
Volume 10 (2009), Issue 3, Article 88, 14 pp.

UNIQUENESS OF ENTIRE OR MEROMORPHIC FUNCTIONS SHARING ONE
VALUE OR A FUNCTION WITH FINITE WEIGHT

HONG-YAN XU AND TING-BIN CAO

DEPARTMENT OFINFORMATICS AND ENGINEERING

JINGDEZHEN CERAMIC INSTITUTE (X IANGHU X IAOQU)
JINGDEZHEN, JIANGXI 333403, CHINA

xhyhhh@126.com

DEPARTMENT OFMATHEMATICS

NANCHANG UNIVERSITY

NANCHANG, JIANGXI 330031, CHINA

tbcao@ncu.edu.cn

Received 13 December, 2008; accepted 27 August, 2009
Communicated by S.S. Dragomir

ABSTRACT. The purpose of this paper is to deal with some uniqueness problems of entire func-
tions or meromorphic functions concerning differential polynomials that share one value or fixed-
points with finite weight. We obtain a number of theorems which generalize some results due to
M.L. Fang & X.H. Hua, X.Y. Zhang & W.C. Lin, X.Y. Zhang & J.F. Chen and W.C. Lin.
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1. I NTRODUCTION AND M AIN RESULTS

Let f be a non-constant meromorphic function in the whole complex plane. We shall use the
following standard notations of value distribution theory:

T (r, f), m(r, f), N(r, f), N(r, f), . . .

(see Hayman [6],Yang [13] and Yi and Yang [16]). We denote byS(r, f) any quantity satisfying

S(r, f) = o(T (r, f)),

asr → +∞, possibly outside of a set with finite measure. A meromorphic functiona is called
a small function with respect tof if T (r, a) = S(r, f). Let S(f) be the set of meromorphic
functions in the complex planeC which are small functions with respect tof . For somea ∈
C ∪∞, we define

Θ(a, f) = 1− lim
r→∞

N(r, a; f)

T (r, f)
.
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2 HONG-YAN XU AND TING-BIN CAO

Fora ∈ C ∪∞ andk a positive integer, we denote byN(r, a; f | = 1) the counting function
of simplea-points off , and denote byN(r, a; f | ≤ k) (N(r, a; f | ≥ k)) the counting functions
of thosea-points off whose multiplicities are not greater (less) thank where eacha-point is
counted according to its multiplicity (see [6]).N(r, a; f | ≤ k)(N(r, a; f | ≥ k)) are defined
similarly, where in counting thea-points off we ignore the multiplicities.

Set
Nk(r, a; f) = N(r, a; f) + N(r, a; f | ≥ 2) + · · ·+ N(r, a; f ≥ k).

We define

δk(a, f) = 1− lim
r→∞

Nk(r, a; f)

T (r, f)
.

Let f andg be two nonconstant meromorphic functions defined in the open complex planeC.
If for somea ∈ S(f)∩S(g) the roots off −a andg−a coincide in locations and multiplicities
we say thatf and g share the valuea CM (counting multiplicities) and if they coincide in
locations only we say thatf andg sharea IM (ignoring multiplicities).

In 1997, Yang and Hua [14] proved the following result.

Theorem A ([14]). Let f andg be two nonconstant entire functions,n ≥ 6 a positive integer.
If fnf ′ andgng′ share the value1 CM , then eitherf = c1e

cz andg = c2e
−cz, wherec, c1, and

c2 are constants satisfying(c1c2)
n+1c2 = 1 or f = tg for a constantt such thattn+1 = 1.

Using the same argument as in [14], Fang [3] proved the following result.

Theorem B ([3]). Let f andg be two nonconstant entire functions and letn, k be two positive
integers withn > 2k+4. If [fn](k) and[gn](k) share the value1 CM , then eitherf = c1e

cz, g =
c2e

−cz, wherec1, c2 andc are three constants satisfying(−1)k(c1c2)
n(nc)2k = 1, or f ≡ tg for

a constantt such thattn = 1.

Fang [5] obtained some unicity theorems corresponding to Theorem B.

Theorem C ([5]). Letf andg be two nonconstant entire functions, and letn, k be two positive
integers withn > 2k + 8. If [fn(f − 1)](k) and [gn(g − 1)](k) share 1CM , thenf ≡ g.

Recently, Zhang and Lin [17], Zhang, Chen and Lin [18] extended Theorem C and obtained
the following results.

Theorem D([17]). Letf andg be two nonconstant entire functions,n,m andk be three positive
integers withn > 2k+m+4, andλ, µ be constants such that|λ|+ |µ| 6= 0. If [fn(µfm +λ)](k)

and [gn(µgm + λ)](k) share 1CM , then
(i) whenλµ 6= 0, f ≡ g;

(ii) whenλµ = 0, either f ≡ tg, wheret is a constant satisfyingtn+m = 1, or f =
c1e

cz, g = c2e
−cz, wherec1, c2 andc are three constants satisfying

(−1)kλ2(c1c2)
n+m[(n + m)c]2k = 1 or (−1)kµ2(c1c2)

n+m[(n + m)c]2k = 1.

