J Journal of Inequalities in Pure and
I > <M Applied Mathematics

0 http://jipam.vu.edu.au/

\olume 7, Issue 1, Article 15, 2006

ENERGY DECAY OF SOLUTIONS OF A WAVE EQUATION OF p-LAPLACIAN
TYPE WITH A WEAKLY NONLINEAR DISSIPATION

ABBES BENAISSA AND SALIMA MIMOUNI

UNIVERSITE DJILLALI LIABES
FACULTE DES SCIENCES
DEEPARTEMENT DEMATHEMATIQUES
B. P. 89, $D1 BEL ABBES 22000, ALGERIA.

benaissa abbes@yahoo.com

bbsalima@yahoo.ir

Received 03 November, 2005; accepted 15 November, 2005
Communicated by C. Bandle

ABSTRACT. In this paper we study decay properties of the solutions to the wave equation of
p—Laplacian type with a weak nonlinear dissipative.

Key words and phrasesiVave equation op—Laplacian type, Decay rate.

2000Mathematics Subject Classificat 085B40, 35L70.

1. INTRODUCTION

We consider the initial boundary problem for the nonlinear wave equatign-baplacian
type with a weak nonlinear dissipation of the type

(J')=2u") — Apu+o(t)g(w') = 0in Q x [0, +o0],
(P) u=00nods2 x [0, 400,
u(z,0) = ug(x), u'(x,0)=ui(x)in Q.

whereA u = div(|V, u[P~2V,u), p, | > 2, g : R — Ris a continuous non-decreasing function
ando is a positive function.

Whenp = 2,1 = 2 ando = 1, for the casgy(x) = dz (§ > 0), lkehata and Suzuki [5]
investigated the dynamics, showing that for sufficiently small initial datau, ), the trajectory
(u(t),u'(t)) tends to(0,0) in H}(Q) x L*(Q) ast — +oo. Wheng(z) = §lz|™ 'z (m > 1),
Nakao [8] investigated the decay property of the prob{ém In [8] the author has proved the
existence of global solutions to the problg).

For the problem(P) with o = 1,1 = 2, wheng(z) = 6|z|™ 'z (m > 1), Yao [1] proved
that the energy decay rate i§¢) < (1 + t)‘(mp—ipm—n fort > 0 by using a general method
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2 ABBES BENAISSA AND SALIMA MIMOUNI

introduced by Nakao [8]. Unfortunately, this method does not seem to be applicable in the case
of more general functions and is more complicated.

Our purpose in this paper is to give energy decay estimates of the solutions to the problem
for a weak nonlinear dissipation. We extend the results obtained by Yao and prove in some
cases an exponential decay wher 2 and the dissipative term is not necessarily superlinear
near the origin.

We use a new method recently introduced by Martinéz [7] (see lalso [2]) to study the decay
rate of solutions to the wave equatioh— A,u + g(u’) = 0in Q x R*, where(2 is a bounded
domain ofR"™. This method is based on a new integral inequality that generalizes a result of
Haraux [4].

Throughout this paper the functions considered are all real valued. We omit the space variable
x of u(t, x), u(t, z) and simply denote(t, x), w(t, x) by u(t), v'(t), respectively, when no
confusion arises. Ldtbe a number witl2 < I < co. We denote byj - ||; the L! norm over(.

In particular, theL? norm is denoted by} - ||,. (-) denotes the usudl® inner product. We use
familiar function space#/, ”.

2. PRELIMINARIES AND MAIN RESULTS
First assume that the solution exists in the class
(2.1) u e C(R, WP (Q) N CYRy, LHQ)).
A(z), o(t) andg satisfy the following hypotheses:
(H1) o : R, — R, is a non increasing function of claé8 onR, satisfying

+00
(2.2) /0 o(7)dr = +00.

