

# Journal of Inequalities in Pure and Applied Mathematics

http://jipam.vu.edu.au/

Volume 7, Issue 1, Article 15, 2006

# ENERGY DECAY OF SOLUTIONS OF A WAVE EQUATION OF p-LAPLACIAN TYPE WITH A WEAKLY NONLINEAR DISSIPATION

ABBÈS BENAISSA AND SALIMA MIMOUNI

UNIVERSITÉ DJILLALI LIABÈS
FACULTÉ DES SCIENCES
DÉEPARTEMENT DE MATHÉMATIQUES
B. P. 89, SIDI BEL ABBÈS 22000, ALGERIA.
benaissa abbes@yahoo.com

bbsalima@yahoo.fr

Received 03 November, 2005; accepted 15 November, 2005 Communicated by C. Bandle

ABSTRACT. In this paper we study decay properties of the solutions to the wave equation of p-Laplacian type with a weak nonlinear dissipative.

Key words and phrases: Wave equation of p-Laplacian type, Decay rate.

2000 Mathematics Subject Classification. 35B40, 35L70.

#### 1. Introduction

We consider the initial boundary problem for the nonlinear wave equation of p-Laplacian type with a weak nonlinear dissipation of the type

(P) 
$$\begin{cases} (|u'|^{l-2}u')' - \Delta_p u + \sigma(t)g(u') = 0 \text{ in } \Omega \times [0, +\infty[,\\ u = 0 \text{ on } \partial\Omega \times [0, +\infty[,\\ u(x,0) = u_0(x), \ u'(x,0) = u_1(x) \text{ in } \Omega. \end{cases}$$

where  $\Delta_p u = div(|\nabla_x u|^{p-2}\nabla_x u)$ ,  $p, l \geq 2, g : \mathbb{R} \to \mathbb{R}$  is a continuous non-decreasing function and  $\sigma$  is a positive function.

When p=2, l=2 and  $\sigma\equiv 1$ , for the case  $g(x)=\delta x$   $(\delta>0)$ , Ikehata and Suzuki [5] investigated the dynamics, showing that for sufficiently small initial data  $(u_0,u_1)$ , the trajectory (u(t),u'(t)) tends to (0,0) in  $H^1_0(\Omega)\times L^2(\Omega)$  as  $t\to +\infty$ . When  $g(x)=\delta|x|^{m-1}x$   $(m\geq 1)$ , Nakao [8] investigated the decay property of the problem (P). In [8] the author has proved the existence of global solutions to the problem (P).

For the problem (P) with  $\sigma \equiv 1, l=2$ , when  $g(x)=\delta |x|^{m-1}x$   $(m \geq 1)$ , Yao [1] proved that the energy decay rate is  $E(t) \leq (1+t)^{-\frac{p}{(mp-m-1)}}$  for  $t \geq 0$  by using a general method

ISSN (electronic): 1443-5756

<sup>© 2006</sup> Victoria University. All rights reserved.

introduced by Nakao [8]. Unfortunately, this method does not seem to be applicable in the case of more general functions  $\sigma$  and is more complicated.

Our purpose in this paper is to give energy decay estimates of the solutions to the problem (P) for a weak nonlinear dissipation. We extend the results obtained by Yao and prove in some cases an exponential decay when p>2 and the dissipative term is not necessarily superlinear near the origin.

We use a new method recently introduced by Martinez [7] (see also [2]) to study the decay rate of solutions to the wave equation  $u'' - \Delta_x u + g(u') = 0$  in  $\Omega \times \mathbb{R}^+$ , where  $\Omega$  is a bounded domain of  $\mathbb{R}^n$ . This method is based on a new integral inequality that generalizes a result of Haraux [4].

Throughout this paper the functions considered are all real valued. We omit the space variable x of u(t,x),  $u_t(t,x)$  and simply denote u(t,x),  $u_t(t,x)$  by u(t), u'(t), respectively, when no confusion arises. Let l be a number with  $2 \le l \le \infty$ . We denote by  $\|\cdot\|_l$  the  $L^l$  norm over  $\Omega$ . In particular, the  $L^2$  norm is denoted by  $\|\cdot\|_2$ .  $(\cdot)$  denotes the usual  $L^2$  inner product. We use familiar function spaces  $W_0^{1,p}$ .