Theorem E ([18]). Letf andg be two nonconstant entire functions, and letn, m andk be three
positive integers withn ≥ 3m+2k +5, and letP (z) = amzm + am−1z

m−1 + · · ·+ a1z + a0 or
P (z) ≡ c0, wherea0 6= 0, a1, . . . , am−1, am 6= 0, c0 6= 0 are complex constants. If[fnP (f)](k)

and[gnP (g)](k) share 1CM , then
(i) whenP (z) = amzm+am−1z

m−1+· · ·+a1z+a0, eitherf ≡ tg for a constantt such that
td = 1, whered = (n + m, . . . , n + m− i, . . . , n), am−i 6= 0 for somei = 0, 1, . . . ,m,
or f andg satisfy the algebraic equationR(f, g) ≡ 0, where

R(ω1, ω2) = ωn
1 (amωm

1 + am−1ω
m−1
1 + · · ·+ a1ω1 + a0)

− ωn
2 (amωm

2 + am−1ω
m−1
2 + · · ·+ a1ω2 + a0);
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UNIQUENESS OFENTIRE OR MEROMORPHICFUNCTIONS 3

(ii) whenP (z) ≡ c0, eitherf = c1/ n
√

c0e
cz, g = c2/ n

√
c0e

−cz, wherec1, c2 andc are three
constants satisfying(−1)k(c1c2)

n(nc)2k = 1, or f ≡ tg for a constantt such that
tn = 1.

Regarding Theorems D and E, it is natural to ask the following question.

Problem 1.1. In Theorems D and E, can the nature of sharing 1CM be further relaxed?

For meromorphic functions, Yang and Hua [14] proved the following result corresponding to
Theorem A.

Theorem F ([14]). Letf andg be two nonconstant meromorphic functions,n ≥ 11 an integer,
and a ∈ C − {0}. If fnf ′ and gng′ share the valuea CM , then eitherf = dg for some
(n + 1)th root of unity d or g = c1e

cz and f = c2e
−cz, wherec, c1, and c2 are constants

satisfying(c1c2)
n+1c2 = −a2.

Lin and Yi [7] obtained some unicity theorems corresponding to Theorem F.

Theorem G([7]). Letf andg be two nonconstant meromorphic functions satisfyingΘ(∞, f) >
2

n+1
, n ≥ 12. If [fn(f − 1)]f ′ and[gn(g − 1)]g′ share 1CM , thenf ≡ g.

Lin and Yi [8] extended Theorem G by replacing the value 1 with the functionz and obtained
the following result.

Theorem H ([8]). Let f and g be two transcendental meromorphic functions,n ≥ 12 an
integer. Iffn(f − 1)f ′ andgn(g − 1)g′ sharez CM , then eitherf ≡ g or g = (n+2)(1−hn+1)

(n+1)(1−hn+2)

andf = (n+2)h(1−hn+1)
(n+1)(1−hn+2)

, whereh is a nonconstant meromorphic function.

Recently, Zhang, Chen and Lin [18] extended Theorems F and G and obtained the following
result.

Theorem I ([18]). Letf andg be two nonconstant meromorphic functions, and letn andm be
two positive integers withn > max{m + 10, 3m + 3}, and letP (z) = amzm + am−1z

m−1 +
· · · + a1z + a0, wherea0 6= 0, a1, . . . , am−1, am 6= 0 are complex constants. IffnP (f)f ′

and gnP (g)g′ share 1CM , then eitherf ≡ tg for a constantt such thattd = 1, where
d = (n + m + 1, . . . , n + m + 1− i, . . . , n + 1), am−i 6= 0 for somei = 0, 1, . . . ,m, or f and
g satisfy the algebraic equationR(f, g) ≡ 0, where

R(ω1, ω2) = ωn
1

(
amωm

1

n + m + 1
+

am−1ω
m−1
1

n + m
+ · · ·+ a0

n + 1

)
− ωn

2

(
amωm

2

n + m + 1
+

am−1ω
m−1
2

n + m
+ · · ·+ a0

n + 1

)
.

Regarding Theorem I, it is natural to ask the following questions.

Problem 1.2. Is it possible that the value 1 can be replaced by a functionz in Theorem I?

Problem 1.3. Is it possible to relax the nature of sharingz in Theorem I and if possible, how
far?

In 2001, Lahiri [9, 10] first employed the idea of weighted sharing of values which measures
how close a shared value is to being sharedIM or to being sharedCM . Recently, many
mathematicians (such as H. X. Yi, I. Lahiri, M. L. Fang, A. Banerjee, W. C. Lin, X. Yan) have
been interested in investigating meromorphic functions sharing values with finite weight in the
field of complex analysis.

We first introduced the notion of weighted sharing of values as follows.
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4 HONG-YAN XU AND TING-BIN CAO

Definition 1.1 ([9, 10]). Let k be a nonnegative integer or infinity. Fora ∈ C∪{∞}, we denote
by Ek(a; f) the set of alla-points where ana-point of multiplicity m is countedm times if
m ≤ k andk + 1 times if m > k. If Ek(a; f) = Ek(a; g), we say thatf, g share the valuea
with weightk.

We denote byEm)(a; f) the set of alla-points off with multiplicities not exceedingm, where
an a-point is counted according to its multiplicity. If for somea ∈ C ∪ {∞}, E∞)(a; f) =
E∞)(a; g), then we say thatf, g share the valuea CM .