(H2) Considerg : R — R a non increasing® function such that
g(v)v >0 forallv # 0.
and suppose that there exist> 0; i = 1,2, 3,4 such that

(2.3) ao]™ < g()| < eafv]m if o] <1,

(2.4) cslvl® < g(v)| < eqfv|” forall jo| > 1,

wherem > 1,1 —-1<s<r< n(p;_l})fp_
We define the energy associated to the solution givef by (2.1) by the following formula

[—1 1
E(t) = TH“'H% + ]—QHV@-UH?

We first state two well known lemmas, and then state and prove a lemma that will be needed
later.

Lemma 2.1 (Sobolev-Poincaré inequality) et ¢ be a number witi2 < 400 (n =

<q
1,2,...,p)or2<gq< (n’f’p) (n > p+ 1), then there is a constant = ¢(€2, ¢) such that

lully < edIVull, for ue Wy™(Q).

Lemma 2.2([6]). Let F : R, — R, be a non-increasing function and assume that there are
two constantg > 0 and A > 0 such that

“+oo
/ ET () dt < AE(S), 0<S < +oo,
S
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then we have
E(t) <cE(0)(1+1)7 ¥t >0, if ¢>0
and
E(t) <cE0)e ™ Vt>0, if ¢=0,
wherec andw are positive constants independent of the initial endrgy).

Lemma 2.3([7]). Let £ : R, — R, be a non increasing function ang : R, — R, an
increasingC? function such that

»(0)=0 and ¢(t) — +oo as t— +oc.
Assume that there exigt> 0 and A > 0 such that
“+oo
/ E@) ™ (0)¢/(£) dt < AE(S), 0< 5 < 400,
S
then we have
E(t) <cEO)(1+6(t)= Vt>0, if ¢>0
and
E(t) < cE(0)e™*® vt >0, if ¢=0,
wherec andw are positive constants independent of the initial endrgy).
Proof of LemmaZ]3Let f : R, — R, be defined byf(z) := E(¢~'(z)). f is non-increasing,
f(0) = E(0) and if we setr := ¢(t) we obtain

/cb(T) f(x)q+1 dr — /¢>(T) . ((b*l(x))q—H di
¢

(S) »(S)

T
_ / B /(1) dt
S
< AE(S)=Af(¢(S)) 0<S<T < +o0.
Settings := ¢(.5) and lettingl” — +o0, we deduce that

+oo
()" de < Af(s) 0<s< +oo.

S

By Lemmg 2.2, we can deduce the desired results. O
Our main result is the following

Theorem 2.4. Let (ug,uy) € W, x L) and suppose thaiH1) and (H2) hold. Then the
solutionu(z, t) of the problen(P) satisfies

Q) If I > m + 1, we have

E(t) < C(E(0)) exp (1 y /O o) dT) —

(2) Ifl <m+ 1, we have
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Examples
1) Ifo(t) = tl@ (0 <6 <1), by applying Theore.4 we obtain

E(t) < C(E0)e"" if6e(0,1],I>m+1,

E(t) < C(EQO)t 7T f0<0<1,l<m+]1

and

E(t) < C(E(0))(Int) G ifg=1,1<m+1.
1

tIntlns t...Ingt

{ In; (t) = In(¢)

Ing,1(t) = In(Ing(2)),
by applying Theorerh 2|4, we obtain

E(t) < C(E(0))(Injy t) D if0=1,1<m+1,

2) If o(t) = , wherek is a positive integer and

E(t) < C(E(0)t =T (Intlngt ... Ing )i f0<@<1,1<m+l.

1 . .
3) Ifo(t) = m by applying Theore.4, we obtain

E(t) < C(E(0)t w1 (Int)msT  f0<f<1,l<m+l,
E(t) < C(E0)(Int) mT  if0=1,0<y <1, [ <m+]1,
E(t) < C(E(0))(Ingt) 7T if =1,y =1, 1 <m+ 1.