#### 2. PRELIMINARIES AND MAIN RESULTS

First assume that the solution exists in the class

(2.1) 
$$u \in C(\mathbb{R}_+, W_0^{1,p}(\Omega)) \cap C^1(\mathbb{R}_+, L^l(\Omega)).$$

 $\lambda(x), \sigma(t)$  and g satisfy the following hypotheses:

**(H1)**  $\sigma: \mathbb{R}_+ \to \mathbb{R}_+$  is a non increasing function of class  $C^1$  on  $\mathbb{R}_+$  satisfying

(2.2) 
$$\int_0^{+\infty} \sigma(\tau) d\tau = +\infty.$$

**(H2)** Consider  $g: \mathbb{R} \to \mathbb{R}$  a non increasing  $C^0$  function such that

$$g(v)v > 0$$
 for all  $v \neq 0$ .

and suppose that there exist  $c_i > 0$ ; i = 1, 2, 3, 4 such that

(2.3) 
$$c_1|v|^m \le |g(v)| \le c_2|v|^{\frac{1}{m}} \text{ if } |v| \le 1,$$

(2.4) 
$$c_3|v|^s \le |g(v)| \le c_4|v|^r \text{ for all } |v| \ge 1,$$

where  $m \ge 1$ ,  $l - 1 \le s \le r \le \frac{n(p-1)+p}{n-p}$ .

We define the energy associated to the solution given by (2.1) by the following formula

$$E(t) = \frac{l-1}{l} ||u'||_l^l + \frac{1}{p} ||\nabla_x u||_p^p.$$

We first state two well known lemmas, and then state and prove a lemma that will be needed later.

**Lemma 2.1** (Sobolev-Poincaré inequality). Let q be a number with  $2 \le q < +\infty$  (n = 1, 2, ..., p) or  $2 \le q \le \frac{np}{(n-p)}$   $(n \ge p+1)$ , then there is a constant  $c_* = c(\Omega, q)$  such that

$$||u||_q \le c_* ||\nabla u||_p$$
 for  $u \in W_0^{1,p}(\Omega)$ .

**Lemma 2.2** ([6]). Let  $E: \mathbb{R}_+ \to \mathbb{R}_+$  be a non-increasing function and assume that there are two constants  $q \geq 0$  and A > 0 such that

$$\int_{S}^{+\infty} E^{q+1}(t) dt \le AE(S), \quad 0 \le S < +\infty,$$

ENERGY DECAY 3

then we have

$$E(t) \le cE(0)(1+t)^{\frac{-1}{q}} \ \forall t \ge 0, \quad \text{if } q > 0$$

and

$$E(t) \le cE(0)e^{-\omega t} \ \forall t \ge 0, \quad \text{if } q = 0,$$

where c and  $\omega$  are positive constants independent of the initial energy E(0).

**Lemma 2.3** ([7]). Let  $E: \mathbb{R}_+ \to \mathbb{R}_+$  be a non increasing function and  $\phi: \mathbb{R}_+ \to \mathbb{R}_+$  an increasing  $C^2$  function such that

$$\phi(0) = 0$$
 and  $\phi(t) \to +\infty$  as  $t \to +\infty$ .

Assume that there exist q > 0 and A > 0 such that

$$\int_{S}^{+\infty} E(t)^{q+1}(t)\phi'(t) dt \le AE(S), \quad 0 \le S < +\infty,$$

then we have

$$E(t) \le cE(0)(1+\phi(t))^{\frac{-1}{q}} \ \forall t \ge 0, \quad \text{if } q > 0$$

and

$$E(t) \le cE(0)e^{-\omega\phi(t)} \ \forall t \ge 0, \quad \text{if } q = 0,$$

where c and  $\omega$  are positive constants independent of the initial energy E(0).

