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Abstract: We consider a dynamic frictionless contact problem for an electro-viscoelastic
body with long-term memory and damage. The contact is modelled with normal
compliance. The adhesion of the contact surfaces is taken into account and mod-
elled by a surface variable, the bonding field. We derive variational formulation
for the model which is formulated as a system involving the displacement field,
the electric potential field, the damage field and the adhesion field. We prove the
existence of a unique weak solution to the problem. The proof is based on ar-
guments of evolution equations with monotone operators, parabolic inequalities,
differential equations and fixed point.
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1. Introduction

The piezoelectric effect is the apparition of electric charges on surfaces of particular
crystals after deformation. Its reverse effect consists of the generation of stress and
strain in crystals under the action of the electric field on the boundary. Materials un-
dergoing piezoelectric materials effects are called piezoelectric materials, and their
study requires techniques and results from electromagnetic theory and continuum
mechanics. Piezoelectric materials are used extensively as switches and, actually,
in many engineering systems in radioelectronics, electroacoustics and measuring
equipment. However, there are very few mathematical results concerning contact
problems involving piezoelectric materials and therefore there is a need to extend
the results on models for contact with deformable bodies which include coupling
between mechanical and electrical properties. General models for elastic materials
with piezoelectric effects can be found in [12, 13, 14, 22, 23] and more recently in
[1, 21]. The adhesive contact between deformable bodies, when a glue is added to
prevent relative motion of the surfaces, has also recently received increased atten-
tion in the mathematical literature. Analysis of models for adhesive contact can be
found in [3, 4, 6, 7, 16, 17, 18] and recently in the monographs [19, 20]. The nov-
elty in all these papers is the introduction of a surface internal variable, the bonding
field, denoted in this paper byα, which describes the pointwise fractional density
of adhesion of active bonds on the contact surface, and is sometimes referred to as
the intensity of adhesion. Following [6, 7], the bonding field satisfies the restriction
0 ≤ α ≤ 1. Whenα = 1 at a point of the contact surface, the adhesion is complete
and all the bonds are active, whenα = 0 all the bonds are inactive, severed, and
there is no adhesion, when0 < α < 1 the adhesion is partial and only a fractionα
of the bonds is active. The importance of the paper lies in the coupling of the elec-
tric effect and the mechanical damage of the material. We study a dynamic problem
of frictionless adhesive contact. We model the material with an electro-viscoelastic
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constitutive law with long-term memory and damage. The contact is modelled with
normal compliance. We derive a variational formulation and prove the existence and
uniqueness of the weak solution.

The paper is structured as follows. In Section2 we present notation and some
preliminaries. The model is described in Section3 where the variational formulation
is given. In Section4, we present our main result stated in Theorem4.1 and its
proof which is based on arguments of evolution equations with monotone operators,
parabolic inequalities, differential equations and fixed points.
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2. Notation and Preliminaries

In this short section, we present the notation we shall use and some preliminary
material. For more details, we refer the reader to [2, 5, 15]. We denote bySd the
space of second order symmetric tensors onRd (d = 2, 3), while”·” and|·| represent
the inner product and the Euclidean norm onSd andRd, respectively. LetΩ ⊂ Rd be
a bounded domain with a regular boundaryΓ and letν denote the unit outer normal
onΓ. We shall use the notation

H = L2(Ω)d =
{
u = (ui) / ui ∈ L2(Ω)

}
,

H1(Ω)d =
{
u = (ui) / ui ∈ H1(Ω)

}
,

H =
{
σ = (σij) / σij = σji ∈ L2(Ω)

}
,

H1 = {σ ∈ H / Div σ ∈ H} ,

whereε : H1(Ω)d → H andDiv : H1 → H are the deformation and divergence
operators, respectively, defined by

ε(u) = (εij(u)), εij(u) =
1

2
(ui,j + uj,i), Div σ = (σi j, j).

Here and below, the indicesi andj run between1 to d, the summation convention
over repeated indices is used and the index that follows a comma indicates a partial
derivative with respect to the corresponding component of the independent variable.
The spacesH, H1(Ω)d,H andH1 are real Hilbert spaces endowed with the canonical
inner products given by

(u,v)H =

∫
Ω

u · v dx ∀u,v ∈ H,

(u,v)H1(Ω)d =

∫
Ω

u · v dx +

∫
Ω

∇u · ∇v dx ∀u,v ∈ H1(Ω)d,
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where

∇v = (vi,j) ∀v ∈ H1(Ω)d,

(σ, τ)H =

∫
Ω

σ · τ dx ∀σ, τ ∈ H,

(σ, τ)H1 = (σ, τ)H + (Div σ, Div τ)H ∀σ, τ ∈ H1.

The associated norms on the spacesH, H1(Ω)d, H andH1 are denoted by|·|H ,

|·|H1(Ω)d , |·|H and|·|H1
respectively. LetHΓ = H

1
2 (Γ)d and letγ : H1(Ω)d →HΓ be

the trace map. For every elementv ∈ H1(Ω)d, we also use the notationv to denote
the traceγv of v on Γ and we denote byvν andvτ the normal and the tangential
components ofv on the boundaryΓ given by

(2.1) vν = v · ν, vτ = v − vνν.

Similarly, for a regular (sayC1) tensor fieldσ : Ω → Sd we define its normal and
tangential components by

(2.2) σν = (σν) · ν, στ = σν − σνν,

and we recall that the following Green’s formula holds:

(2.3) (σ, ε(v))H + (Div σ,v)H =

∫
Γ

σν · v da ∀v ∈ H1(Ω)d.

(2.4) (D,∇φ)H + (div D, φ)L2(Ω) =

∫
Γ

D · ν φ da ∀φ ∈ H1(Ω).

Finally, for any real Hilbert spaceX, we use the classical notation for the spaces
Lp(0, T ; X) andW k,p(0, T ; X), where1 ≤ p ≤ +∞ andk ≥ 1. We denote by
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C(0, T ; X) andC1(0, T ; X) the space of continuous and continuously differentiable
functions from[0, T ] to X, respectively, with the norms

|f |C(0,T ;X) = max
t∈[0,T ]

|f(t)|X ,

|f |C1(0,T ;X) = max
t∈[0,T ]

|f(t)|X + max
t∈[0,T ]

∣∣∣ḟ(t)∣∣∣
X

,

respectively. Moreover, we use the dot above to indicate the derivative with respect
to the time variable and, for a real numberr, we user+ to represent its positive part,
that isr+ = max{0, r}. For the convenience of the reader, we recall the following
version of the classical theorem of Cauchy-Lipschitz (see, e.g., [20, p. 48]).