The definition implies that iff, g share a valuea with weightk thenz0 is a zero off −a with
multiplicity m(≤ k) if and only if it is a zero ofg−a with multiplicity m(≤ k); andz0 is a zero
of f − a with multiplicity m(> k) if and only if it is a zero ofg − a with multiplicity n(> k),
wherem is not necessarily equal ton.

We write f, g share(a, k) to mean thatf, g share the valuea with weightk, clearly if f, g
share(a, k), thenf, g share(a, p) for all integersp (0 ≤ p ≤ k).Also, we note thatf, g share a
valuea IM or CM if and only if they share(a, 0) or (a,∞), respectively.

With the notion of weighted sharing of values, we investigate the solution of the above ques-
tion and obtain the following results.

Theorem 1.1. Let f and g be two nonconstant entire functions, and letn, m and k be three
positive integers withn ≥ 5m + 5k + 8. If [fnP (f)](k) and [gnP (g)](k) share(1, 0), then the
conclusion of Theorem E still holds.

Theorem 1.2. Let f and g be two nonconstant entire functions, and letn, m and k be three
positive integers withn > 9

2
m + 4k + 9

2
. If [fnP (f)](k) and [gnP (g)](k) share(1, 1), then the

conclusion of Theorem E still holds.

Theorem 1.3. Let f and g be two nonconstant entire functions, and letn, m and k be three
positive integers withn ≥ 3m + 3k + 5. If [fnP (f)](k) and [gnP (g)](k) share(1, 2), then the
conclusion of Theorem E still holds.

Remark 1. From Theorems 1.1 – 1.3, we obtain a positive answer to Question 1.1.

Theorem 1.4. Let f andg be two transcendental meromorphic functions, and letn andm be
two positive integers withn > m + 10, and letP (z) = amzm + am−1z

m−1 + · · · + a1z + a0,
wherea0 6= 0, a1, . . . , am−1, am 6= 0 are complex constants. IffnP (f)f ′ andgnP (g)g′ sharez
CM , then eitherf ≡ tg for a constantt such thattd = 1, whered = (n + m + 1, . . . , n + m +
1− i, . . . , n + 1), am−i 6= 0 for somei = 0, 1, . . . ,m, or f andg satisfy the algebraic equation
R(f, g) ≡ 0, where

R(ω1, ω2) = ωn
1

(
amωm

1

n + m + 1
+

am−1ω
m−1
1

n + m
+ · · ·+ a0

n + 1

)
− ωn

2

(
amωm

2

n + m + 1
+

am−1ω
m−1
2

n + m
+ · · ·+ a0

n + 1

)
.

Theorem 1.5. Let f andg be two transcendental meromorphic functions, and letn andm be
two positive integers withn > 4m + 22, and letP (z) = amzm + am−1z

m−1 + · · ·+ a1z + a0,
wherea0 6= 0, a1, . . . , am−1, am 6= 0 are complex constants. IffnP (f)f ′ andgnP (g)g′ sharez
IM , then the conclusion of Theorem 1.4 still holds.

Theorem 1.6. Let f and g be two transcendental meromorphic functions, letn, l and m be
three positive integers, and letP (z) = amzm + am−1z

m−1 + · · · + a1z + a0, wherea0 6=
0, a1, . . . , am−1, am 6= 0 are complex constants. IfEl)(z, f

nP (f)f ′) = El)(z, g
nP (g)g′),

(i) If l = 1 andn > 3m + 18, then the conclusion of Theorem 1.4 still holds.
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UNIQUENESS OFENTIRE OR MEROMORPHICFUNCTIONS 5

(ii) If l = 2 andn > 3
2
m + 12, then the conclusion of Theorem 1.4 still holds.

Remark 2. Theorem 1.4 is an improvement of Theorem H. Theorem 1.5 and 1.6 are comple-
ments to Theorem H.

Though the standard definitions and notations of value distribution theory are available in
[6, 13], we explain the ones which are used in the paper.

Definition 1.2 ([1, 16]). Whenf andg share1 IM , We denote byNL(r, 1; f) the counting
function of the1-points off whose multiplicities are greater than1-points ofg, where each zero
is counted only once; Similarly, we haveNL(r, 1; g). Let z0 be a zero off − 1 of multiplicity
p and a zero ofg − 1 of multiplicity q, we also denote byN11(r, 1; f) the counting function

of those1-points off wherep = q = 1; N
(2

E (r, 1; f) denotes the counting function of those
1-points off wherep = q ≥ 2, each point in these counting functions is counted only once. In

the same way, one can defineN11(r, 1; g), N
(2

E (r, 1; g).

Definition 1.3 ([9, 10]). Let f, g sharea value1 IM . We denote byN∗(r, 1; f, g) the reduced
counting function of those1-points off whose multiplicities differ from the multiplicities of
the corresponding1-points ofg. ClearlyN∗(r, 1; f, g) ≡ N∗(r, 1; g, f) andN∗(r, 1; f, g) =
NL(r, 1; f) + NL(r, 1; g).

2. SOME L EMMAS

For the proof of our results we need the following lemmas.