*Proof of Lemma 2.3.* Let  $f: \mathbb{R}_+ \to \mathbb{R}_+$  be defined by  $f(x) := E(\phi^{-1}(x))$ . f is non-increasing, f(0) = E(0) and if we set  $x := \phi(t)$  we obtain

$$\int_{\phi(S)}^{\phi(T)} f(x)^{q+1} dx = \int_{\phi(S)}^{\phi(T)} E(\phi^{-1}(x))^{q+1} dx$$

$$= \int_{S}^{T} E(t)^{q+1} \phi'(t) dt$$

$$\leq AE(S) = Af(\phi(S)) \quad 0 \leq S < T < +\infty.$$

Setting  $s := \phi(S)$  and letting  $T \to +\infty$ , we deduce that

$$\int_{s}^{+\infty} f(x)^{q+1} dx \le Af(s) \quad 0 \le s < +\infty.$$

By Lemma 2.2, we can deduce the desired results.

Our main result is the following

**Theorem 2.4.** Let  $(u_0, u_1) \in W_0^{1,p} \times L^l(\Omega)$  and suppose that (H1) and (H2) hold. Then the solution u(x,t) of the problem (P) satisfies

(1) If l > m + 1, we have

$$E(t) \le C(E(0)) \exp\left(1 - \omega \int_0^t \sigma(\tau) d\tau\right) \quad \forall t > 0.$$

(2) *If* l < m + 1, we have

$$E(t) \le \left(\frac{C(E(0))}{\int_0^t \sigma(\tau) d\tau}\right)^{\frac{p}{(mp-m-1)}} \quad \forall t > 0.$$

## **Examples**

1) If 
$$\sigma(t)=\frac{1}{t^{\theta}}$$
  $(0\leq\theta\leq1)$ , by applying Theorem 2.4 we obtain 
$$E(t)\leq C(E(0))e^{1-\omega t^{1-\theta}} \quad \text{if } \theta\in[0,1[,\ l\geq m+1,\\ E(t)\leq C(E(0))t^{-\frac{(1-\theta)p}{mp-m-1}} \quad \text{if } 0\leq\theta<1,\ l< m+1$$

and

$$E(t) \le C(E(0))(\ln t)^{-\frac{p}{(mp-m-1)}}$$
 if  $\theta = 1, l < m+1$ .

2) If  $\sigma(t) = \frac{1}{t^{\theta} \ln t \ln_2 t \dots \ln_k t}$ , where k is a positive integer and

$$\begin{cases} \ln_1(t) = \ln(t) \\ \ln_{k+1}(t) = \ln(\ln_k(t)), \end{cases}$$

by applying Theorem 2.4, we obtain

$$E(t) \le C(E(0))(\ln_{k+1} t)^{-\frac{p}{(mp-m-1)}} \quad \text{if } \theta = 1, \ l < m+1,$$

$$E(t) \le C(E(0))t^{-\frac{(1-\theta)p}{mp-m-1}} \left(\ln t \ln_2 t \dots \ln_k t\right)^{\frac{p}{mp-m-1}} \quad \text{if } 0 \le \theta < 1, \ l < m+1.$$

3) If 
$$\sigma(t) = \frac{1}{t^{\theta}(\ln t)^{\gamma}}$$
, by applying Theorem 2.4, we obtain

$$E(t) \leq C(E(0))t^{-\frac{(1-\theta)p}{mp-m-1}} (\ln t)^{\frac{\gamma p}{mp-m-1}} \quad \text{if } 0 \leq \theta < 1, \ l < m+1,$$

$$E(t) \leq C(E(0))(\ln t)^{-\frac{(1-\gamma)p}{mp-m-1}} \quad \text{if } \theta = 1, 0 \leq \gamma < 1, \ l < m+1,$$

$$E(t) \leq C(E(0))(\ln_2 t)^{-\frac{p}{mp-m-1}} \quad \text{if } \theta = 1, \gamma = 1, \ l < m+1.$$

### **Proof of Theorem 2.4.**

First we have the following energy identity to the problem (P)

**Lemma 2.5** (Energy identity). Let u(t,x) be a local solution to the problem (P) on  $[0,\infty)$  as in Theorem 2.4. Then we have

$$E(t) + \int_{\Omega} \int_{0}^{t} \sigma(s)u'(s)g(u'(s)) ds dx = E(0)$$

for all  $t \in [0, \infty)$ .