Theorem 2.1.Assume that(X, |·|X) is a real Banach space andT > 0. LetF (t, ·) :
X → X be an operator defined a.e. on(0, T ) satisfying the following conditions:

1. There exists a constantLF > 0 such that

|F (t, x)− F (t, y)|X ≤ LF |x− y|X ∀x, y ∈ X, a.e.t ∈ (0, T ) .

2. There existsp ≥ 1 such thatt 7−→ F (t, x) ∈ Lp(0, T ; X) ∀x ∈ X.

Then for anyx0 ∈ X, there exists a unique functionx ∈ W 1, p(0, T ; X) such that

ẋ(t) = F (t, x(t)) a.e.t ∈ (0, T ) ,

x(0) = x0.

Theorem2.1 will be used in Section4 to prove the unique solvability of the
intermediate problem involving the bonding field. Moreover, ifX1 andX2 are real
Hilbert spaces thenX1 × X2 denotes the product Hilbert space endowed with the
canonical inner product(·, ·)X1×X2 .
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3. Mechanical and Variational Formulations

We describe the model for the process and present its variational formulation. The
physical setting is the following. An electro-viscoelastic body occupies a bounded
domainΩ ⊂ Rd (d = 2, 3) with outer Lipschitz surfaceΓ. The body is submitted
to the action of body forces of densityf0 and volume electric charges of density
q0. It is also submitted to mechanical and electric constraints on the boundary. We
consider partitioningΓ into three disjoint measurable partsΓ1, Γ2 andΓ3, on one
hand, and into two measurable partsΓa andΓb, on the other hand, such thatmeas
(Γ1) > 0, meas (Γa) > 0 andΓ3 ⊂ Γb. Let T > 0 and let [0, T ] be the time
interval of interest. The body is clamped onΓ1 × (0, T ), so the displacement field
vanishes there. A surface traction of densityf2 acts onΓ2 × (0, T ) and a body
force of densityf0 acts inΩ × (0, T ) . We also assume that the electrical potential
vanishes onΓa × (0, T ) and a surface electric charge of densityq2 is prescribed on
Γb × (0, T ). The body is in adhesive contact with an obstacle, or foundation, over
the contact surfaceΓ3. Moreover, the process is dynamic, and thus the inertial terms
are included in the equation of motion. We denote byu the displacement field, by
σ the stress tensor field and byε(u) the linearized strain tensor. We use an electro-
viscoelastic constitutive law with long-term memory given by

σ = Aε(u̇) + G(ε(u), β) +

∫ t

0

M(t− s)ε(u(s)) ds− E∗E(ϕ),

D = Eε(u) + BE(ϕ),

whereA is a given nonlinear function,M is the relaxation tensor, andG represents
the elasticity operator whereβ is an internal variable describing the damage of the
material caused by elastic deformations.E(ϕ) = −∇ϕ is the electric field,E =
(eijk) represents the third order piezoelectric tensor,E∗ is its transposition andB
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denotes the electric permittivity tensor. The inclusion used for the evolution of the
damage field is

β̇ − k4 β + ∂ϕK(β) 3 S(ε(u), β),

whereK denotes the set of admissible damage functions defined by

K = {ξ ∈ H1(Ω) / 0 ≤ ξ ≤ 1 a.e. in Ω},
k is a positive coefficient,∂ϕK denotes the subdifferential of the indicator function
ϕK andS is a given constitutive function which describes the sources of the damage
in the system. Whenβ = 1 the material is undamaged, whenβ = 0 the material is
completely damaged, and for0 < β < 1 there is partial damage. General models
of mechanical damage, which were derived from thermodynamical considerations
and the principle of virtual work, can be found in [8] and [9] and references therein.
The models describe the evolution of the material damage which results from the
excess tension or compression in the body as a result of applied forces and tractions.
Mathematical analysis of one-dimensional damage models can be found in [10].

To simplify the notation, we do not indicate explicitly the dependence of various
functions on the variablesx ∈ Ω ∪ Γ andt ∈ [0, T ] . Then, the classical formula-
tion of the mechanical problem of electro-viscoelastic material, frictionless, adhesive
contact may be stated as follows.

Problem P. Find a displacement fieldu : Ω × [0, T ] → Rd, a stress fieldσ : Ω ×
[0, T ] → Sd, an electric potential fieldϕ : Ω× [0, T ] → R, an electric displacement
field D : Ω × [0, T ] → Rd, a damage fieldβ : Ω × [0, T ] → R and a bonding field
α : Γ3 × [0, T ] → R such that

(3.1) σ = Aε(
.
u) + G(ε(u), β) +

∫ t

0

M(t− s)ε(u(s)) ds + E∗∇ϕ in Ω× (0, T ) ,

(3.2) D =Eε(u)−B∇ϕ in Ω× (0, T ) ,
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(3.3)
.

β − k4 β + ∂ϕK(β) 3 S(ε(u), β) in Ω× (0, T ) ,

(3.4) ρ
..
u = Div σ + f0 in Ω× (0, T ) ,

(3.5) div D =q0 in Ω× (0, T ) ,

(3.6) u = 0 on Γ1 × (0, T ) ,

(3.7) σν = f2 on Γ2 × (0, T ) ,

(3.8) −σν = pν(uν)− γνα
2R ν(uν) on Γ3 × (0, T ) ,

(3.9) −στ = pτ (α)Rτ (uτ ) on Γ3 × (0, T ) ,

(3.10)
.
α = −

(
α

(
γν (R ν(uν))

2 + γτ |R τ (uτ )|2
)
− εa

)
+

on Γ3 × (0, T ) ,

(3.11)
∂β

∂ν
= 0 on Γ3 × (0, T ) ,
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(3.12) ϕ = 0 on Γa × (0, T ) ,

(3.13) D · ν = q2 on Γb × (0, T ) ,

(3.14) u(0) = u0,
.
u(0) = v0, β(0) = β0 in Ω,

(3.15) α(0) = α0 on Γ3.

First, (3.1) and (3.2) represent the electro-viscoelastic constitutive law with long
term-memory and damage, the evolution of the damage field is governed by the
inclusion of parabolic type given by the relation (3.3), whereS is the mechanical
source of the damage, and∂ϕK is the subdifferential of the indicator function of
the admissible damage functions setK. Equations (3.4) and (3.5) represent the
equation of motion for the stress field and the equilibrium equation for the electric-
displacement field while (3.6) and (3.7) are the displacement and traction boundary
condition, respectively. Condition (3.8) represents the normal compliance condition
with adhesion whereγν is a given adhesion coefficient andpν is a given positive
function which will be described below. In this condition the interpenetrability be-
tween the body and the foundation is allowed, that isuν can be positive onΓ3.
The contribution of the adhesive to the normal traction is represented by the term
γνα

2R ν(uν), the adhesive traction is tensile and is proportional, with proportionality
coefficientγν , to the square of the intensity of adhesion and to the normal displace-
ment, but only as long as it does not exceed the bond lengthL. The maximal tensile
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traction isγνL. Rν is the truncation operator defined by

Rν(s) =


L if s < −L,

−s if − L ≤ s ≤ 0,

0 if s > 0.