Lemma 2.1 ([15, p. 27, Theorem 1.12]). Let f be a nonconstant meromorphic function and
P (f) = a0 +a1f +a2f

2 + · · ·+anf
n, wherea0, a1, a2, . . . , an are constants andan 6= 0. Then

T (r, P (f)) = nT (r, f) + S(r, f).

Lemma 2.2 ([18]). Let f be a transcendental entire function, letn, k, m be positive integers
with n ≥ k+2, andP (z) = a0+a1z+a2z

2+ · · ·+amzm, wherea0, a1, a2, . . . , am are complex
constants. Then[fnP (f)](k) = 1 has infinitely many solutions.

Lemma 2.3([18]). Letf andg be two nonconstant entire functions, and letn, k be two positive
integers withn > k, and letP (z) = amzm + am−1z

m−1 + · · · + a1z + a0 be a nonzero
polynomial, wherea0, a1, . . . , am−1, am are complex constants. If[fnP (f)](k)[gnP (g)](k) ≡ 1,
thenP (z) is reduced to a nonzero monomial, that is,P (z) = aiz

i 6≡ 0 for somei = 0, 1, . . . ,m;
further,f = c1/ n+i

√
aie

cz, g = c2/ n+i
√

aie
−cz, wherec1, c2 and c are three constants satisfying

(−1)k(c1c2)
n[(n + 1)c)]2k = 1.

Let f be an entire function; we haveΘ(∞, f) = 1. Using the same argument as [12, Lemma
2.12], we can easily obtain the following lemma.

Lemma 2.4. Letf andg be two entire functions, and letk be a positive integer.Iff (k) andg(k)

share(1, l) (l = 0, 1, 2). Then
(i) If l = 0,

(2.1) Θ(0, f) + δk(0, f) + δk+1(0, f) + δk+1(0, g) + δk+2(0, f) + δk+2(0, g) > 5,

then eitherf (k)g(k) ≡ 1 or f ≡ g;
(ii) If l = 1,

(2.2)
1

2
(Θ(0, f) + δk(0, f) + δk+2(0, f)) + δk+1(0, f) + δk+1(0, g) + Θ(0, g) + δk(0, g) >

9

2
,

then eitherf (k)g(k) ≡ 1 or f ≡ g;
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6 HONG-YAN XU AND TING-BIN CAO

(iii) If l = 2,

(2.3) Θ(0, f) + δk(0, f) + δk+1(0, f)}+ δk+2(0, g) > 3,

then eitherf (k)g(k) ≡ 1 or f ≡ g.

Lemma 2.5. Let f andg be two transcendental meromorphic functions, letn andm be three
positive integers withn > 7, and letP (z) = amzm + am−1z

m−1 + · · · + a1z + a0, where
a0 6= 0, a1, . . . , am−1, am 6= 0 are complex constants. IffnP (f)f ′ andgnP (g)g′ sharez IM ,
thenS(r, f) = S(r, g).

Proof. Using the same arguments as in [8] and [18], we easily obtain Lemma 2.5. �

Lemma 2.6. Let f and g be two transcendental meromorphic functions, and letn and m be
three positive integers withn ≥ m + 3, F1 = fnP (f)f ′

z
and G1 = gnP (g)g′

z
, wheren(≥ 4) is

a positive integer. IfF1 ≡ G1, then eitherf ≡ tg for a constantt such thattd = 1, where
d = (n + m + 1, . . . , n + m + 1− i, . . . , n + 1), am−i 6= 0 for somei = 0, 1, . . . ,m, or f and
g satisfy the algebraic equationR(f, g) ≡ 0, whereR(ω1, ω2) is as stated in Theorem 1.4.

Proof. Using the same arguments as those in [11] and [18], we can easily get Lemma 2.6.�

Lemma 2.7. Letf andg be two transcendental meromorphic functions. Then

fnP (f)f ′gnP (g)g′ 6≡ z2,

wheren ≥ m + 4 is a positive integer.

Proof. Using the same argument as in [11] and [18], we easily obtain Lemma 2.7. �

Lemma 2.8([3]). Let f andg be two meromorphic functions. Iff andg share 1CM , one of
the following three cases holds:

(i) T (r, f) ≤ N2(r,∞, f) + N2(r,∞, g) + N2(r, 0, f) + N2(r, 0, g) + S(r, f) + S(r, g),
the same inequality holding forT (r, g);

(ii) f ≡ g;
(iii) f · g ≡ 1.

Lemma 2.9([4]). Let f andg be two meromorphic functions, and letl be a positive integer. If
El)(1, f) = El)(1, g), then one of the following cases must occur:

(i):

T (r, f) + T (r, g) ≤ N2(r,∞; f) + N2(r, 0; f) + N2(r,∞; g)

+ N2(r, 0; g) + N(r, 1; f) + N(r, 1; g)−N11(r, 1; f)

+ N(r, 1; f | ≥ l + 1) + N(r, 1; g| ≥ l + 1) + S(r, f) + S(r, g);

(ii): f = (b+1)g+(a−b−1)
bg+(a−b)

, wherea(6= 0), b are two constants.