Proof of the energy decay. From now on, we denote by c various positive constants which may be different at different occurrences. We multiply the first equation of (P) by  $E^q \phi' u$ , where  $\phi$  is a function satisfying all the hypotheses of Lemma 2.3 to obtain

$$0 = \int_{S}^{T} E^{q} \phi' \int_{\Omega} u((|u'|^{l-2}u')_{t} - \Delta_{p}u + \sigma(t)g(u')) dx dt$$

$$= \left[ E^{q} \phi' \int_{\Omega} uu'|u'|^{l-2} dx \right]_{S}^{T} - \int_{S}^{T} (qE'E^{q-1}\phi' + E^{q}\phi'') \int_{\Omega} uu'|u'|^{l-2} dx dt$$

$$- \frac{3l-2}{l} \int_{S}^{T} E^{q} \phi' \int_{\Omega} |u'|^{2} dx dt + 2 \int_{S}^{T} E^{q} \phi' \int_{\Omega} \left( \frac{l-1}{l} u'^{2} + \frac{1}{p} |\nabla u|^{p} \right) dx dt$$

$$+ \int_{S}^{T} E^{q} \phi' \int_{\Omega} \sigma(t) ug(u') dx dt + \left( 1 - \frac{2}{p} \right) \int_{S}^{T} E^{q} \phi' ||\nabla u||_{p}^{p} dx dt.$$

ENERGY DECAY 5

We deduce that

$$(2.5) \quad 2\int_{S}^{T} E^{q+1}\phi' dt \leq -\left[E^{q}\phi' \int_{\Omega} uu'|u'|^{l-2} dx\right]_{S}^{T} \\ + \int_{S}^{T} (qE'E^{q-1}\phi' + E^{q}\phi'') \int_{\Omega} uu'|u'|^{l-2} dxdt \\ + \frac{3l-2}{l} \int_{S}^{T} E^{q}\phi' \int_{\Omega} |u'|^{l} dxdt - \int_{S}^{T} E^{q}\phi' \int_{\Omega} \sigma(t)ug(u') dxdt.$$

Since E is nonincreasing,  $\phi'$  is a bounded nonnegative function on  $\mathbb{R}_+$  (and we denote by  $\mu$  its maximum), using the Hölder inequality, we have

$$\left| E(t)^{q} \phi' \int_{\Omega} u u' |u'|^{l-2} dx \right| \leq c\mu E(S)^{q + \frac{l-1}{l} + \frac{1}{p}} \forall t \geq S.$$

$$\int_{S}^{T} (qE'E^{q-1}\phi' + E^{q}\phi'') \int_{\Omega} u u' |u'|^{l-2} dx dt$$

$$\leq c\mu \int_{S}^{T} -E'(t)E(t)^{q - \frac{1}{l} + \frac{1}{p}} dt + c \int_{S}^{T} E(t)^{q + \frac{l-1}{l} + \frac{1}{p}} (-\phi''(t)) dt$$

$$\leq c\mu E(S)^{q + \frac{l-1}{l} + \frac{1}{p}}.$$

Using these estimates we conclude from the above inequality that

$$(2.6) 2\int_{S}^{T} E(t)^{1+q} \phi'(t) dt$$

$$\leq cE(S)^{q+\frac{l-1}{l}+\frac{1}{p}} + \frac{3l-2}{l} \int_{S}^{T} E^{q} \phi' \int_{\Omega} |u'|^{l} dx dt - \int_{S}^{T} E^{q} \phi' \int_{\Omega} \sigma(t) ug(u') dx dt$$

$$\leq cE(S)^{q+\frac{l-1}{l}+\frac{1}{p}} + \frac{3l-2}{l} \int_{S}^{T} E^{q} \phi' \int_{\Omega} |u'|^{l} dx dt$$

$$- \int_{S}^{T} E^{q} \phi' \int_{|u'| \leq 1} \sigma(t) ug(u') dx dt - \int_{S}^{T} E^{q} \phi' \int_{|u'| \geq 1} \sigma(t) ug(u') dx dt.$$