HereL > 0 is the characteristic length of the bond, beyond which it does not
offer any additional traction. The introduction of the operatorRν , together with
the operatorRτ defined below, is motivated by mathematical arguments but it is
not restrictive from the physical point of view, since no restriction on the size of
the parameterL is made in what follows. Condition (3.9) represents the adhesive
contact condition on the tangential plane, in whichpτ is a given function andRτ is
the truncation operator given by

Rτ (v) =

{
v if |v| ≤ L,

L v
|v| if |v| > L.

This condition shows that the shear on the contact surface depends on the bonding
field and on the tangential displacement, but only as long as it does not exceed the
bond lengthL. The frictional tangential traction is assumed to be much smaller than
the adhesive one and, therefore, omitted.

Next, the equation (3.10) is an ordinary differential equation which describes the
evolution of the bonding field and it has already been used in [3], see also [19, 20]
for more details. Here, besidesγν , two new adhesion coefficients are involved,γτ

and εa. Notice that in this model, once debonding occurs bonding cannot be re-
established since, from (3.10),

.
α ≤ 0. The relation (3.11) represents a homogeneous

Neumann boundary condition where∂β
∂ν

represents the normal derivative ofβ. (3.12)
and (3.13) represent the electric boundary conditions. (3.14) represents the initial
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displacement field, the initial velocity and the initial damage field. Finally (3.15)
represents the initial condition in whichα0 is the given initial bonding field. To
obtain the variational formulation of the problems (3.1) – (3.15), we introduce for
the bonding field the set

Z =
{
θ ∈ L∞(0, T ; L2(Γ3)) / 0 ≤ θ(t) ≤ 1 ∀t ∈ [0, T ] , a.e. onΓ3

}
,

and for the displacement field we need the closed subspace ofH1(Ω)d defined by

V =
{
v ∈ H1(Ω)d / v = 0 onΓ1

}
.

Sincemeas (Γ1) > 0, Korn’s inequality holds and there exists a constantCk > 0,
that depends only onΩ andΓ1, such that

|ε(v)|H ≥ Ck |v|H1(Ω)d ∀v ∈ V.

A proof of Korn’s inequality may be found in [15, p. 79]. On the spaceV we
consider the inner product and the associated norm given by

(3.16) (u,v)V = (ε(u), ε(v))H, |v|V = |ε(v)|H ∀u,v ∈ V.

It follows that|·|H1(Ω)d and|·|V are equivalent norms onV and therefore(V, |·|V )
is a real Hilbert space. Moreover, by the Sobolev trace Theorem and (3.16), there
exists a constantC0 > 0, depending only onΩ, Γ1 andΓ3 such that

(3.17) |v|L2(Γ3)d ≤ C0 |v|V ∀v ∈ V.

We also introduce the spaces

W =
{
φ ∈ H1(Ω) / φ = 0 onΓa

}
,

W =
{
D = (Di) / Di ∈ L2(Ω), div D ∈ L2(Ω)

}
,
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wherediv D = (Di,i). The spacesW andW are real Hilbert spaces with the inner
products given by

(ϕ, φ)W =

∫
Ω

∇ϕ · ∇φ dx,

(D,E)W =

∫
Ω

D · E dx +

∫
Ω

div D · div E dx.

The associated norms will be denoted by|·|W and |·|W , respectively. Notice also
that, sincemeas(Γa) > 0, the following Friedrichs-Poincaré inequality holds:

(3.18) |∇φ|H ≥ CF |φ|H1(Ω) ∀φ ∈ W,

whereCF > 0 is a constant which depends only onΩ and Γa. In the study of
the mechanical problems (3.1) – (3.15), we assume that the viscosity functionA :
Ω× Sd → Sd satisfies

(3.19)



(a) There exists constantsCA
1 , CA

2 > 0 such that

|A(x, ε)| ≤ CA
1 |ε|+ CA

2 ∀ε ∈ Sd, a.e.x ∈ Ω.

(b) There exists a constantmA > 0 Such that
(A(x, ε1)−A(x, ε2)) · (ε1 − ε2) ≥ mA |ε1 − ε2|2

∀ε1, ε2 ∈ Sd, a.e.x ∈ Ω.

(c) The mappingx → A(x, ε) is Lebesgue measurable on

Ω for anyε ∈ Sd.

(d) The mappingε → A(x, ε) is continuous onSd, a.e.x ∈ Ω.
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The elasticity OperatorG : Ω× Sd × R → Sd satisfies

(3.20)



(a) There exists a constantLG > 0 Such that

|G(x, ε1, α1)− G(x, ε2, α2)| ≤ LG(|ε1 − ε2|+ |α1 − α2|)
∀ε1, ε2 ∈ Sd, ∀α1, α2 ∈ R a.e.x ∈ Ω.

(b) The mappingx → G(x, ε,α) is Lebesgue measurable onΩ

for anyε ∈ Sd andα ∈ R.

(c) The mappingx → G(x,0,0) belongs toH.

The damage source functionS : Ω× Sd × R → R satisfies

(3.21)



(a) There exists a constantLS > 0 such that

|S(x, ε1, α1)− S(x, ε2, α2)| ≤ LS(|ε1 − ε2|+ |α1 − α2|)
∀ε1, ε2 ∈ Sd, ∀α1, α2 ∈ R a.e.x ∈ Ω.

(b) For anyε ∈ Sd andα ∈ R, x → S(x, ε, α) is
Lebesgue measurable onΩ.

(c) The mappingx → S(x,0,0) belongs toL2(Ω).

The electric permittivity operatorB = (bij) : Ω× Rd → Rd satisfies

(3.22)



(a) B(x,E) = (bij(x)Ej) ∀E = (Ei) ∈ Rd, a.e.x ∈ Ω.

(b) bij = bji, bij ∈ L∞(Ω), 1 ≤ i, j ≤ d.

(c) There exists a constantmB > 0 such that
BE.E ≥ mB |E|2 ∀E = (Ei) ∈ Rd, a.e. inΩ.
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The piezoelectric operatorE : Ω× Sd → Rd satisfies

(3.23)

{
(a) E(x, τ)=(ei j k (x)τjk) ∀τ = (τ ij) ∈ Sd, a.e.x ∈ Ω.

(b) ei jk = eikj ∈ L∞(Ω), 1 ≤ i, j, k ≤ d.

The normal compliance functionpν : Γ3 × R → R+ satisfies

(3.24)


(a) There exists a constantLν > 0 such that

|pν(x, r1)− pν(x, r2)| ≤ Lν |r1 − r2| ∀r1, r2 ∈ R, a.e.x ∈ Γ3.