Lemma 2.10([4]). Let f andg be two meromorphic functions. Iff andg share 1IM , then
one of the following cases must occur:

(i):

T (r, f) + T (r, g) ≤ 2[N2(r,∞; f) + N2(r, 0; f) + N2(r,∞; g) + N2(r, 0; g)]

+ 3NL(r, 1; f) + 3NL(r, 1; g) + S(r, f) + S(r, g);

(ii): f = (b+1)g+(a−b−1)
bg+(a−b)

, wherea(6= 0), b are two constants.
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Lemma 2.11. Let f and g be two transcendental meromorphic functions,n > m + 6 be a
positive integer, and letF1 = fnP (f)f ′

z
andG1 = gnP (g)g′

z
. If

(2.4) F1 =
(b + 1)G1 + (a− b− 1)

bG1 + (a− b)
,

wherea(6= 0), b are two constants, then the conclusion of Theorem 1.4 still holds.

Proof. By Lemma 2.1 we know that

T (r, F1) = T

(
r,

fnP (f)f ′

z

)
(2.5)

≤ T (r, fnP (f)) + T (r, f ′) + log r

≤ (n + m)T (r, f) + 2T (r, f) + log r + S(r, f)

= (n + m + 2)T (r, f) + log r + S(r, f),

(n + m)T (r, f)(2.6)

= T (r, fnP (f)) + S(r, f)

= N(r,∞; fnP (f)) + m(r, fnP (f)) + S(r, f)

≤ N

(
r,∞;

fnP (f)f ′

z

)
−N(r,∞; f ′)

+ m

(
r,

fnP (f)f ′

z

)
+ m

(
r,

1

f ′

)
+ log r + S(r, f)

≤ T

(
r,

fnP (f)f ′

z

)
+ T (r, f ′)−N(r,∞; f ′)−N(r, 0; f ′) + log r + S(r, f)

≤ T (r, F1) + T (r, f)−N(r,∞; f)−N(r, 0; f ′) + log r + S(r, f).

So

(2.7) T (r, F1) ≥ (n + m− 1)T (r, f) + N(r,∞; f) + N(r, 0; f ′) + log r + S(r, f).

Thus, by (2.5), (2.7) andn > m + 6, we getS(r, F1) = S(r, f). Similarly,

(2.8) T (r, G1) ≥ (n + m− 1)T (r, g) + N(r,∞; g) + N(r, 0; g′) + log r + S(r, g).

Without loss of generality, we suppose thatT (r, f) ≤ T (r, g), r ∈ I, whereI is a set with
infinite measure. Next, we consider three cases.

Case 1.b 6= 0,−1, If a− b− 1 6= 0, then by (2.4) we know

N

(
r,−a− b− 1

b + 1
; G1

)
= N(r, 0; F1).

Since

(2.9) N(r, 0; g′) ≤ N(r,∞; g) + N(r, 0; g) + S(r, g) ≤ 2T (r, g) + S(r, g).

By Nevanlinna’s second fundamental theorem and (2.9) we have

T (r, G1) ≤ N(r,∞; G1) + N(r, 0; G1) + N

(
r,−a− b− 1

b + 1
; G1

)
+ S(r, G1)

≤ N(r,∞; g) + N(r, 0; g) + mT (r, g) + N(r, 0; g′) + N(r, 0; f)

+ mT (r, f) + N(r, 0; f) + N(r,∞; f) + 2 log r + S(r, g)

≤ (2m + 4)T (r, g) + N(r,∞; g) + N(r, 0; g′) + 2 log r + S(r, g).
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Hence, byn > m + 6 and (2.8), we knowT (r, g) ≤ S(r, g), r ∈ I, this is impossible.
If a− b− 1 = 0, then by (2.4) we knowF1 = ((b + 1)G1)/(bG1 + 1). Obviously,

N

(
r,−1

b
; G1

)
= N(r,∞; F1).

By the Nevanlinna second fundamental theorem and (2.9) we have

T (r, G1) ≤ N(r,∞; G1) + N(r, 0; G1) + N

(
r,−1

b
; G1

)
+ S(r, G1)

≤ N(r,∞; g) + N(r, 0; g) + mT (r, g) + N(r, 0; g′)

+ N(r,∞; f) + 2 log r + S(r, g)

≤ (m + 2)T (r, g) + N(r,∞; g) + N(r, 0; g′) + 2 log r + S(r, g).

Then byn > m + 6 and (2.8), we knowT (r, g) ≤ S(r, g), r ∈ I, a contradiction.

Case 2.b = −1. Then (2.4) becomesF1 = a/(a + 1−G1).
If a + 1 6= 0, thenN(r, a + 1; G1) = N(r,∞; F1). Applying a similar argument to that for

Case 1, we can again deduce a contradiction.
If a + 1 = 0, thenF1 ·G1 ≡ 1, that is,

fnP (f)f ′gnP (g)g′ 6≡ z2.

Sincen ≥ m + 6, by Lemma 2.7 we get a contradiction.

Case 3.b = 0. Then (2.4) becomesF1 = (G1 + a− 1)/a.
If a − 1 6= 0, thenN(r, 1 − a; G1) = N(r, 0; F1). Applying a similar argument to that for

Case 1, we can again deduce a contradiction.
If a− 1 = 0, thenF1 ≡ G1, that is

fnP (f)f ′ ≡ gnP (g)g′.