Proof of Theorem[2.4.
First we have the following energy identity to the problé¢R)

Lemma 2.5(Energy identity) Letu(t, z) be a local solution to the probleifP)) on [0, o) as
in Theoreni 2}4. Then we have

// /(s)) ds dz = E(0)

Proof of the energy decayrom now on, we denote hyvarious positive constants which may
be different at different occurrences. We multiply the first equatioffffby E7¢/u, where¢
is a function satisfying all the hypotheses of Lenjma 2.3 to obtain

0= / o / (]2, = Agu+ o(t)g(u')) da dt

forall ¢ € [0, c0).

T
= {qub'/uu'|u’|l_2 dx} —/ (qE’Eq_1¢’+Eq¢")/uu'|u’|l_2 dxdt
Q s Js

Q

1-2 (7 r -1 1
_S=2 quﬁ’/ |u'|? ddt + 2/ quﬁ’/ (—u’2 + —\Vulp) dxdt
l s Q S Q l p
T o\ [T
+/ qub'/ o(t)ug(u') dzdt + <1 — —) / E1¢||Vullb dvdt.
S Q b/ Js
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We deduce that
T

T
(2.5) 2/ Bt e dt < — [Eq¢//uu’|u'|l_2 dx]
S Q

s
T

—|—/ (qE’Eq1¢’+Eq¢”)/uu’\u’\12 dxdt
s Q

3l —2 g / il g / /
+— E1¢" | || dxdt — E1¢" | o(t)ug(u') dzdt.
[ S Q S Q
SinceF is nonincreasingy’ is a bounded nonnegative function Bn (and we denote by its
maximum), using the Holder inequality, we have

’E(t)q(é// wu[u' |72 dx| < c,uE(S)qul_Tl’L% vVt > S.
Q

T
/ (qE/Eq_lqﬁ/—i—quzﬁ”)/uu/|u/|l_2 dxdt
s Q
T

T
<cp /S —E'()E®) T dt + ¢ /S E()" Tt (=g (1)) dt

< C/LE(S)q+FTl+%.

Using these estimates we conclude from the above inequality that

2.6) 2 /S " B ) dt

. 1—2 T T
ch(S)q+lT+%+3— qub’/ |u’\ldxdt—/ qub’/a(t)ug(u') dxdt
L Js Q s 0
o T
< cB(§) T £ 2 [ gy / /| dadt
L Js o
T T
—/ E1¢’ o(t)ug(u') dxdt—/ Ei¢' o(t)ug(u') dzdt.
S lu/|<1 S Ju/|>1

Define

It is clear that is a non decreasing function of class on R, . The hypothesiq (2.2) ensures
that

(2.7) o(t) — 400 ast — +oo.

Now, we estimate the terms of the right-hand sid¢ of| (2.6) in order to apply the results of Lemma
2.3:
Using the Hdolder inequality, we get for< m + 1

T
/ quzﬁ’/ || dadt
s Q0
C/TE%/ L oty dedi+ O [ B Lo )(mfmd dt
< " —=u p(t,u) dx dt + '/ ’/ (—u’p ,u’) x
s ao(t) S o \o(t)
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T / T /
go/ Jouis (—E’)dt+0’(Q)/ pi_?
S

o(t) s ome(t) (=B di

1 / T m"'l L (;5/ #H -
< CET™(S)+C (Q)/ Ei¢ m (—E")m+1 dt.
s (1)
Now, fix an arbitrarily smalk > 0 (to be chosen later). By applying Young’s inequality, we
obtain