(b) The mappingx → pν(x, r) is measurable onΓ3, for anyr ∈ R.

(c) pν(x, r) = 0 for all r ≤ 0, a.e.x ∈ Γ3.

The tangential contact functionpτ : Γ3 × R → R+ satisfies

(3.25)



(a) There exists a constantLτ > 0 such that

|pτ (x, d1)− pτ (x, d2)| ≤ Lτ |d1 − d2| ∀d1, d2 ∈ R,

a.e.x ∈ Γ3.

(b) There existsMτ > 0 such that|pτ (x, d)| ≤ Mτ ∀d ∈ R,

a.e.x ∈ Γ3.

(c) The mappingx → pτ (x, d) is measurable onΓ3, for anyd ∈ R.

(d) The mappingx → pτ (x, 0) ∈ L2(Γ3).

The relaxation tensorM satisfies

(3.26) M ∈ C(0, T ;H).
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We suppose that the mass density satisfies

(3.27) ρ ∈ L∞(Ω), there existsρ∗ > 0 such thatρ(x) ≥ ρ∗ a.e. x ∈ Ω.

We also suppose that the body forces and surface tractions have the regularity

(3.28) f0 ∈ L2(0, T ; H), f2 ∈ L2(0, T ; L2(Γ2)
d),

(3.29) q0 ∈ C(0, T ; L2(Ω)), q2 ∈ C(0, T ; L2(Γb)).

(3.30) q2(t) = 0 onΓ3 ∀t ∈ [0, T ] .

Note that we need to impose assumption (3.30) for physical reasons. Indeed the
foundation is assumed to be insulator and therefore the electric charges (which are
prescribed onΓb ⊃ Γ3) have to vanish on the potential contact surface. The adhesion
coefficients satisfy

(3.31) γν , γτ ∈ L∞(Γ3), εa ∈ L2(Γ3), γν , γτ , εa ≥ 0 a.e. onΓ3.

The initial displacement field satisfies

(3.32) u0 ∈ V, v0 ∈ H,

the initial bonding field satisfies

(3.33) α0 ∈ L2(Γ3), 0 ≤ α0 ≤ 1 a.e. onΓ3,

and the initial damage field satisfies

(3.34) β0 ∈ K.
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We define the bilinear forma : H1(Ω)×H1(Ω) → R by

(3.35) a(ξ, ϕ) = k

∫
Ω

∇ξ · ∇ϕ dx.

We will use a modified inner product onH = L2(Ω)d, given by

((u,v))H = (ρu,v)H ∀u,v ∈ H,

that is, it is weighted withρ, and we let‖·‖H be the associated norm, i.e.,

‖v‖H = (ρv,v)
1
2
H ∀v ∈ H.

It follows from assumption (3.27) that‖·‖H and|·|H are equivalent norms onH, and
the inclusion mapping of(V, |·|V ) into (H, ‖·‖H) is continuous and dense. We denote
by V

′
the dual ofV. IdentifyingH with its own dual, we can write the Gelfand triple

V ⊂ H ⊂ V
′
.

Using the notation(·, ·)V
′×V to represent the duality pairing betweenV

′
andV , we

have
(u,v)V

′×V = ((u,v))H ∀u ∈ H, ∀v ∈ V.

Finally, we denote by|·|V ′ the norm onV
′
. Assumption (3.28) allows us, for a.e.

t ∈ (0, T ), to definef(t) ∈ V
′
by

(3.36) (f(t),v)V ′×V =

∫
Ω

f0(t) · v dx +

∫
Γ2

f2(t) · v da ∀v ∈ V.

We denote byq : [0, T ] → W the function defined by

(3.37) (q(t), φ)W =

∫
Ω

q0(t) · φ dx−
∫

Γb

q2(t) · φ da ∀φ ∈ W, t ∈ [0, T ] .
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Next, we denote byj : L∞(Γ3)× V × V → R the adhesion functional defined by

(3.38) j(α,u,v)

=

∫
Γ3

pν(uν)vν da +

∫
Γ3

(−γνα
2R ν(uν) vν + pτ (α)Rτ (u τ ) · vτ ) da.

Keeping in mind (3.24) – (3.25), we observe that the integrals (3.38) are well defined
and we note that conditions (3.28) – (3.29) imply

(3.39) f ∈ L2(0, T ; V
′
), q ∈ C(0, T ; W ).

Using standard arguments we obtain the variational formulation of the mechanical
problem (3.1) – (3.15).
Problem PV. Find a displacement fieldu : [0, T ] → V , an electric potential field
ϕ : [0, T ] → W , a damage fieldβ : [0, T ] → H1(Ω) and a bonding fieldα :
[0, T ] → L∞(Γ3) such that

(3.40) (
..
u,v)V ′×V + (Aε(

.
u(t)), ε(v))H

+ (G(ε(u(t)), β(t)), ε(v))H +

(∫ t

0

M(t− s)ε(u(s))ds, ε(v)

)
H

+ (E∗∇ϕ(t), ε(v))H + j(α(t),u(t),v)

= (f(t),v)V
′×V ∀v ∈ V, t ∈ (0, T ) ,

(3.41) β(t) ∈ K for all t ∈ [0, T ] ,
( .

β(t), ξ − β(t)
)

L2(Ω)
+ a(β(t), ξ − β(t))

≥ (S(ε(u(t)), β(t)), ξ − β(t))L2(Ω) ∀ξ ∈ K,
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(3.42) (B∇ϕ(t),∇φ)H − (Eε(u(t)),∇φ)H = (q(t), φ)W ∀φ ∈ W, t ∈ (0, T ) ,

(3.43)
.
α(t)=−

(
α(t)

[
γν(R ν(uν(t)))

2+γτ |R τ (uτ (t))|2
]
−εa

)
+

a.e.t∈(0, T ) ,

(3.44) u(0) = u0,
.
u(0) = v0, β(0) = β0, α(0) = α0.

We notice that the variational problemPV is formulated in terms of a displacement
field, an electrical potential field, a damage field and a bonding field. The existence
of the unique solution of problemPV is stated and proved in the next section. To
this end, we consider the following remark which is used in different places of the
paper.

Remark1. We note that, in the problemP and in the problemPV we do not need to
impose explicitly the restriction0 ≤ α ≤ 1. Indeed, equations (3.43) guarantee that
α(x, t) ≤ α0(x) and, therefore, assumption (3.33) shows thatα(x, t) ≤ 1 for t ≥ 0,
a.e.x ∈ Γ3. On the other hand, ifα(x, t0) = 0 at timet0, then it follows from (3.43)
that

.
α(x, t) = 0 for all t ≥ t0 and therefore,α(x, t) = 0 for all t ≥ t0, a.e.x ∈ Γ3.