By Lemma 2.6, we obtain the conclusions of Lemma 2.11.
Thus we complete the proof of Lemma 2.11. �

3. THE PROOFS OF THEOREMS 1.1–1.3

3.1. Proof of Theorem 1.1.

Proof. (i) P (z) = amzm + am−1z
m−1 + · · ·+ a1z + a0.

By the assumptions of Theorem 1.1 and Lemma 2.2, we know that either bothf andg are
transcendental entire functions or bothf andg are polynomials.

First, we consider the case whenf andg are transcendental entire functions.
Let F = fnP (f) andG = gnP (g), from the condition of Theorem 1.1, we know thatF, G

share(1, 0).
By Lemma 2.1 we can easily get

Θ(0, F ) = 1− lim sup
r→∞

N(r, 0; F )

T (r, F )

= 1− lim sup
r→∞

N(r, 0; fnP (f))

(n + m)T (r, f)

= 1− lim sup
r→∞

N(r, 0; f) + N(r, 0; P (f))

(n + m)T (r, f)
,
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i.e.

(3.1) Θ(0, F ) ≥ 1− m + 1

n + m
=

n− 1

n + m
.

Similarly, we have

(3.2) Θ(0, G) ≥ n− 1

n + m
.

Next, by the definition ofNk(r, a; f) we have

δk+1(0, f) = 1− lim sup
r→∞

Nk+1(r, 0; f)

T (r, f)
≥ 1− lim sup

r→∞

(k + 1)N(r, 0; f)

T (r, f)
,

δk+1(0, F ) = 1− lim sup
r→∞

Nk+1(r, 0; fnP (f))

T (r, F )
.

Therefore

(3.3) δk+1(0, F ) ≥ 1− lim sup
r→∞

(m + k + 1)T (r, f)

(n + m)T (r, f)
=

n− k − 1

n + m
.

Similarly we get

(3.4) δk+1(0, G) ≥ n− k − 1

n + m

and

(3.5) δk+2(0, F ) ≥ n− k − 2

n + m
, δk+2(0, G) ≥ n− k − 2

n + m
.

From (3.1) – (3.5) andF, G share(1, 0), we can get

Θ(0, f) + δk(0, f) + δk+1(0, f) + δk+1(0, g) + δk+2(0, f) + δk+2(0, g)

≥ n− 1

n + m
+

n− k

n + m
+ 2

n− k − 1

n + m
+ 2

n− k − 2

n + m
=

6n− 5k − 7

n + m
.

By n > 5m + 5k + 7, we have

Θ(0, f) + δk(0, f) + δk+1(0, f) + δk+1(0, g) + δk+2(0, f) + δk+2(0, g) > 5.

Therefore, by Lemma 2.4, we deduce eitherF (k) ·G(k) ≡ 1 or F ≡ G.
If F (k) ·G(k) ≡ 1, that is

(3.6) [fn(amfm + am−1f
m−1 + · · ·+ a0)]

(k)[gn(amgm + am−1g
m−1 + · · ·+ a0)]

(k) ≡ 1,

then by the assumptions of Theorem 1.1 and Lemma 2.3 we can get a contradiction. Hence, we
deduce thatF ≡ G, that is

(3.7) fn(amfm + am−1f
m−1 + · · ·+ a0) = gn(amgm + am−1g

m−1 + · · ·+ a0).

Let h = f/g. If h is a constant, then substitutingf = gh into (3.7) we deduce

amgn+m(hn+m − 1) + am−1g
n+m−1(hn+m−1 − 1) + · · ·+ a0g

n(hn − 1) = 0,

which implieshd = 1, whered = (n + m, . . . , n + m − i, . . . , n),am−1 6= 0 for somei =
0, 1, . . . ,m. Thusf ≡ tg for a constantt such thattd = 1, whered = (n + m, . . . , n + m −
i, . . . , n),am−i 6= 0 for somei = 0, 1, . . . ,m.

If h is not a constant, then we know by (3.7) thatf and g satisfy the algebraic equation
R(f, g) = 0, whereR(ω1, ω2) = ωn

1 (amωm
1 + am−1ω

m−1
1 + · · · + a1ω1 + a0) − ωn

2 (amωm
2 +

am−1ω
m−1
2 + · · ·+ a1ω2 + a0). This proves (i) of Theorem 1.1.
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Now we consider the case whenf andg are two polynomials. FromF, G share (1,0), we
have

(3.8) [fn(amfm + am−1f
m−1 + · · ·+ a0)]

(k) − 1

= c{[gn(amgm + am−1g
m−1 + · · ·+ a0)]

(k) − 1},

wherec is a nonzero constant. Letdeg f = l. Then by (3.8) we know thatdeg g = l. Differen-
tiating the two sides of (3.8), we can get

(3.9) fn−k−1q1 = gn−k−1q2,

whereq1, q2 are two polynomials withdeg q1 = deg q2 = (m + k + 1)l − (k + 1). By n ≥
4m + 4k + 8, we havedeg gn−k−1 = (n − k − 1)l > deg q2. Therefore by (3.9) we know that
there existsz0 such thatf(z0) = g(z0) = 0. Hence, by (3.8) andf(z0) = g(z0) = 0, we deduce
thatc = 1, i.e.,

(3.10) [fn(amfm + am−1f
m−1 + · · ·+ a0)]

(k) ≡ [gn(amgm + am−1g
m−1 + · · ·+ a0)]

(k).