T
(2.8) / Ei¢ / | dadt
S Q

< CE™H(S) +C'(Q)

m+ —l ity

T
gm0 / Etwi g dt
S

m—+1
, l 1
+C (Q)m i G ——FE(9).
If I > m + 1, we easily obtain fron] (2]3) anf (2.4)
T
(2.9) / Bl / [/ dedt < CEITY(S).
S Q
Next, we estimate the third term of the right-hand[of|(2.6). We get form + 1
T
(2.10) / E1y o(t)yug(u') dzdt
S lu/|<1
T T )
<o [ m0 [ ulpdesce) [ B9 [ (og) s
S lw/|<1 S lu'|<1
T T .
< cal/ BTt dt + C'(el)/ E1¢’ (og(u'))r—T dz.
S S |u/|<1
We now estimate the last term of the above inequality to get
T
(2.11) / E¢ (og(u))7 T dx dt
s lw/|<1
T p
< / E1¢’ (v g(u)) 061 dx dt
S Ju'|<1
T 1 p
< [ B [ (ougu) T dede
S o m+De-1 Jjw|<1
T 1 p
< C(Q)/ El¢) ————(—E')+)e-1 (t.
S o (m+1)(p—1)
Sete, > 0; due to Young’s inequality, we obtain
T p
(2.12) / 1o [ (og)) dadt
S Ju’|<1
(m+Llp—1) —p oS /T i1
< C(Q € p=1)-p Elm+n-D-5 ¢/ dt
O e-n . ¢
Q 1
c)p E(9),

(n - Dip— 1) s
€9
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we chosey such that
,_m e —1)
(m+1)(p—1)—p
thus we findg = ™2="= and thus; "% = ¢ + 1 + a with o = (m+1)(p 1=p=1)

(m+1-1

Using the Holder inequality, the Sobolev imbedding and the conditioh (2.4), we obtain

=q+ 1

T
/ Ei¢’ o(t)ug(u') dzdt
S [u/|>1

T ﬁ r+1 T‘,?
S/ Ei¢'o(t) (/ || d:v) (/ lg(u')] d:v) dt
S Q |u/|>1

T ) ==t
< c/ B o™i (¢) (/ ou'g(u') dx) dt
S |u/|>1

T
< c/ Eq+5¢’0ﬁ(t)(—E')$ dt.
s

Applying Young's inequality, we obtain

T
(2.13) / E1¢’ o(t)ug(u') dzdt
s /| >1
T ) 1 T
§53/ (B9 ¢ ot (1)) dt+c(53)/ (—E')dt
s s
G=1)mr-1) r
< eq™E (0) / BTN dt + ¢(e3) E(S).
s

If > m + 1, the last inequality is also valid in the domdip/| < 1} and withm instead ofr.

Choosing, 1, €5 ande; small enough, we deduce from (R.6), (2.8), (2.10), (2.12) fand](2.13)
forl <m+1

T
/ E(t)1¢/(t) dt < CE(S)™! + C'B(S)™ T+ + C"B(S)
S

(p l—p—1)(m+1) (m r=1)(p—1)

L B0 T B(S) + O E0) e B(S),

whereC,C’, C”,C", C" are different positive constants independent¢f).
Choosing:; small enough, we deduce from (2.6), (2.9) gnd (2.13) form + 1

(m2-1)(p-1)

/ST E(t)"¢/(t) dt < CE(S)™' + C'E(S)™ ' T + C"E(0) v m E(S),
whereC, C’, C" are different positive constants independentigf), we may thus complete
the proof by applying Lemmja 2.3. O
Remark 2.6. We obtain the same results for the following problem

(|72 — e *@ div(e®@ |V ulP~2V,u) + o (t)g(u') = 0in Q x [0, +oo],
u=00n0dx x [0, +o0],
u(z,0) = ug(x), u'(x,0)=ui(x)inQ,
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where® is a positive function such thdt € L>(£2), in this cas€ug, u;) € W(}g x Lk, where

Wol,g(Q) = {U € Wy(Q), /Qecb(x)|vxu|p dr < oo} :

LL(Q) = {u € L), / e?@ ||l dr < oo} :
0

Thus the energy associated to the solution is given by the following formula
[—1

1
B(t) = ——[le*™/ [ + ];Heq’(x)/pVWHS
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