We conclude that0 ≤ α(x, t) ≤ 1 for all t ∈ [0, T ], a.e.x ∈ Γ3.
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4. An Existence and Uniqueness Result

Now, we propose our existence and uniqueness result.

Theorem 4.1.Assume that (3.19) – (3.34) hold. Then there exists a unique solution
{u,ϕ, β, α} to problem PV. Moreover, the solution satisfies

(4.1) u ∈ H1(0, T ; V ) ∩ C1(0, T ; H),
..
u ∈ L2(0, T ; V

′
),

(4.2) ϕ ∈ C(0, T ; W ),

(4.3) β ∈ W 1,2(0, T ; L2(Ω)) ∩ L2(0, T ; H1(Ω)),

(4.4) α ∈ W 1,∞(0, T ; L2(Γ3)) ∩ Z.

The functionsu,ϕ, σ,D,β andα which satisfy (3.1) – (3.2) and (3.40) – (3.44)
are called weak solutions of the contact problemP. We conclude that, under the
assumptions (3.19) – (3.34), the mechanical problem (3.1) – (3.15) has a unique
weak solution satisfying (4.1) – (4.4). The regularity of the weak solution is given
by (4.1) – (4.4) and, in term of stresses,

(4.5) σ ∈ L2(0, T ;H), Div σ ∈ L2(0, T ; V
′
),

(4.6) D ∈ C(0, T ;W).
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Indeed, it follows from (3.40) and (3.42) thatρ
..
u = Div σ(t) + f0(t), div D = q0(t)

for all t ∈ [0, T ] . Therefore the regularity (4.1) and (4.2) of u andϕ, combined with
(3.19) – (3.29) implies (4.5) and (4.6).

The proof of Theorem4.1 is carried out in several steps that we prove in what
follows. Everywhere in this section we suppose that the assumptions of Theo-
rem 4.1 hold, and we assume thatC is a generic positive constant which depends
on Ω, Γ1, Γ3, pν , pτ , γν , γτ and L and may change from place to place. Letη ∈
L2(0, T ; V

′
) be given, in the first step we consider the following variational prob-

lem.

Problem PVη. Find a displacement fielduη : [0, T ] → V such that

(4.7) (
..
uη(t),v)V ′×V + (Aε(

.
uη(t)), ε(v))H + (η(t),v)V ′×V

= (f(t),v)V
′×V ∀v ∈ V a.e.t ∈ (0, T ) ,

(4.8) uη(0) = u0, η(0) = v0.

To solve problemPVη, we apply an abstract existence and uniqueness result
which we recall now, for the convenience of the reader. LetV andH denote real
Hilbert spaces such thatV is dense inH and the inclusion map is continuous,H is
identified with its dual and with a subspace of the dualV

′
of V , i.e.,V ⊂ H ⊂ V

′
,

and we say that the inclusions above define a Gelfand triple. The notations|·|V , |·|V ′

and(·, ·)V
′×V represent the norms onV and onV

′
and the duality pairing between

them, respectively. The following abstract result may be found in [20, p. 48].

Theorem 4.2. Let V, H be as above, and letA : V → V
′
be a hemicontinuous and

monotone operator which satisfies

(4.9) (Av,v)V
′×V ≥ ω |v|2V + λ ∀v ∈ V,
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(4.10) |Av|V ′ ≤ C(|v|V + 1) ∀v ∈ V,

for some constantsω > 0, C > 0 and λ ∈ R. Then, givenu0 ∈ H and f ∈
L2(0, T ; V

′
), there exists a unique functionu which satisfies

u ∈ L2(0, T ; V
′
) ∩ C(0, T ; H),

.
u ∈ L2(0, T ; V

′
),

.
u(t) + Au(t) = f(t) a.e. t ∈ (0, T ) ,

u(0) = u0.

We apply it to problemPVη.

Lemma 4.3. There exists a unique solution to problemPVη and it has its regularity
expressed in (4.1).

Proof. We define the operatorA : V → V
′
by

(4.11) (Au,v)V
′×V = (Aε(u), ε(v))H ∀u,v ∈ V.

Using (4.11), (3.19) and (3.16) it follows that

|Au− Av|V ′ ≤ |Aε(u)−Aε(v)|H ∀u,v ∈ V,

and keeping in mind the Krasnoselski Theorem (see for instance [11, p. 60]), we
deduce thatA : V → V

′
is a continuous operator. Now, by (4.11), (3.19) and (3.16)

we find

(4.12) (Au− Av,u− v)V
′×V ≥ mA |u− v|2V ∀u,v ∈ V,
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i.e., thatA : V → V
′
is a monotone operator. Choosingv = 0V in (4.12) we obtain

(Au,u)V
′×V ≥ mA |u|2V − |A0V |V ′ |u|V

≥ 1

2
mA |u|2V −

1

2mA
|A0V |2V ′ ∀u ∈ V,

which implies thatA satisfies condition (4.9) with ω = mA
2

and λ =
−|A0V |2

V
′

2mA
.

Moreover, by (4.11) and (3.19) we find

|Au|V ′ ≤ |Aε(u)|H ≤ CA
1 |u|V + CA

2 ∀u ∈ V.

This inequality and (3.16) imply thatA satisfies condition (4.10). Finally, we recall
that by (3.28) and (3.32) we havef − η ∈ L2(0, T ; V

′
) andv0 ∈ H.

It follows now from Theorem4.2 that there exists a unique functionvη which
satisfies

(4.13) vη ∈ L2(0, T ; V ) ∩ C(0, T ; H),
.
vη ∈ L2(0, T ; V

′
),

(4.14)
.
vη(t) + Avη(t) + η(t) = f(t) a.e.t ∈ (0, T ) ,

(4.15) vη(0) = v0.

Let uη : [0, T ] → V be the function defined by

(4.16) uη(t) =

∫ t

0

vη(s) ds + u0 ∀t ∈ [0, T ].

It follows from (4.11) and (4.13) – (4.16) that uη is a unique solution of the
variational problemPVη and it satisfies the regularity expressed in (4.1).

http://jipam.vu.edu.au
mailto:s_elmanih@yahoo.fr
http://jipam.vu.edu.au


Dynamic problem with adhesion
and damage

Selmani Mohamed

vol. 10, iss. 1, art. 6, 2009

Title Page

Contents

JJ II

J I

Page 25 of 39

Go Back

Full Screen

Close

In the second step, letη ∈ L2(0, T ; V
′
), we use the displacement fielduη obtained

in Lemma4.3and we consider the following variational problem.

Problem QVη. Find the electric potential fieldϕη : [0, T ] → W such that

(4.17) (B∇ϕη(t),∇φ)H−(Eε(uη(t)),∇φ)H = (q(t), φ)W ∀φ ∈ W, t ∈ (0, T ) .