Then we have

(3.11) fn(amfm + am−1f
m−1 + · · ·+ a0)− gn(amgm + am−1g

m−1 + · · ·+ a0) = p(z),

wherep(z) is a polynomial of degree at mostk − 1. Next, we provep(z) = 0 by rewriting
(3.10) as

(3.12) fn−kp1 = gn−kp2,

wherep1, p2 are two polynomials withdeg p1 = deg p2 = (m + k)l − k anddeg f = l.
Therefore, the total number of the common zeros offn−k andgn−k is at leastk. Then by

(3.11) we deduce thatp(z) ≡ 0, i.e.,

fn(amfm + am−1f
m−1 + · · ·+ a1f + a0) ≡ gn(amgm + am−1g

m−1 + · · ·+ a1g + a0).

Then using the same argument of (3.7), we can also get the case (i) of Theorem 1.1.
(ii) P (z) ≡ c0. From Theorem B, we can easily see that the case (ii) of Theorem 1.1 holds.
Thus, we complete the proof of Theorem 1.1. �

3.2. Proof of Theorem 1.2.

Proof. From the condition of Theorem 1.2 and Lemma 2.4(ii), using the same argument of
Theorem 1.1, Theorem 1.2 can be easily proved . �

3.3. Proof of Theorem 1.3.

Proof. From the condition of Theorem 1.3 and Lemma 2.4(iii), using the same argument of
Theorem 1.1, Theorem 1.3 can be easily proved . �

4. THE PROOFS OF THEOREMS 1.4–1.6

Let F1 andG1 be defined as in Lemma 2.11 and

F ∗ =
amfn+m+1

n + m + 1
+

am−1f
n+m−1

n + m
+ · · ·+ a0f

n+1

n + 1

and

G∗ =
amgn+m+1

n + m + 1
+

am−1g
n+m−1

n + m
+ · · ·+ a0g

n+1

n + 1
.
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4.1. Proof of Theorem 1.4.

Proof. From the condition of Theorem 1.4, thenF1 andG1 sharez CM .
By Lemma 2.1, we have

(4.1) T (r, F ∗) = (n+m+1)T (r, f)+S(r, f), T (r, G∗) = (n+m+1)T (r, g)+S(r, g).

Since(F ∗)′ = F1z, we deduce

m

(
r,

1

F ∗

)
≤ m

(
r,

1

zF1

)
+ S(r, f) ≤ m

(
r,

1

F1

)
+ log r + S(r, f),

and by Nevanlinna’s first fundamental theorem

T (r, F ∗) ≤ T (r, F1) + N(r, 0; F ∗)−N(r, 0; F1) + log r + S(r, f)(4.2)

≤ T (r, F1) + N(r, 0; f) + N(r, b1; f) + · · ·+ N(r, bm; f)−N(r, c1; f)

− · · · −N(r, cm; f)−N(r, 0; f ′) + log r + S(r, f),

whereb1, b2, . . . , bm are roots of the algebraic equation

amzm

n + m + 1
+

am−1z
m−1

n + m
+ · · ·+ a0

n + 1
= 0,

andc1, c2, . . . , cm are roots of the algebraic equation

amzm + am−1z
m−1 + · · ·+ a1z + a0 = 0.

By the definition ofF1, G1, we have

(4.3) N2(r, 0; F1) + N2(r,∞; F1) ≤ 2N(r,∞; f) + 2N(r, 0; f) + N(r, c1; f)

+ · · ·+ N(r, cm; f) + N(r, 0; f ′) + 2 log r.

Similarly, we obtain

(4.4) N2(r, 0; G1) + N2(r,∞; G1) ≤ 2N(r,∞; g) + 2N(r, 0; g) + N(r, c1; g)

+ · · ·+ N(r, cm; g) + N(r, 0; g′) + 2 log r.

If Lemma 2.8(i) holds, from (4.2) – (4.4) we have

(4.5) T (r, F1) ≤ (m + 5)T (r, f) + (m + 6)T (r, g) + 4 log r + S(r, f) + S(r, g).

Similarly, we obtain

(4.6) T (r, G1) ≤ (m + 5)T (r, g) + (m + 6)T (r, f) + 4 log r + S(r, f) + S(r, g).

By (4.1), (4.5), (4.6) andn > m + 10, we can obtain a contradiction.
If Lemma 2.8(ii) holds, thenF1 ≡ G1. By Lemma 2.6, we can get the conclusion of Theorem

1.4.
If Lemma 2.8(iii) holds, thenF1 · G1 ≡ 1. By Lemma 2.7 andn > m + 10, we can get a

contradiction.
Therefore, we complete the proof of Theorem 1.4. �
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4.2. Proof of Theorem 1.5.

Proof. Suppose that (i) in Lemma 2.10 holds. Since

NL(r, 1; F1) ≤ N

(
r,∞;

F1

F ′
1

)
(4.7)

= N

(
r,∞;

F ′
1

F1

)
+ S(r, f)

≤ N(r,∞; F1) + N(r, 0; F1) + S(r, f)

≤ (m + 4)T (r, f) + 2 log r + S(r, f),

similarly, we have

(4.8) NL(r, 1; G1) ≤ (m + 4)T (r, g) + 2 log r + S(r, g).

