2, b1 — B2) < (01 — s, 31 — 52)L2(Q) ae.tc (0,T).

Integrating the previous inequality with respect to time, using the initial conditip(® =
B2(0) = [y and the inequality.(5; — (2, 51 — (2) > 0, we have

% Bu(t) — 52(75)@2(9) < /0 (01(s) — 0a(s), Bi(s) — Ba(5))2(r) ds,

which implies that

16(1) — Bol) 2o /w m@w+/w B,(5) ooy ds

This inequality combined with Gronwall’s inequality leads to
t

(4.35) wmw—m@@@sc/MM$—w@mmw vt € [0,7].
0

We substitute] (4.33) anfl (4]34) [n (4130) to obtain
[A(m1,61)(t) — A(772792)(t)|%/’><L2(Q)

SCOm@—w@@+AhMﬂ—m®@@+%®—&@@@)
<0 ([ Mls) = vl s+ 1100) - a0 )

It follows now from the previous inequality, the estimafes (#.31) and|4.35) that

[A(n1,60)(t) — An2.02) (B[ 12y < C/O (1, 61)(5) = (172, 02) (83 12y ds.
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Reiterating this inequality» times leads to

cmrm
m m 2 2
[A™ (11,01) — A" (12,02) [T2 070 x 12 (00)) < - (11, 61) = (12, 02) 120 71 <2202 -

Thus, form sufficiently large A™ is a contraction on the Banach spdcg0,7; V' x L*(9)),
and soA has a unique fixed point. O

Now, we have all the ingredients to prove Theofen 4.1.

Proof. Existencelet (n*,0*) € L?(0,T; V' x L?(Q)) be the fixed point ofA defined by|(4.25)
— (4.27) and denote

(4.36) W, = Wy, P = P, B = Bor, 0 = e
(4.37) 0.(t) = As(u.(t)) + G(e(u.(?)), Bu(t))

i /0 M(t — s)e(u.(9))ds + EVu(t) i e 0.T],

(4.38) D.(t) = —BV.(t) + Ee(u.(t)) Ve [0,T].

We prove that the quadruplét., ., 5., «.) satisfies|(3.40) - (3.44) and the regularifes|(4.1) —
(4.4). Indeed, we writg (4,7) foy = n* and use[(4.36) to find

(4.39) (We(t), V))vr oy + (A(a(t)), e(V)) e + (07°(1), V) = (E(8), V) oy
Vv eV tel0,T].
We write [4.20) ford = 6* and use[(4.36) to obtain

@.40) p.(1) € K. (B0).€=0(0)) ,  +alB(0).€ ~ B.(1)
> (07(t), & — Bi(t)) 2 V€ € Kaet € (0,T).

EqualitiesA!(n*, 6*) = n* andA?(n*, 6*) = 6* combined with[(4.26) andl (4.27) show that

(4.41) (0" (1), V)vrwv = (G(e(a(t)), B.(1)), (V) + </0 M(t - 8)6(11*(8))658,6@))%
+(EVeu(t),e(v))y + i (au(t), uu(t), v) Vv e,

(4.42) 07 (t) = S(e(u.(2)), 5.(1)).
We now substituteg (4.41) in (4.39) to obtain

(4.43) (w.(t),V)yr sy + (Ae(u.(t)), e(v))n
+(G(e(u.(t)), Bu(t)),e(v))n + ( ; M(t — S)€(u*(8))ds,5(V)>

+ (E°V.(t),e(v))n + jlau(t), u(t), v)
= (f(t),v)yyy VYwveVte(0,7),

H

and [(4.42) in[(4.40) to get
(@.44) f.(1) € Kforallt € 0,77, (B.(0.6 = .(1)) |, + alB(0).6 = B.(0)

> (S(e(ui(?), B(t), & = Bu(t)) 2 V€ € K.
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Usingu,- in (4.17), by [4.35) we have:

(4.45) (BVe.(t), Vo)n — (Ee(ui(t), Vé)u = (q(t), o)w Vo e Wt € (0,T).
Additionally, we useu,- in (4.23) and[(4.36) to find

(4.46) . (t) = — (au() (W (Ru(uaw ()’ + - R, (u.. (1)) — sa)+ a.ete (0,7).

The relations|(4.43)| (4.44), (4/45) and (4.46) allow us to conclude nowthap., G, a.)
satisfies[(3.40) -} (3.43). Nexi, (3]44) and the regularity| (4.1) § (4.4) follow from Lemmias 4.3,
[4.4,[4.6 andl 4]7. Since, andy, satisfy [4.1) and (4]2), it follows fronji (4.B7) that

(4.47) o, € L*(0,T; H).
We chooser = w € D(?)%in (4.43) and by[(4.37) and (3.36):
pu, (t) = Dive,(t) +fo(t) inV' vt e [0,T].

Also, by (3.27),[(3.28) and (4.47) we have:

Divo, € L*(0,T;V").
Letty,t; € [0,7]. By (3.22), [(3.2B),(3.118) and (4.88), we deduce that

D (t1) = Du(t2)[y < Cllios(ts) — @ulto)ly + [ua(ts) — ualta)ly).
The regularity ofu, andy. given by [4.1) and (4]2) implies
(4.48) D, € C(0,T; H).
We choosep € D(1) in (4.45) and using (3.37) we find
divD.(t) = qo(t) Vt € [0,T].

By (3.29) and[(4.48) we obtain

Finally we conclude that the weak solutiéa.,, 0., ¢., D., (., a.) of the piezoelectric contact
problemP has the regularity (41) £ (4.6), which concludes the existence part of Thgorem 4.1.

Uniqueness The uniqueness of the solution is a consequence of the uniqueness of the fixed
point of the operaton defined by[(4.25) - (4.27). O
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