We have the following result.

Lemma 4.4. QVη has a unique solutionϕη which satisfies the regularity (4.2).

Proof. We define a bilinear form:b(·, ·) : W ×W → R such that

(4.18) b(ϕ, φ) = (B∇ϕ,∇φ)H ∀ϕ, φ ∈ W.

We use (4.18), (3.18) and (3.22) to show that the bilinear formb is continuous,
symmetric and coercive onW , moreover using the Riesz Representation Theorem
we may define an elementqη : [0, T ] → W such that

(qη(t), φ)W = (q(t), φ)W + (Eε(uη(t)),∇φ)H ∀φ ∈ W, t ∈ (0, T ) .

We apply the Lax-Milgram Theorem to deduce that there exists a unique element
ϕη(t) ∈ W such that

(4.19) b(ϕη(t), φ) = (qη(t), φ)W ∀φ ∈ W.

We conclude thatϕη(t) is a solution ofQVη. Let t1, t2 ∈ [0, T ], it follows from
(4.17) that

|ϕη(t1)− ϕη(t2)|W ≤ C
(
|uη(t1)− uη(t2)|V + |q(t1)− q(t2)|W

)
,

and the previous inequality, the regularity ofuη andq imply thatϕη ∈ C(0, T ; W ).
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In the third step, we letθ ∈ L2(0, T ; L2(Ω)) be given and consider the following
variational problem for the damage field.

Problem PVθ. Find a damage fieldβθ : [0, T ] → H1(Ω) such that

(4.20) βθ(t) ∈ K, (
.

βθ(t), ξ − βθ(t))L2(Ω) + a(βθ(t), ξ − βθ(t))

≥ (θ(t), ξ − βθ(t))L2(Ω) ∀ξ ∈ K a.e.t ∈ (0, T ) ,

(4.21) βθ(0) = β0.

To solvePVθ, we recall the following standard result for parabolic variational
inequalities (see, e.g., [20, p. 47]).

Theorem 4.5. Let V ⊂ H ⊂ V
′
be a Gelfand triple. LetK be a nonempty closed,

and convex set ofV. Assume thata(·, ·) : V ×V → R is a continuous and symmetric
bilinear form such that for some constantsζ > 0 andc0,

a(v, v) + c0 |v|2H ≥ ζ |v|2V ∀v ∈ V.

Then, for everyu0 ∈ K and f ∈ L2(0, T ; H), there exists a unique functionu
∈ H1(0, T ; H) ∩ L2(0, T ; V ) such thatu(0) = u0, u(t) ∈ K for all t ∈ [0, T ], and
for almost allt ∈ (0, T ) ,

(
.
u(t), v − u(t))V

′×V + a(u(t), v − u(t)) ≥ (f(t), v − u(t))H ∀v ∈ K.

We apply this theorem to problemPVθ.

Lemma 4.6. ProblemPVθ has a unique solutionβθ such that

(4.22) βθ ∈ H1(0, T ; L2(Ω)) ∩ L2(0, T ; H1(Ω)).
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Proof. The inclusion mapping of
(
H1(Ω), |·|H1(Ω)

)
into

(
L2(Ω), |·|L2(Ω)

)
is contin-

uous and its range is dense. We denote by(H1(Ω))
′

the dual space ofH1(Ω) and,
identifying the dual ofL2(Ω) with itself, we can write the Gelfand triple

H1(Ω) ⊂ L2(Ω) ⊂ (H1(Ω))
′
.

We use the notation(·, ·)(H1(Ω))′×H1(Ω) to represent the duality pairing between(H1(Ω))
′

andH1(Ω). We have

(β, ξ)(H1(Ω))′×H1(Ω) = (β, ξ)L2(Ω) ∀β ∈ L2(Ω), ξ ∈ H1(Ω),

and we note thatK is a closed convex set inH1(Ω). Then, using the definition (3.35)
of the bilinear forma, and the fact thatβ0 ∈ K in (3.34), it is easy to see that Lemma
4.6 is a straightforward consequence of Theorem4.5.

In the fourth step, we use the displacement fielduη obtained in Lemma4.3 and
we consider the following initial-value problem.

Problem PVα. Find the adhesion fieldαη : [0, T ] → L2(Γ3) such that for a.e.
t ∈ (0, T )

(4.23)
.
αη(t) = −

(
αη(t)

[
γν(R ν(uην(t)))

2 + γτ |R τ (uητ (t))|2
]
− εa

)
+

,

(4.24) αη(0) = α0.

We have the following result.

Lemma 4.7.There exists a unique solutionαη ∈ W 1,∞(0, T ; L2(Γ3))∩Z to Problem
PVα.
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Proof. For simplicity, we suppress the dependence of various functions onΓ3, and
note that the equalities and inequalities below are valid a.e. onΓ3. Consider the
mappingFη : [0, T ]× L2(Γ3) → L2(Γ3) defined by

Fη(t, α) = −
(
α

[
γν(R ν(uην(t)))

2 + γτ |R τ (uητ (t))|2
]
− εa

)
+

,

for all t ∈ [0, T ] and α ∈ L2(Γ3). It follows from the properties of the trun-
cation operatorsRν and Rτ that Fη is Lipschitz continuous with respect to the
second argument. Moreover, for allα ∈ L2(Γ3), the mappingt → Fη(t, α) be-
longs toL∞(0, T ; L2(Γ3)). Thus using a version of the Cauchy-Lipschitz Theo-
rem given in Theorem2.1, we deduce that there exists a unique functionαη ∈
W 1,∞(0, T ; L2(Γ3)) solution which satisfies (4.23)- (4.24). Also, the arguments used
in Remark1 show that0 ≤ αη(t) ≤ 1 for all t ∈ [0, T ], a.e. onΓ3. Therefore, from
the definition of the setZ, we find thatαη ∈ Z, which concludes the proof of the
lemma.

Finally as a consequence of these results and using the properties of the operator
G, the operatorE , the functionalj and the functionS, for t ∈ [0, T ], we consider the
operator

Λ : L2(0, T ; V
′ × L2(Ω)) → L2(0, T ; V

′ × L2(Ω))

which maps every element(η, θ) ∈ L2(0, T ; V
′ × L2(Ω)) to the elementΛ(η, θ) ∈

L2(0, T ; V
′ × L2(Ω)) defined by

(4.25) Λ(η, θ)(t) = (Λ1(η, θ)(t), Λ2(η, θ)(t)) ∈ V
′ × L2(Ω),

defined by the equalities

(4.26) (Λ1(η, θ)(t),v)V ′×V = (G(ε(uη(t)), βθ(t)), ε(v))H + (E∗∇ϕη(t), ε(v))H

+

(∫ t

0

M(t− s)ε(uη(s))ds, ε(v)

)
H

+ j(αη(t),uη(t),v) ∀v ∈ V,
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(4.27) Λ2(η, θ)(t) = S(ε(uη(t)), βθ(t)).