By (4.2) – (4.4), (4.7) – (4.8) and Lemma 2.10(i), we have

(4.9) (n− 4m− 22)[T (r, f) + T (r, g)] ≤ 20 log r + S(r, f) + S(r, g).

By n > 4m + 22, we get a contradiction. HenceF1 andG1 satisfy (ii) in Lemma 2.10. By
Lemma 2.11, we can get the conclusion of Theorem 1.5.

Thus, we complete the proof of Theorem 1.5. �

4.3. Proof of Theorem 1.6.

Proof. (i) If l = 1. Since

N(r, 1; F1)+N(r, 1; G1)−N11(r, 1; F1)

≤ 1

2
N(r, 1; F1) +

1

2
N(r, 1; G1)

≤ 1

2
T (r, F1) +

1

2
T (r, G1) + S(r, f) + S(r, g).

Suppose that (i) in Lemma 2.9 holds, then we have

(4.10) T (r, F1) + T (r, G1) ≤ 2[N2(r, 0; F1) + N2(r,∞; F1) + N2(r, 0; G1)

+ N2(r,∞; G1) + N(r, 1; F1| ≥ 2) + N(r, 1; G1| ≥ 2)] + S(r, f) + S(r, g).

Since

N (r, 1; F1| ≥ 2) ≤ N

(
r,∞;

F1

F ′
1

)
(4.11)

= N

(
r,∞;

F ′
1

F1

)
+ S(r, f)

≤ N(r,∞; F1) + N(r, 0; F1) + S(r, f)

≤ (m + 4)T (r, f) + 2 log r + S(r, f),

similarly, we have

(4.12) N(r, 1; G1| ≥ 2) ≤ (m + 4)T (r, g) + 2 log r + S(r, g).

By (4.2) – (4.4), (4.10) – (4.12) and Lemma 2.9(i), we have

(4.13) (n− 3m− 18)[T (r, f) + T (r, g)] ≤ 16 log r + S(r, f) + S(r, g).

By n > 3m + 18, we get a contradiction. HenceF1 andG1 satisfy (ii) in Lemma 2.9. By
Lemma 2.11, we can get the conclusion of Theorem 1.6(i).

J. Inequal. Pure and Appl. Math., 10(3) (2009), Art. 88, 14 pp. http://jipam.vu.edu.au/

http://jipam.vu.edu.au/


UNIQUENESS OFENTIRE OR MEROMORPHICFUNCTIONS 13

(ii) If l = 2. Since

N(r, 1; F1) + N(r, 1; G1)−N11(r, 1; F1) +
1

2
N (r, 1; F1| ≥ 3) +

1

2
N (r, 1; G1| ≥ 3)

≤ 1

2
N(r, 1; F1) +

1

2
N(r, 1; G1) ≤

1

2
T (r, F1) +

1

2
T (r, G1) + S(r, f) + S(r, g).

Suppose that (i) in Lemma 2.9 holds, then we have

(4.14) T (r, F1) + T (r, G1) ≤ 2[N2(r, 0; F1) + N2(r,∞; F1) + N2(r, 0; G1)

+ N2(r,∞; G1) + N(r, 1; F1| ≥ 3) + N(r, 1; G1| ≥ 3)] + S(r, f) + S(r, g).

Since

N (r, 1; F1| ≥ 3) ≤ 1

2
N

(
r,∞;

F1

F ′
1

)
(4.15)

=
1

2
N

(
r,∞;

F ′
1

F1

)
+ S(r, f)

≤ 1

2
(m + 4)T (r, f) + log r + S(r, f),

similarly, we have

(4.16) N(r, 1; G1| ≥ 3) ≤ 1

2
(m + 4)T (r, g) + log r + S(r, g).

By (4.2) – (4.4), (4.14) – (4.16) and Lemma 2.9(i), we have

(4.17)

(
n− 3

2
m− 12

)
[T (r, f) + T (r, g)] ≤ 16 log r + S(r, f) + S(r, g).

By n > 3
2
m + 12, we get a contradiction. HenceF1 andG1 satisfy (ii) in Lemma 2.9. By

Lemma 2.11, we can get the conclusion of Theorem 1.6(ii). �

5. REMARKS

It follows from the proof of Theorem 1.4(1.5) that if the conditionfnP (f)f ′ andgnP (g)g′

sharez CM (IM) are replaced by the conditionfnP (f)f ′ andgnP (g)g′ sharea(z) CM (IM),
wherea(z) is a meromorphic function such thata(z) 6≡ 0,∞ andT (r, f) = o{T (r, f), T (r, g)},
the conclusion of Theorem 1.4(1.5) still holds. Similarly, if the conditionEl)(z, f

nP (f)f ′) =
El)(z, g

nP (g)g′)(l = 1, 2) is replaced by the conditionEl)(a(z),
fnP (f)f ′) = El)(a(z), gnP (g)g′)(l = 1, 2) respectively, then the conclusion of Theorem 1.6
still holds.
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