Define

$$\phi(t) = \int_0^t \sigma(s) \, ds.$$

It is clear that  $\phi$  is a non decreasing function of class  $C^2$  on  $\mathbb{R}_+$ . The hypothesis (2.2) ensures that

(2.7) 
$$\phi(t) \to +\infty \text{ as } t \to +\infty.$$

Now, we estimate the terms of the right-hand side of (2.6) in order to apply the results of Lemma 2.3:

Using the Hölder inequality, we get for l < m + 1

$$\begin{split} &\int_{S}^{T} E^{q} \phi' \int_{\Omega} |u'|^{l} dx dt \\ &\leq C \int_{S}^{T} E^{q} \phi' \int_{\Omega} \frac{1}{\sigma(t)} u' \rho(t, u') dx dt + C' \int_{S}^{T} E^{q} \phi' \int_{\Omega} \left( \frac{1}{\sigma(t)} u' \rho(t, u') \right)^{\frac{l}{(m+1)}} dx dt \end{split}$$

$$\leq C \int_{S}^{T} E^{q} \frac{\phi'}{\sigma(t)} (-E') dt + C'(\Omega) \int_{S}^{T} E^{q} \frac{\phi'}{\sigma^{\frac{l}{m+1}}(t)} (-E')^{\frac{l}{m+1}} dt 
\leq C E^{q+1}(S) + C'(\Omega) \int_{S}^{T} E^{q} \phi'^{\frac{m+1-l}{m+1}} \left(\frac{\phi'}{\sigma(t)}\right)^{\frac{l}{m+1}} (-E')^{\frac{l}{m+1}} dt.$$

Now, fix an arbitrarily small  $\varepsilon>0$  (to be chosen later). By applying Young's inequality, we obtain

(2.8) 
$$\int_{S}^{T} E^{q} \phi' \int_{\Omega} |u'|^{l} dx dt$$

$$\leq C E^{q+1}(S) + C'(\Omega) \frac{m+-l}{m+1} \varepsilon^{\frac{(m+1)}{(m+1-l)}} \int_{S}^{T} E^{q \frac{m+1}{m+1-l}} \phi' dt$$

$$+ C'(\Omega) \frac{l}{m+1} \frac{1}{\varepsilon^{\frac{(m+1)}{l}}} E(S).$$

If  $l \ge m + 1$ , we easily obtain from (2.3) and (2.4)

(2.9) 
$$\int_{S}^{T} E^{q} \phi' \int_{\Omega} |u'|^{l} dx dt \leq C E^{q+1}(S).$$

Next, we estimate the third term of the right-hand of (2.6). We get for l < m + 1

(2.10) 
$$\int_{S}^{T} E^{q} \phi' \int_{|u'| \leq 1} \sigma(t) u g(u') \, dx dt$$

$$\leq \varepsilon_{1} \int_{S}^{T} E^{q} \phi' \int_{|u'| \leq 1} \|u\|_{p}^{p} \, dt + C(\varepsilon_{1}) \int_{S}^{T} E^{q} \phi' \int_{|u'| \leq 1} (\sigma g(u'))^{\frac{p}{p-1}} \, dx$$

$$\leq c \varepsilon_{1} \int_{S}^{T} E^{q+1} \phi' \, dt + C(\varepsilon_{1}) \int_{S}^{T} E^{q} \phi' \int_{|u'| < 1} (\sigma g(u'))^{\frac{p}{p-1}} \, dx.$$