Here, for every(η, θ) ∈ L2(0, T ; V
′ × L2(Ω)), uη, ϕη, βθ andαη represent the

displacement field, the potential electric field, the damage field and the bonding field
obtained in Lemmas4.3, 4.4, 4.6and4.7respectively. We have the following result.

Lemma 4.8. The operatorΛ has a unique fixed point(η∗, θ∗) ∈ L2(0, T ; V
′ ×

L2(Ω)) such thatΛ(η∗, θ∗) = (η∗, θ∗).

Proof. Let (η, θ) ∈ L2(0, T ; V
′ × L2(Ω)) and (η1,θ1), (η2,θ2) ∈ L2(0, T ; V

′ ×
L2(Ω)). We use the notationuηi

= ui,
.
uηi

= vηi
= vi, ϕηi

= ϕi, βθi
= βi and

αηi
= αi for i = 1, 2. Using (3.20), (3.23), (3.24), (3.25), (3.26), the definition of

Rν , Rτ and Remark1, we have∣∣Λ1(η1,θ1)(t)− Λ1(η2,θ2)(t)
∣∣2
V
′(4.28)

≤ |G(ε(u1(t)), β1(t))− G(ε(u2(t)), β2(t))|2H

+

∫ t

0

|M(t− s)ε(u1(s)− u2(s))|2H ds + |E∗∇ϕ1(t)− (E∗∇ϕ2(t)|2H

+ C |pν(u1ην(t))− pν(u2ην(t))|2L2(Γ3)

+ C
∣∣α2

1(t)Rν(u1ην(t))− α2
2(t)Rν(u1ην(t))

∣∣2
L2(Γ3)

+ C |pτ (α1(t))Rτ (u1ητ (t))− pτ (α2(t))Rτ (u1ητ (t))|2L2(Γ3)

≤ C

(
|u1(t)− u2(t)|2V +

∫ t

0

|u1(s)− u2(s)|2V ds + |β1(t)− β2(t)|2L2(Ω)

+ |ϕ1(t)− ϕ2(t)|2W + |α1(t)− α2(t)|2L2(Γ3)

)
.
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Recall that uην anduητ denote the normal and the tangential component of the
functionuη respectively. By a similar argument, from (4.27) and (3.21) it follows
that

(4.29)
∣∣Λ2(η1,θ1)(t)− Λ2(η2,θ2)(t)

∣∣2
L2(Ω)

≤ C
(
|u1(t)− u2(t)|2V + |β1(t)− β2(t)|2L2(Ω)

)
.

Therefore,

(4.30) |Λ(η1,θ1)(t)− Λ(η2,θ2)(t)|2V ′×L2(Ω)

≤ C(

(
|u1(t)− u2(t)|2V +

∫ t

0

|u1(s)− u2(s)|2V ds + |ϕ1(t)− ϕ2(t)|2W

+ |β1(t)− β2(t)|2L2(Ω) + |α1(t)− α2(t)|2L2(Γ3)

)
.

Moreover, from (4.7) we obtain

(
.
v1 −

.
v2,v1 − v2)V

′×V + (Aε(v1)−Aε(v2), ε(v1 − v2))H

+ (η1 − η2,v1 − v2)V ′×V = 0.

We integrate this equality with respect to time, use the initial conditionsv1(0) =
v2(0) = v0 and condition (3.19) to find

mA

∫ t

0

|v1(s)− v2(s)|2V ds ≤ −
∫ t

0

(η1(s)− η2(s),v1(s)− v2(s))V
′×V ds,

for all t ∈ [0, T ]. Then, using the inequality2ab ≤ a2

mA
+ mAb2 we obtain

(4.31)
∫ t

0

|v1(s)− v2(s)|2V ds ≤ C

∫ t

0

|η1(s)− η2(s)|2V ′ ds ∀t ∈ [0, T ] .
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On the other hand, from the Cauchy problem (4.23) – (4.24) we can write

αi(t) = α0 −
∫ t

0

(
αi(s)

[
{γν(Rν(uiν(s))}2 + γτ |Rτ (uiτ (s))|2

]
− εa

)
+

ds,

and then

|α1(t)− α2(t)|L2(Γ3)

≤ C

∫ t

0

∣∣α1(s) [Rν(u1ν(s))]
2 − α2(s) [Rν(u2ν(s))]

2
∣∣
L2(Γ3)

ds

+ C

∫ t

0

∣∣α1(s) |Rτ (u1τ (s))|2 − α2(s) |Rτ (u2τ (s))|2
∣∣
L2(Γ3)

ds.

Using the definition ofRν andRτ and writingα1 = α1 − α2 + α2, we get

(4.32) |α1(t)− α2(t)|L2(Γ3)

≤ C

(∫ t

0

|α1(s)− α2(s)|L2(Γ3) ds +

∫ t

0

|u1(s)− u2(s)|L2(Γ3)d ds

)
.

Next, we apply Gronwall’s inequality to deduce

|α1(t)− α2(t)|L2(Γ3) ≤ C

∫ t

0

|u1(s)− u2(s)|L2(Γ3)d ds,

and from the relation (3.17) we obtain

(4.33) |α1(t)− α2(t)|2L2(Γ3) ≤ C

∫ t

0

|u1(s)− u2(s)|2V ds.

We use now (4.17), (3.22), (3.23) and (3.18) to find

(4.34) |ϕ1(t)− ϕ2(t)|2W ≤ C |u1(t)− u2(t)|2V .
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From (4.20) we deduce that

(
.

β1−
.

β2, β1−β2)L2(Ω)+a(β1−β2, β1−β2) ≤ (θ1−θ2, β1−β2)L2(Ω) a.e.t ∈ (0, T ) .

Integrating the previous inequality with respect to time, using the initial conditions
β1(0) = β2(0) = β0 and the inequalitya(β1 − β2, β1 − β2) ≥ 0, we have

1

2
|β1(t)− β2(t)|2L2(Ω) ≤

∫ t

0

(θ1(s)− θ2(s), β1(s)− β2(s))L2(Ω) ds,

which implies that

|β1(t)− β2(t)|2L2(Ω) ≤
∫ t

0

|θ1(s)− θ2(s)|
2
L2(Ω) ds +

∫ t

0

|β1(s)− β2(s)|
2
L2(Ω) ds.

This inequality combined with Gronwall’s inequality leads to

(4.35) |β1(t)− β2(t)|2L2(Ω) ≤ C

∫ t

0

|θ1(s)− θ2(s)|2L2(Ω) ds ∀t ∈ [0, T ] .