We now estimate the last term of the above inequality to get

(2.11) 
$$\int_{S}^{T} E^{q} \phi' \int_{|u'| \leq 1} (\sigma g(u'))^{\frac{p}{p-1}} dx dt$$

$$\leq \int_{S}^{T} E^{q} \phi' \int_{|u'| \leq 1} (u'g(u'))^{\frac{p}{(m+1)(p-1)}} dx dt$$

$$\leq \int_{S}^{T} E^{q} \phi' \frac{1}{\sigma^{\frac{p}{(m+1)(p-1)}}} \int_{|u'| \leq 1} (\sigma u'g(u'))^{\frac{p}{(m+1)(p-1)}} dx dt$$

$$\leq C(\Omega) \int_{S}^{T} E^{q} \phi' \frac{1}{\sigma^{\frac{p}{(m+1)(p-1)}}} (-E')^{\frac{p}{(m+1)(p-1)}} dt.$$

Set  $\varepsilon_2 > 0$ ; due to Young's inequality, we obtain

$$(2.12) \int_{S}^{T} E^{q} \phi' \int_{|u'| \leq 1} (\sigma g(u'))^{\frac{p}{p-1}} dx dt$$

$$\leq C(\Omega) \frac{(m+1)(p-1) - p}{(m+1)(p-1)} \varepsilon_{2}^{\frac{(m+1)(p-1)}{(m+1)(p-1) - p}} \int_{S}^{T} E^{q \frac{(m+1)(p-1)}{(m+1)(p-1) - p}} \phi' dt$$

$$+ \frac{C(\Omega) p}{(m+1)(p-1)} \frac{1}{\varepsilon_{2}^{\frac{(m+1)(p-1)}{p}}} E(S),$$

ENERGY DECAY 7

we chose q such that

$$q\frac{(m+1)(p-1)}{(m+1)(p-1)-p} = q+1.$$

thus we find  $q=\frac{mp-m-1}{p}$  and thus  $q\frac{m+1}{m+1-l}=q+1+\alpha$  with  $\alpha=\frac{(m+1)(p\ l-p-l)}{p(m+1-l)}$ . Using the Hölder inequality, the Sobolev imbedding and the condition (2.4), we obtain

$$\int_{S}^{T} E^{q} \phi' \int_{|u'| \ge 1} \sigma(t) u g(u') \, dx dt 
\le \int_{S}^{T} E^{q} \phi' \sigma(t) \left( \int_{\Omega} |u|^{r+1} \, dx \right)^{\frac{1}{(r+1)}} \left( \int_{|u'| > 1} |g(u')|^{\frac{r+1}{r}} \, dx \right)^{\frac{r}{r+1}} \, dt 
\le c \int_{S}^{T} E^{q+\frac{1}{p}} \phi' \sigma^{\frac{1}{(r+1)}}(t) \left( \int_{|u'| > 1} \sigma u' g(u') \, dx \right)^{\frac{r}{r+1}} \, dt 
\le c \int_{S}^{T} E^{q+\frac{1}{p}} \phi' \sigma^{\frac{1}{(r+1)}}(t) (-E')^{\frac{r}{r+1}} \, dt.$$

Applying Young's inequality, we obtain

(2.13) 
$$\int_{S}^{T} E^{q} \phi' \int_{|u'| \ge 1} \sigma(t) u g(u') \, dx dt$$

$$\leq \varepsilon_{3} \int_{S}^{T} (E^{q + \frac{1}{p}} \phi' \sigma^{\frac{1}{(r+1)}}(t))^{r+1} \, dt + c(\varepsilon_{3}) \int_{S}^{T} (-E') \, dt$$

$$\leq \varepsilon_{3} \mu^{r+1} E^{\frac{(p-1)(mr-1)}{p}}(0) \int_{S}^{T} E^{q+1} \phi' \, dt + c(\varepsilon_{3}) E(S).$$

If  $l \ge m+1$ , the last inequality is also valid in the domain  $\{|u'| < 1\}$  and with m instead of r. Choosing  $\varepsilon$ ,  $\varepsilon_1$ ,  $\varepsilon_2$  and  $\varepsilon_3$  small enough, we deduce from (2.6), (2.8), (2.10), (2.12) and (2.13) for l < m + 1

$$\int_{S}^{T} E(t)^{1+q} \phi'(t) dt \le CE(S)^{q+1} + C'E(S)^{q+\frac{l-1}{l}+\frac{1}{p}} + C''E(S) + C'''E(S) + C'''E(S)^{\frac{(p-l-p-l)(m+1)}{p}} E(S) + C''''E(S)^{\frac{(m-r-1)(p-1)}{p}} E(S),$$

where C, C', C''', C'''', are different positive constants independent of E(0).

Choosing  $\varepsilon_3$  small enough, we deduce from (2.6), (2.9) and (2.13) for  $l \geq m+1$ 

$$\int_{S}^{T} E(t)^{1+q} \phi'(t) dt \le C E(S)^{q+1} + C' E(S)^{q+\frac{l-1}{l} + \frac{1}{p}} + C'' E(0)^{\frac{(m^2-1)(p-1)}{p m}} E(S),$$

where C, C', C'' are different positive constants independent of E(0), we may thus complete the proof by applying Lemma 2.3.

**Remark 2.6.** We obtain the same results for the following problem

$$\left\{ \begin{array}{l} (|u'|^{l-2}u')' - e^{-\Phi(x)}div(e^{\Phi(x)}|\nabla_x u|^{p-2}\nabla_x u) + \sigma(t)g(u') = 0 \text{ in } \Omega \times [0,+\infty[,\\ u=0 \text{ on } \partial\Omega \times [0,+\infty[,\\ u(x,0)=u_0(x),\ u'(x,0)=u_1(x) \text{ in } \Omega, \end{array} \right.$$

where  $\Phi$  is a positive function such that  $\Phi \in L^{\infty}(\Omega)$ , in this case  $(u_0, u_1) \in W_{0,\Phi}^{1,p} \times L_{\Phi}^l$ , where

$$W_{0,\Phi}^{1,p}(\Omega) = \left\{ u \in W_0^{1,p}(\Omega), \int_{\Omega} e^{\Phi(x)} |\nabla_x u|^p \, dx < \infty \right\},$$
  
$$L_{\Phi}^l(\Omega) = \left\{ u \in L^l(\Omega), \int_{\Omega} e^{\Phi(x)} |u|^l \, dx < \infty \right\}.$$

Thus the energy associated to the solution is given by the following formula

$$E(t) = \frac{l-1}{l} \|e^{\Phi(x)/l} u'\|_{l}^{l} + \frac{1}{p} \|e^{\Phi(x)/p} \nabla_{x} u\|_{p}^{p}.$$

#### REFERENCES

- [1] YAO-JUN YE, On the decay of solutions for some nonlinear dissipative hyperbolic equations, *Acta Math. Appl. Sin. Engl. Ser.*, **20**(1) (2004), 93–100.
- [2] A. BENAISSA AND S. MOKEDDEM, Global existence and energy decay of solutions to the Cauchy problem for a wave equation with a weakly nonlinear dissipation, *Abstr. Appl. Anal.*, **11** (2004), 935–955.
- [3] Y. EBIHARA, M. NAKAO AND T. NAMBU, On the existence of global classical solution of initial boundary value problem for  $u'' \Delta u u^3 = f$ , Pacific J. of Math., **60** (1975), 63–70.
- [4] A. HARAUX, Two remarks on dissipative hyperbolic problems, in: *Research Notes in Mathematics*, Pitman, 1985, p. 161–179.
- [5] R. IKEHATA AND T. SUZUKI, Stable and unstable sets for evolution equations of parabolic and hyperbolic type, *Hiroshima Math. J.*, **26** (1996), 475–491.
- [6] V. KOMORNIK, Exact Controllability and Stabilization. The Multiplier Method, Masson-John Wiley, Paris, 1994.
- [7] P. MARTINEZ, A new method to decay rate estimates for dissipative systems, *ESAIM Control Optim. Calc. Var.*, **4** (1999), 419–444.
- [8] M. NAKAO, A difference inequality and its applications to nonlinear evolution equations, *J. Math. Soc. Japan*, **30** (1978), 747–762.
- [9] M. NAKAO, On solutions of the wave equations with a sublinear dissipative term, *J. Diff. Equat.*, **69** (1987), 204–215.