We substitute (4.33) and (4.34) in (4.30) to obtain

|Λ(η1,θ1)(t)− Λ(η2,θ2)(t)|2V ′×L2(Ω)

≤ C

(
|u1(t)− u2(t)|2V +

∫ t

0

|u1(s)− u2(s)|2V ds + |β1(t)− β2(t)|2L2(Ω)

)
≤ C

(∫ t

0

|v1(s)− v2(s)|2V ds + |β1(t)− β2(t)|2L2(Ω)

)
.

It follows now from the previous inequality, the estimates (4.31) and (4.35) that

|Λ(η1,θ1)(t)− Λ(η2,θ2)(t)|2V ′×L2(Ω) ≤ C

∫ t

0

|(η1, θ1)(s)− (η2, θ2)(s)|2V ′×L2(Ω) ds.
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Reiterating this inequalitym times leads to

|Λm(η1,θ1)− Λm(η2,θ2)|2L2(0,T ;V ′×L2(Ω)) ≤
CmTm

m!
|(η1, θ1)− (η2, θ2)|2L2(0,T ;V

′×L2(Ω)) .

Thus, form sufficiently large,Λm is a contraction on the Banach spaceL2(0, T ; V
′×

L2(Ω)), and soΛ has a unique fixed point.

Now, we have all the ingredients to prove Theorem4.1.

Proof. Existence.Let (η∗, θ∗) ∈ L2(0, T ; V
′×L2(Ω)) be the fixed point ofΛ defined

by (4.25) – (4.27) and denote

(4.36) u∗ = uη∗ , ϕ∗ = ϕη∗ , β∗ = βθ∗ , α∗ = αη∗ .

(4.37) σ∗(t) = Aε(
.
u∗(t)) + G(ε(u∗(t)), β∗(t))

+

∫ t

0

M(t− s)ε(u∗(s))ds + E∗∇ϕ∗(t) ∀t ∈ [0, T ] ,

(4.38) D∗(t) = −B∇ϕ∗(t) + Eε(u∗(t)) ∀t ∈ [0, T ] .

We prove that the quadruplet(u∗, ϕ∗, β∗, α∗) satisfies (3.40) – (3.44) and the regu-
larites (4.1) – (4.4). Indeed, we write (4.7) for η = η∗ and use (4.36) to find

(
..
u∗(t),v))V

′×V + (Aε(
.
u∗(t)), ε(v))H + (η∗(t),v)V

′×V = (f(t),v)V
′×V(4.39)

∀v ∈ V, t ∈ [0, T ] .

We write (4.20) for θ = θ∗ and use (4.36) to obtain

(4.40) β∗(t) ∈ K,
( .

β∗(t), ξ − β∗(t)
)

L2(Ω)
+ a(β∗(t), ξ − β∗(t))

≥ (θ∗(t), ξ − β∗(t))L2(Ω) ∀ξ ∈ K a.e.t ∈ (0, T ) .
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EqualitiesΛ1(η∗, θ∗) = η∗ andΛ2(η∗, θ∗) = θ∗ combined with (4.26) and (4.27)
show that

(4.41) (η∗(t),v)V ′×V

= (G(ε(u∗(t)), β∗(t)), ε(v))H +

(∫ t

0

M(t− s)ε(u∗(s))ds, ε(v)

)
H

+ (E∗∇ϕ∗(t), ε(v))H + j(α∗(t),u∗(t),v) ∀v ∈ V,

(4.42) θ∗(t) = S(ε(u∗(t)), β∗(t)).

We now substitute (4.41) in (4.39) to obtain

(4.43) (u∗(t),v)V ′×V + (Aε(
.
u∗(t)), ε(v))H

+ (G(ε(u∗(t)), β∗(t)), ε(v))H +

(∫ t

0

M(t− s)ε(u∗(s))ds, ε(v)

)
H

+ (E∗∇ϕ∗(t), ε(v))H + j(α∗(t),u∗(t),v)

= (f(t),v)V ′×V ∀v ∈ V, t ∈ (0, T ) ,

and (4.42) in (4.40) to get

(4.44) β∗(t) ∈ K for all t ∈ [0, T ] ,
( .

β∗(t), ξ − β∗(t)
)

L2(Ω)
+ a(β∗(t), ξ − β∗(t))

≥ (S(ε(u∗(t)), β∗(t)), ξ − β∗(t))L2(Ω) ∀ξ ∈ K.

Usinguη∗ in (4.17), by (4.36) we have:

(4.45) (B∇ϕ∗(t),∇φ)H − (Eε(u∗(t)),∇φ)H = (q(t), φ)W ∀φ ∈ W, t ∈ (0, T ) .
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Additionally, we useuη∗ in (4.23) and (4.36) to find

(4.46)
.
α∗(t) = −

(
α∗(t)(γν(R ν(u∗ν(t)))

2 + γτ |R τ (u∗τ (t))|2)− εa

)
+

a.e.t ∈ (0, T ) .

The relations (4.43), (4.44), (4.45) and (4.46) allow us to conclude now that
(u∗, ϕ∗, β∗, α∗) satisfies (3.40) – (3.43). Next, (3.44) and the regularity (4.1) – (4.4)
follow from Lemmas4.3, 4.4, 4.6and4.7. Sinceu∗ andϕ∗ satisfy (4.1) and (4.2), it
follows from (4.37) that

(4.47) σ∗ ∈ L2(0, T ;H).

We choosev = ω ∈ D(Ω)d in (4.43) and by (4.37) and (3.36):

ρ
..
u∗(t) = Divσ∗(t) + f0(t) in V

′ ∀t ∈ [0, T ] .

Also, by (3.27), (3.28) and (4.47) we have:

Divσ∗ ∈ L2(0, T ; V
′
).

Let t1, t2 ∈ [0, T ] . By (3.22), (3.23), (3.18) and (4.38), we deduce that

|D∗(t1)−D∗(t2)|H ≤ C(|ϕ∗(t1)− ϕ∗(t2)|W + |u∗(t1)− u∗(t2)|V ).

The regularity ofu∗ andϕ∗ given by (4.1) and (4.2) implies

(4.48) D∗ ∈ C(0, T ; H).

We chooseφ ∈ D(Ω) in (4.45) and using (3.37) we find

divD∗(t) = q0(t) ∀t ∈ [0, T ] .
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By (3.29) and (4.48) we obtain

D∗ ∈ C(0, T ;W).

Finally we conclude that the weak solution(u∗, σ∗, ϕ∗,D∗, β∗, α∗) of the piezoelec-
tric contact problemP has the regularity (4.1) – (4.6), which concludes the existence
part of Theorem4.1.

Uniqueness. The uniqueness of the solution is a consequence of the uniqueness of
the fixed point of the operatorΛ defined by (4.25) – (4.27).
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